1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
|
import cmath
import math
import unittest
import numpy as np
import meep as mp
class TestModeDecomposition(unittest.TestCase):
def test_linear_taper_2d(self):
resolution = 10
w1 = 1
w2 = 2
Lw = 2
dair = 3.0
dpml = 5.0
sy = dpml + dair + w2 + dair + dpml
half_w1 = 0.5 * w1
half_w2 = 0.5 * w2
Si = mp.Medium(epsilon=12.0)
boundary_layers = [mp.PML(dpml)]
lcen = 6.67
fcen = 1 / lcen
symmetries = [mp.Mirror(mp.Y)]
Lt = 2
sx = dpml + Lw + Lt + Lw + dpml
cell_size = mp.Vector3(sx, sy, 0)
prism_x = sx + 1
half_Lt = 0.5 * Lt
src_pt = mp.Vector3(-0.5 * sx + dpml + 0.2 * Lw, 0, 0)
sources = [
mp.EigenModeSource(
src=mp.GaussianSource(fcen, fwidth=0.2 * fcen),
center=src_pt,
size=mp.Vector3(0, sy - 2 * dpml, 0),
eig_match_freq=True,
eig_parity=mp.ODD_Z + mp.EVEN_Y,
)
]
vertices = [
mp.Vector3(-prism_x, half_w1),
mp.Vector3(prism_x, half_w1),
mp.Vector3(prism_x, -half_w1),
mp.Vector3(-prism_x, -half_w1),
]
sim = mp.Simulation(
resolution=resolution,
cell_size=cell_size,
boundary_layers=boundary_layers,
geometry=[mp.Prism(vertices, height=mp.inf, material=Si)],
sources=sources,
symmetries=symmetries,
)
mon_pt = mp.Vector3(-0.5 * sx + dpml + 0.5 * Lw, 0, 0)
flux = sim.add_flux(
fcen,
0,
1,
mp.FluxRegion(center=mon_pt, size=mp.Vector3(0, sy - 2 * dpml, 0)),
)
sim.run(
until_after_sources=mp.stop_when_fields_decayed(50, mp.Ez, src_pt, 1e-9)
)
res = sim.get_eigenmode_coefficients(flux, [1], eig_parity=mp.ODD_Z + mp.EVEN_Y)
incident_coeffs = res.alpha
incident_flux = mp.get_fluxes(flux)
incident_flux_data = sim.get_flux_data(flux)
sim.reset_meep()
vertices = [
mp.Vector3(-prism_x, half_w1),
mp.Vector3(-half_Lt, half_w1),
mp.Vector3(half_Lt, half_w2),
mp.Vector3(prism_x, half_w2),
mp.Vector3(prism_x, -half_w2),
mp.Vector3(half_Lt, -half_w2),
mp.Vector3(-half_Lt, -half_w1),
mp.Vector3(-prism_x, -half_w1),
]
sim = mp.Simulation(
resolution=resolution,
cell_size=cell_size,
boundary_layers=boundary_layers,
geometry=[mp.Prism(vertices, height=mp.inf, material=Si)],
sources=sources,
symmetries=symmetries,
)
refl_flux = sim.add_flux(
fcen,
0,
1,
mp.FluxRegion(center=mon_pt, size=mp.Vector3(0, sy - 2 * dpml, 0)),
)
sim.load_minus_flux_data(refl_flux, incident_flux_data)
sim.run(
until_after_sources=mp.stop_when_fields_decayed(50, mp.Ez, src_pt, 1e-9)
)
res = sim.get_eigenmode_coefficients(
refl_flux, [1], eig_parity=mp.ODD_Z + mp.EVEN_Y
)
coeffs = res.alpha
taper_flux = mp.get_fluxes(refl_flux)
self.assertAlmostEqual(
abs(coeffs[0, 0, 1]) ** 2 / abs(incident_coeffs[0, 0, 0]) ** 2,
-taper_flux[0] / incident_flux[0],
places=4,
)
def test_oblique_waveguide_backward_mode(self):
sxy = 12.0
cell_size = mp.Vector3(sxy, sxy, 0)
dpml = 0.6
pml_layers = [mp.PML(thickness=dpml)]
fcen = 1 / 1.55
rot_angle = np.radians(35.0)
kpoint = mp.Vector3(1, 0, 0).rotate(mp.Vector3(0, 0, 1), rot_angle) * -1.0
sources = [
mp.EigenModeSource(
src=mp.GaussianSource(fcen, fwidth=0.1),
center=mp.Vector3(0.5 * sxy - 3.4, 0, 0),
size=mp.Vector3(0, sxy, 0),
direction=mp.NO_DIRECTION,
eig_kpoint=kpoint,
eig_band=1,
eig_parity=mp.ODD_Z,
eig_match_freq=True,
)
]
geometry = [
mp.Block(
center=mp.Vector3(),
size=mp.Vector3(mp.inf, 1, mp.inf),
e1=mp.Vector3(1, 0, 0).rotate(mp.Vector3(0, 0, 1), rot_angle),
e2=mp.Vector3(0, 1, 0).rotate(mp.Vector3(0, 0, 1), rot_angle),
material=mp.Medium(index=3.5),
)
]
sim = mp.Simulation(
cell_size=cell_size,
resolution=20,
boundary_layers=pml_layers,
sources=sources,
geometry=geometry,
)
mode = sim.add_mode_monitor(
fcen,
0,
1,
mp.FluxRegion(
center=mp.Vector3(-0.5 * sxy + dpml, 0, 0), size=mp.Vector3(0, sxy, 0)
),
decimation_factor=1,
)
mode_decimated = sim.add_mode_monitor(
fcen,
0,
1,
mp.FluxRegion(
center=mp.Vector3(-0.5 * sxy + dpml, 0, 0), size=mp.Vector3(0, sxy, 0)
),
decimation_factor=10,
)
sim.run(until_after_sources=30)
flux = mp.get_fluxes(mode)[0]
coeff = sim.get_eigenmode_coefficients(
mode, [1], direction=mp.NO_DIRECTION, kpoint_func=lambda f, n: kpoint
).alpha[0, 0, 0]
flux_decimated = mp.get_fluxes(mode_decimated)[0]
coeff_decimated = sim.get_eigenmode_coefficients(
mode_decimated,
[1],
direction=mp.NO_DIRECTION,
kpoint_func=lambda f, n: kpoint,
).alpha[0, 0, 0]
print(f"oblique-waveguide-flux:, {-flux:.6f}, {abs(coeff) ** 2:.6f}")
print(
"oblique-waveguide-flux (decimated):, {:.6f}, {:.6f}".format(
-flux_decimated, abs(coeff_decimated) ** 2
)
)
## the magnitude of |flux| is 100.008731 and so we check two significant digits of accuracy
self.assertAlmostEqual(-1, abs(coeff) ** 2 / flux, places=2)
self.assertAlmostEqual(flux, flux_decimated, places=3)
self.assertAlmostEqual(coeff, coeff_decimated, places=3)
def test_grating_3d(self):
"""Unit test for mode decomposition in 3d with zero k_point.
Verifies that the reflectance and transmittance in the z
direction at a single wavelength for a unit cell of a
3d grating using a normally incident planewave is equivalent
to the sum of the Poynting flux (normalized by the flux
of the input source) for all the individual reflected
and transmitted diffracted orders.
"""
resolution = 25 # pixels/μm
nSi = 3.45
Si = mp.Medium(index=nSi)
nSiO2 = 1.45
SiO2 = mp.Medium(index=nSiO2)
wvl = 0.5 # wavelength
fcen = 1 / wvl
dpml = 1.0 # PML thickness
dsub = 3.0 # substrate thickness
dair = 3.0 # air padding
hcyl = 0.5 # cylinder height
rcyl = 0.2 # cylinder radius
sx = 1.1
sy = 0.8
sz = dpml + dsub + hcyl + dair + dpml
cell_size = mp.Vector3(sx, sy, sz)
boundary_layers = [mp.PML(thickness=dpml, direction=mp.Z)]
# periodic boundary conditions
k_point = mp.Vector3()
src_cmpt = mp.Ex
sources = [
mp.Source(
src=mp.GaussianSource(fcen, fwidth=0.2 * fcen),
size=mp.Vector3(sx, sy, 0),
center=mp.Vector3(0, 0, -0.5 * sz + dpml),
component=src_cmpt,
)
]
symmetries = [
mp.Mirror(direction=mp.X, phase=-1),
mp.Mirror(direction=mp.Y, phase=+1),
]
sim = mp.Simulation(
resolution=resolution,
cell_size=cell_size,
sources=sources,
default_material=SiO2,
boundary_layers=boundary_layers,
k_point=k_point,
symmetries=symmetries,
)
refl_pt = mp.Vector3(0, 0, -0.5 * sz + dpml + 0.5 * dsub)
refl_flux = sim.add_mode_monitor(
fcen, 0, 1, mp.ModeRegion(center=refl_pt, size=mp.Vector3(sx, sy, 0))
)
stop_cond = mp.stop_when_energy_decayed(20, 1e-6)
sim.run(until_after_sources=stop_cond)
input_flux = mp.get_fluxes(refl_flux)
input_flux_data = sim.get_flux_data(refl_flux)
sim.reset_meep()
geometry = [
mp.Block(
size=mp.Vector3(mp.inf, mp.inf, dpml + dsub),
center=mp.Vector3(0, 0, -0.5 * sz + 0.5 * (dpml + dsub)),
material=SiO2,
),
mp.Cylinder(
height=hcyl,
radius=rcyl,
center=mp.Vector3(0, 0, -0.5 * sz + dpml + dsub + 0.5 * hcyl),
material=Si,
),
]
sim = mp.Simulation(
resolution=resolution,
cell_size=cell_size,
sources=sources,
geometry=geometry,
boundary_layers=boundary_layers,
k_point=k_point,
symmetries=symmetries,
)
refl_flux = sim.add_mode_monitor(
fcen, 0, 1, mp.ModeRegion(center=refl_pt, size=mp.Vector3(sx, sy, 0))
)
sim.load_minus_flux_data(refl_flux, input_flux_data)
tran_flux = sim.add_mode_monitor(
fcen,
0,
1,
mp.ModeRegion(
center=mp.Vector3(0, 0, 0.5 * sz - dpml), size=mp.Vector3(sx, sy, 0)
),
)
sim.run(until_after_sources=stop_cond)
# sum the Poynting flux in z direction for all reflected orders
Rsum = 0
# number of reflected modes/orders in SiO2 in x and y directions (upper bound)
nm_x = int(fcen * nSiO2 * sx) + 1
nm_y = int(fcen * nSiO2 * sy) + 1
for m_x in range(nm_x):
for m_y in range(nm_y):
for S_pol in [False, True]:
res = sim.get_eigenmode_coefficients(
refl_flux,
mp.DiffractedPlanewave(
[m_x, m_y, 0],
mp.Vector3(1, 0, 0),
1 if S_pol else 0,
0 if S_pol else 1,
),
)
r_coeffs = res.alpha
Rmode = abs(r_coeffs[0, 0, 1]) ** 2 / input_flux[0]
print(
"refl-order:, {}, {}, {}, {:.6f}".format(
"s" if S_pol else "p", m_x, m_y, Rmode
)
)
if m_x == 0 and m_y == 0:
Rsum += Rmode
elif (m_x != 0 and m_y == 0) or (m_x == 0 and m_y != 0):
Rsum += 2 * Rmode
else:
Rsum += 4 * Rmode
# sum the Poynting flux in z direction for all transmitted orders
Tsum = 0
# number of transmitted modes/orders in air in x and y directions (upper bound)
nm_x = int(fcen * sx) + 1
nm_y = int(fcen * sy) + 1
for m_x in range(nm_x):
for m_y in range(nm_y):
for S_pol in [False, True]:
res = sim.get_eigenmode_coefficients(
tran_flux,
mp.DiffractedPlanewave(
[m_x, m_y, 0],
mp.Vector3(1, 0, 0),
1 if S_pol else 0,
0 if S_pol else 1,
),
)
t_coeffs = res.alpha
Tmode = abs(t_coeffs[0, 0, 0]) ** 2 / input_flux[0]
print(
"tran-order:, {}, {}, {}, {:.6f}".format(
"s" if S_pol else "p", m_x, m_y, Tmode
)
)
if m_x == 0 and m_y == 0:
Tsum += Tmode
elif (m_x != 0 and m_y == 0) or (m_x == 0 and m_y != 0):
Tsum += 2 * Tmode
else:
Tsum += 4 * Tmode
r_flux = mp.get_fluxes(refl_flux)
t_flux = mp.get_fluxes(tran_flux)
Rflux = -r_flux[0] / input_flux[0]
Tflux = t_flux[0] / input_flux[0]
print(f"refl:, {Rsum}, {Rflux}")
print(f"tran:, {Tsum}, {Tflux}")
print(f"sum:, {Rsum + Tsum}, {Rflux + Tflux}")
## to obtain agreement for two decimal digits,
## the resolution must be increased to 200
self.assertAlmostEqual(Rsum, Rflux, places=1)
self.assertAlmostEqual(Tsum, Tflux, places=2)
self.assertAlmostEqual(Rsum + Tsum, 1.00, places=1)
def test_triangular_lattice_oblique(self):
"""Unit test for mode decomposition in 3d with nonzero k_point.
Verifies that the sum of the diffraction efficiencies of all
the reflected and transmitted orders of a binary grating with
triangular lattice given an oblique planewave incident from
within the high-index medium is equivalent to the reflectance and
transmittance, respectively, obtained using the Poynting flux.
"""
resolution = 30
ng = 1.5
glass = mp.Medium(index=ng)
wvl = 0.5
fcen = 1 / wvl
dpml = 1.0
dsub = 2.0
dair = 2.0
rcyl = 0.1
hcyl = 0.3
a = 0.6
sx = a
sy = a * np.sqrt(3)
sz = dpml + dsub + hcyl + dair + dpml
cell_size = mp.Vector3(sx, sy, sz)
boundary_layers = [mp.PML(thickness=dpml, direction=mp.Z)]
# plane of incidence is yz
# 0° is +z with CCW rotation about x
theta = math.radians(34.6)
if theta == 0:
k = mp.Vector3()
else:
# The planewave source is incident from within the high-index
# medium which means ω = c|k|/n where n is the index of medium.
# In Meep units (c=1), this implies |k| = nω.
k = mp.Vector3(0, 0, ng * fcen).rotate(mp.Vector3(1, 0, 0), theta)
def pw_amp(k, x0):
def _pw_amp(x):
return cmath.exp(1j * 2 * math.pi * k.dot(x + x0))
return _pw_amp
src_pt = mp.Vector3(0, 0, -0.5 * sz + dpml)
src_cmpt = mp.Ex # S-pol: Ex / P-pol: Ey
sources = [
mp.Source(
src=mp.GaussianSource(fcen, fwidth=0.1 * fcen),
size=mp.Vector3(sx, sy, 0),
center=src_pt,
component=src_cmpt,
amp_func=pw_amp(k, src_pt),
)
]
symmetries = [mp.Mirror(direction=mp.X, phase=-1 if src_cmpt == mp.Ex else +1)]
sim = mp.Simulation(
resolution=resolution,
cell_size=cell_size,
sources=sources,
default_material=glass,
boundary_layers=boundary_layers,
k_point=k,
symmetries=symmetries,
)
refl_pt = mp.Vector3(0, 0, -0.5 * sz + dpml + 0.5 * dsub)
refl_flux = sim.add_mode_monitor(
fcen, 0, 1, mp.ModeRegion(center=refl_pt, size=mp.Vector3(sx, sy, 0))
)
stop_cond = mp.stop_when_fields_decayed(25, src_cmpt, src_pt, 1e-6)
sim.run(until_after_sources=stop_cond)
input_flux = mp.get_fluxes(refl_flux)[0]
input_flux_data = sim.get_flux_data(refl_flux)
sim.reset_meep()
substrate = [
mp.Block(
size=mp.Vector3(mp.inf, mp.inf, dpml + dsub),
center=mp.Vector3(0, 0, -0.5 * sz + 0.5 * (dpml + dsub)),
material=glass,
)
]
grating = [
mp.Cylinder(
center=mp.Vector3(0, 0, -0.5 * sz + dpml + dsub + 0.5 * hcyl),
radius=rcyl,
height=hcyl,
material=glass,
),
mp.Cylinder(
center=mp.Vector3(
0.5 * sx, 0.5 * sy, -0.5 * sz + dpml + dsub + 0.5 * hcyl
),
radius=rcyl,
height=hcyl,
material=glass,
),
mp.Cylinder(
center=mp.Vector3(
-0.5 * sx, 0.5 * sy, -0.5 * sz + dpml + dsub + 0.5 * hcyl
),
radius=rcyl,
height=hcyl,
material=glass,
),
mp.Cylinder(
center=mp.Vector3(
0.5 * sx, -0.5 * sy, -0.5 * sz + dpml + dsub + 0.5 * hcyl
),
radius=rcyl,
height=hcyl,
material=glass,
),
mp.Cylinder(
center=mp.Vector3(
-0.5 * sx, -0.5 * sy, -0.5 * sz + dpml + dsub + 0.5 * hcyl
),
radius=rcyl,
height=hcyl,
material=glass,
),
]
geometry = substrate + grating
sim = mp.Simulation(
resolution=resolution,
cell_size=cell_size,
sources=sources,
geometry=geometry,
boundary_layers=boundary_layers,
k_point=k,
symmetries=symmetries,
)
refl_flux = sim.add_mode_monitor(
fcen, 0, 1, mp.ModeRegion(center=refl_pt, size=mp.Vector3(sx, sy, 0))
)
sim.load_minus_flux_data(refl_flux, input_flux_data)
tran_pt = mp.Vector3(0, 0, 0.5 * sz - dpml)
tran_flux = sim.add_mode_monitor(
fcen, 0, 1, mp.ModeRegion(center=tran_pt, size=mp.Vector3(sx, sy, 0))
)
sim.run(until_after_sources=stop_cond)
Rsum = 0
Tsum = 0
m = 5
tol = 1e-6
for nx in range(-m, m + 1):
for ny in range(-m, m + 1):
# convert supercell order to unit cell order
mx = nx
my = (nx + ny) // 2
# consider only propagating modes in high-index medium
kz2 = (ng * fcen) ** 2 - (k.x + nx / sx) ** 2 - (k.y + ny / sy) ** 2
if kz2 > 0:
Rpol = 0
for S_pol in [True, False]:
res = sim.get_eigenmode_coefficients(
refl_flux,
mp.DiffractedPlanewave(
(nx, ny, 0),
mp.Vector3(0, 1, 0),
1 if S_pol else 0,
0 if S_pol else 1,
),
)
coeffs = res.alpha
refl = abs(coeffs[0, 0, 1]) ** 2 / input_flux
pol_str = "S" if S_pol else "P"
if refl > tol:
# determine whether diffracted order is for the unit cell or super cell
if (nx + ny) % 2 == 0:
Rpol += refl
print(
"refl:, {}, {:2d}, {:2d}, {:.5f}, (unit cell)".format(
pol_str, mx, my, refl
)
)
else:
print(
"refl:, {}, {:2d}, {:2d}, {:.7f}, (super cell)".format(
pol_str, nx, ny, refl
)
)
Rsum += Rpol
# consider only propagating modes in air
kz2 = fcen**2 - (k.x + nx / sx) ** 2 - (k.y + ny / sy) ** 2
if kz2 > 0:
Tpol = 0
for S_pol in [True, False]:
res = sim.get_eigenmode_coefficients(
tran_flux,
mp.DiffractedPlanewave(
(nx, ny, 0),
mp.Vector3(0, 1, 0),
1 if S_pol else 0,
0 if S_pol else 1,
),
)
coeffs = res.alpha
tran = abs(coeffs[0, 0, 0]) ** 2 / input_flux
pol_str = "S" if S_pol else "P"
if tran > tol:
# determine whether diffracted order is for the unit cell or super cell
if (nx + ny) % 2 == 0:
Tpol += tran
print(
"tran:, {}, {:2d}, {:2d}, {:.5f}, (unit cell)".format(
pol_str, mx, my, tran
)
)
else:
print(
"tran:, {}, {:2d}, {:2d}, {:.7f}, (super cell)".format(
pol_str, nx, ny, tran
)
)
Tsum += Tpol
Rflux = -mp.get_fluxes(refl_flux)[0] / input_flux
err = abs(Rflux - Rsum) / Rflux
print(
"refl:, {:.6f} (flux), {:.6f} (orders), {:.6f} (error)".format(
Rflux, Rsum, err
)
)
Tflux = mp.get_fluxes(tran_flux)[0] / input_flux
err = abs(Tflux - Tsum) / Tflux
print(
"tran:, {:.6f} (flux), {:.6f} (orders), {:.6f} (error)".format(
Tflux, Tsum, err
)
)
self.assertAlmostEqual(Rsum, Rflux, places=3)
self.assertAlmostEqual(Tsum, Tflux, places=3)
self.assertAlmostEqual(Rsum + Tsum, 1.00, places=2)
if __name__ == "__main__":
unittest.main()
|