1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
|
import unittest
import numpy as np
import meep as mp
class TestModeCoeffs(unittest.TestCase):
def run_mode_coeffs(self, mode_num, kpoint_func, nf=1, resolution=15):
w = 1 # width of waveguide
L = 10 # length of waveguide
Si = mp.Medium(epsilon=12.0)
dair = 3.0
dpml = 3.0
sx = dpml + L + dpml
sy = dpml + dair + w + dair + dpml
cell_size = mp.Vector3(sx, sy, 0)
prism_x = sx + 1
prism_y = w / 2
vertices = [
mp.Vector3(-prism_x, prism_y),
mp.Vector3(prism_x, prism_y),
mp.Vector3(prism_x, -prism_y),
mp.Vector3(-prism_x, -prism_y),
]
geometry = [mp.Prism(vertices, height=mp.inf, material=Si)]
boundary_layers = [mp.PML(dpml)]
# mode frequency
fcen = 0.20 # > 0.5/sqrt(11) to have at least 2 modes
df = 0.5 * fcen
source = mp.EigenModeSource(
src=mp.GaussianSource(fcen, fwidth=df),
eig_band=mode_num,
size=mp.Vector3(0, sy - 2 * dpml, 0),
center=mp.Vector3(-0.5 * sx + dpml, 0, 0),
)
symmetries = [mp.Mirror(mp.Y, phase=1 if mode_num % 2 == 1 else -1)]
sim = mp.Simulation(
resolution=resolution,
cell_size=cell_size,
boundary_layers=boundary_layers,
geometry=geometry,
sources=[source],
symmetries=symmetries,
)
xm = 0.5 * sx - dpml # x-coordinate of monitor
mflux = sim.add_mode_monitor(
fcen,
df,
nf,
mp.ModeRegion(center=mp.Vector3(xm, 0), size=mp.Vector3(0, sy - 2 * dpml)),
)
mode_flux = sim.add_flux(
fcen,
df,
nf,
mp.FluxRegion(center=mp.Vector3(xm, 0), size=mp.Vector3(0, sy - 2 * dpml)),
)
# sim.run(until_after_sources=mp.stop_when_fields_decayed(50, mp.Ez, mp.Vector3(-0.5*sx+dpml,0), 1e-10))
sim.run(until_after_sources=100)
##################################################
# If the number of analysis frequencies is >1, we
# are testing the unit-power normalization
# of the eigenmode source: we observe the total
# power flux through the mode_flux monitor (which
# equals the total power emitted by the source as
# there is no scattering in this ideal waveguide)
# and check that it agrees with the prediction
# of the eig_power() class method in EigenmodeSource.
##################################################
if nf > 1:
power_observed = mp.get_fluxes(mode_flux)
freqs = mp.get_flux_freqs(mode_flux)
power_expected = [source.eig_power(f) for f in freqs]
return freqs, power_expected, power_observed
modes_to_check = [
1,
2,
] # indices of modes for which to compute expansion coefficients
res = sim.get_eigenmode_coefficients(
mflux, modes_to_check, kpoint_func=kpoint_func
)
self.assertTrue(res.kpoints[0].close(mp.Vector3(0.604301, 0, 0)))
self.assertTrue(res.kpoints[1].close(mp.Vector3(0.494353, 0, 0), tol=1e-2))
self.assertTrue(res.kdom[0].close(mp.Vector3(0.604301, 0, 0)))
self.assertTrue(res.kdom[1].close(mp.Vector3(0.494353, 0, 0), tol=1e-2))
self.assertAlmostEqual(res.cscale[0], 0.50000977, places=5)
self.assertAlmostEqual(res.cscale[1], 0.50096888, places=5)
mode_power = mp.get_fluxes(mode_flux)[0]
TestPassed = True
TOLERANCE = 5.0e-3
c0 = res.alpha[
mode_num - 1, 0, 0
] # coefficient of forward-traveling wave for mode #mode_num
for nm in range(1, len(modes_to_check) + 1):
if nm != mode_num:
cfrel = np.abs(res.alpha[nm - 1, 0, 0]) / np.abs(c0)
cbrel = np.abs(res.alpha[nm - 1, 0, 1]) / np.abs(c0)
if cfrel > TOLERANCE or cbrel > TOLERANCE:
TestPassed = False
self.sim = sim
# test 1: coefficient of excited mode >> coeffs of all other modes
self.assertTrue(TestPassed, msg=f"cfrel: {cfrel}, cbrel: {cbrel}")
# test 2: |mode coeff|^2 = power
self.assertAlmostEqual(mode_power / abs(c0**2), 1.0, places=1)
return res
def test_modes(self):
self.run_mode_coeffs(1, None)
res = self.run_mode_coeffs(2, None)
# Test mp.get_eigenmode and EigenmodeData
vol = mp.Volume(center=mp.Vector3(5), size=mp.Vector3(y=7))
emdata = self.sim.get_eigenmode(0.2, mp.X, vol, 2, mp.Vector3())
self.assertEqual(emdata.freq, 0.2)
self.assertEqual(emdata.band_num, 2)
self.assertTrue(emdata.kdom.close(res.kdom[1]))
eval_point = mp.Vector3(0.7, -0.2, 0.3)
ex_at_eval_point = emdata.amplitude(eval_point, mp.Ex)
hz_at_eval_point = emdata.amplitude(eval_point, mp.Hz)
places = 5 if mp.is_single_precision() else 7
self.assertAlmostEqual(
ex_at_eval_point, 0.4887779638178009 + 0.484240145324284j, places=places
)
self.assertAlmostEqual(
hz_at_eval_point, 3.4249236584603495 - 3.455974863884166j, places=places
)
def test_kpoint_func(self):
def kpoint_func(freq, mode):
return mp.Vector3()
self.run_mode_coeffs(1, kpoint_func)
def test_eigensource_normalization(self):
f, p_exp, p_obs = self.run_mode_coeffs(1, None, nf=51, resolution=15)
# self.assertAlmostEqual(max(p_exp),max(p_obs),places=1)
max_exp, max_obs = max(p_exp), max(p_obs)
self.assertLess(abs(max_exp - max_obs), 0.5 * max(abs(max_exp), abs(max_obs)))
def test_reciprocity_kpoint(self):
resolution = 40
sx = 7.0
sy = 5.0
cell_size = mp.Vector3(sx, sy)
dpml = 1.0
pml_layers = [mp.PML(thickness=dpml)]
w = 1.0
geometry = [
mp.Block(
center=mp.Vector3(),
size=mp.Vector3(mp.inf, w, mp.inf),
material=mp.Medium(epsilon=12),
)
]
fsrc = 0.15
sources = [
mp.EigenModeSource(
src=mp.GaussianSource(fsrc, fwidth=0.2 * fsrc),
center=mp.Vector3(x=-0.5 * sx + dpml),
size=mp.Vector3(y=sy),
eig_parity=mp.EVEN_Y + mp.ODD_Z,
)
]
symmetries = [mp.Mirror(mp.Y)]
sim = mp.Simulation(
cell_size=cell_size,
resolution=resolution,
boundary_layers=pml_layers,
sources=sources,
geometry=geometry,
symmetries=symmetries,
)
tran = sim.add_mode_monitor(
fsrc,
0,
1,
mp.ModeRegion(center=mp.Vector3(x=0.5 * sx - dpml), size=mp.Vector3(y=sy)),
yee_grid=False,
)
sim.run(until_after_sources=50)
res_fwd = sim.get_eigenmode_coefficients(
tran,
[1],
eig_parity=mp.EVEN_Y + mp.ODD_Z,
direction=mp.NO_DIRECTION,
kpoint_func=lambda f, n: mp.Vector3(+1, 0, 0),
)
res_bwd = sim.get_eigenmode_coefficients(
tran,
[1],
eig_parity=mp.EVEN_Y + mp.ODD_Z,
direction=mp.NO_DIRECTION,
kpoint_func=lambda f, n: mp.Vector3(-1, 0, 0),
)
print(f"S11:, {res_fwd.alpha[0,0,1]}, {res_bwd.alpha[0,0,0]}")
print(f"S21:, {res_fwd.alpha[0,0,0]}, {res_bwd.alpha[0,0,1]}")
# |S11|^2
self.assertAlmostEqual(
abs(res_fwd.alpha[0, 0, 1]) ** 2, abs(res_bwd.alpha[0, 0, 0]) ** 2, places=4
)
# |S21|^2
self.assertAlmostEqual(
abs(res_fwd.alpha[0, 0, 0]) ** 2 / abs(res_bwd.alpha[0, 0, 1]) ** 2,
1.00,
places=2,
)
def test_reciprocity_monitor(self):
resolution = 25
sx = 7.0
sy = 5.0
cell_size = mp.Vector3(sx, sy)
dpml = 1.0
pml_layers = [mp.PML(thickness=dpml)]
w = 1.0
geometry = [
mp.Block(
center=mp.Vector3(),
size=mp.Vector3(mp.inf, w, mp.inf),
material=mp.Medium(epsilon=12),
)
]
fsrc = 0.15
# source is at the left edge of the waveguide
sources = [
mp.EigenModeSource(
src=mp.GaussianSource(fsrc, fwidth=0.2 * fsrc),
center=mp.Vector3(x=-0.5 * sx + dpml),
size=mp.Vector3(y=sy),
eig_parity=mp.EVEN_Y + mp.ODD_Z,
)
]
symmetries = [mp.Mirror(mp.Y)]
sim = mp.Simulation(
cell_size=cell_size,
resolution=resolution,
boundary_layers=pml_layers,
sources=sources,
geometry=geometry,
symmetries=symmetries,
)
# monitor is at the right edge of the waveguide
tran = sim.add_mode_monitor(
fsrc,
0,
1,
mp.ModeRegion(center=mp.Vector3(x=0.5 * sx - dpml), size=mp.Vector3(y=sy)),
yee_grid=False,
)
sim.run(until_after_sources=50)
res_fwd = sim.get_eigenmode_coefficients(
tran, [1], eig_parity=mp.EVEN_Y + mp.ODD_Z
)
print(f"S11:, {res_fwd.alpha[0,0,1]}")
print(f"S21:, {res_fwd.alpha[0,0,0]}")
sim.reset_meep()
# source is at the right edge of the waveguide
sources = [
mp.EigenModeSource(
src=mp.GaussianSource(fsrc, fwidth=0.2 * fsrc),
center=mp.Vector3(x=0.5 * sx - dpml),
size=mp.Vector3(y=sy),
direction=mp.NO_DIRECTION,
eig_kpoint=mp.Vector3(-1, 0, 0),
eig_parity=mp.EVEN_Y + mp.ODD_Z,
)
]
sim = mp.Simulation(
cell_size=cell_size,
resolution=resolution,
boundary_layers=pml_layers,
sources=sources,
geometry=geometry,
symmetries=symmetries,
)
# monitor is at the left edge of the waveguide
tran = sim.add_mode_monitor(
fsrc,
0,
1,
mp.ModeRegion(center=mp.Vector3(x=-0.5 * sx + dpml), size=mp.Vector3(y=sy)),
yee_grid=False,
)
sim.run(until_after_sources=50)
res_bwd = sim.get_eigenmode_coefficients(
tran, [1], eig_parity=mp.EVEN_Y + mp.ODD_Z
)
print(f"S12:, {res_bwd.alpha[0,0,1]}")
print(f"S22:, {res_bwd.alpha[0,0,0]}")
# |S21|^2 = |S12|^2
self.assertAlmostEqual(
abs(res_fwd.alpha[0, 0, 0]) ** 2 / abs(res_bwd.alpha[0, 0, 1]) ** 2,
1.00,
places=2,
)
# |S11|^2 = |S22|^2
self.assertAlmostEqual(
abs(res_fwd.alpha[0, 0, 1]) ** 2, abs(res_bwd.alpha[0, 0, 0]) ** 2, places=2
)
if __name__ == "__main__":
unittest.main()
|