1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
|
import os
import unittest
import numpy as np
import meep as mp
class TestPrism(unittest.TestCase):
def nonconvex_marching_squares(self, idx, npts):
resolution = 25
cell = mp.Vector3(10, 10)
data_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "data"))
vertices_file = os.path.join(data_dir, f"nonconvex_prism_vertices{idx}.npz")
vertices_obj = np.load(vertices_file)
## prism verticies precomputed from analytic "blob" shape using
## marching squares algorithm of skimage.measure.find_contours
## ref: https://github.com/NanoComp/meep/pull/1142
vertices_data = vertices_obj[f"N{npts}"]
vertices = [mp.Vector3(v[0], v[1], 0) for v in vertices_data]
geometry = [mp.Prism(vertices, height=mp.inf, material=mp.Medium(epsilon=12))]
sim = mp.Simulation(cell_size=cell, geometry=geometry, resolution=resolution)
sim.init_sim()
prism_eps = sim.integrate_field_function([mp.Dielectric], lambda r, eps: eps)
print(f"epsilon-sum:, {abs(prism_eps)} (prism-msq)")
return prism_eps
def convex_marching_squares(self, npts):
resolution = 50
cell = mp.Vector3(3, 3)
data_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "data"))
vertices_file = os.path.join(data_dir, "convex_prism_vertices.npz")
vertices_obj = np.load(vertices_file)
## prism vertices precomputed for a circle of radius 1.0 using
## marching squares algorithm of skimage.measure.find_contours
## ref: https://github.com/NanoComp/meep/issues/1060
vertices_data = vertices_obj[f"N{npts}"]
vertices = [mp.Vector3(v[0], v[1], 0) for v in vertices_data]
geometry = [mp.Prism(vertices, height=mp.inf, material=mp.Medium(epsilon=12))]
sim = mp.Simulation(cell_size=cell, geometry=geometry, resolution=resolution)
sim.init_sim()
prism_eps = sim.integrate_field_function([mp.Dielectric], lambda r, eps: eps)
sim.reset_meep()
geometry = [
mp.Cylinder(
radius=1.0,
center=mp.Vector3(),
height=mp.inf,
material=mp.Medium(epsilon=12),
)
]
sim = mp.Simulation(cell_size=cell, geometry=geometry, resolution=resolution)
sim.init_sim()
cyl_eps = sim.integrate_field_function([mp.Dielectric], lambda r, eps: eps)
print(
f"epsilon-sum:, {abs(prism_eps)} (prism-msq), {abs(cyl_eps)} (cylinder), {abs((prism_eps-cyl_eps)/cyl_eps)} (relative error)"
)
return abs((prism_eps - cyl_eps) / cyl_eps)
def convex_circle(self, npts, r, sym):
resolution = 50
cell = mp.Vector3(3, 3)
### prism vertices computed as equally-spaced points
### along the circumference of a circle with radius r
angles = 2 * np.pi / npts * np.arange(npts)
vertices = [mp.Vector3(r * np.cos(ang), r * np.sin(ang)) for ang in angles]
geometry = [mp.Prism(vertices, height=mp.inf, material=mp.Medium(epsilon=12))]
sim = mp.Simulation(
cell_size=cell,
geometry=geometry,
symmetries=[mp.Mirror(direction=mp.X), mp.Mirror(direction=mp.Y)]
if sym
else [],
resolution=resolution,
)
sim.init_sim()
prism_eps = sim.integrate_field_function([mp.Dielectric], lambda r, eps: eps)
sim.reset_meep()
geometry = [
mp.Cylinder(
radius=r,
center=mp.Vector3(),
height=mp.inf,
material=mp.Medium(epsilon=12),
)
]
sim = mp.Simulation(
cell_size=cell,
geometry=geometry,
symmetries=[mp.Mirror(direction=mp.X), mp.Mirror(direction=mp.Y)]
if sym
else [],
resolution=resolution,
)
sim.init_sim()
cyl_eps = sim.integrate_field_function([mp.Dielectric], lambda r, eps: eps)
print(
f"epsilon-sum:, {abs(prism_eps)} (prism-cyl), {abs(cyl_eps)} (cylinder), {abs((prism_eps-cyl_eps)/cyl_eps)} (relative error)"
)
return abs((prism_eps - cyl_eps) / cyl_eps)
def spiral_gds(self):
data_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "data"))
gdsii_file = os.path.join(data_dir, "spiral.gds")
resolution = 25
cell_size = mp.Vector3(12, 16)
geometry = mp.get_GDSII_prisms(mp.Medium(index=3.5), gdsii_file, 0, 0, mp.inf)
sim = mp.Simulation(
cell_size=cell_size, geometry=geometry, resolution=resolution
)
sim.init_sim()
prism_eps = sim.integrate_field_function([mp.Dielectric], lambda r, eps: eps)
print(f"epsilon-sum:, {abs(prism_eps)} (prism-gds)")
return prism_eps
# lots of tests, turned off by default since they run too long;
# rename to test_something to run these tests.
def bigtest_prism(self):
print("Testing Non-Convex Prism #1 using marching squares algorithm...")
d1_a = self.nonconvex_marching_squares(1, 208)
d1_b = self.nonconvex_marching_squares(1, 448)
d1_ref = 458.27922623563074 ## self.nonconvex_marching_squares(1,904)
self.assertLess(abs((d1_b - d1_ref) / d1_ref), abs((d1_a - d1_ref) / d1_ref))
print("Testing Non-Convex Prism #2 using marching squares algorithm...")
d2_a = self.nonconvex_marching_squares(2, 128)
d2_b = self.nonconvex_marching_squares(2, 256)
d2_ref = 506.79940504342534 ## self.nonconvex_marching_squares(2,516)
self.assertLess(abs((d2_b - d2_ref) / d2_ref), abs((d2_a - d2_ref) / d2_ref))
print("Testing Non-Convex Prism #3 using marching squares algorithm...")
d3_a = self.nonconvex_marching_squares(3, 164)
d3_b = self.nonconvex_marching_squares(3, 336)
d3_ref = 640.0738356076143 ## self.nonconvex_marching_squares(3,672)
self.assertLess(abs((d3_b - d3_ref) / d3_ref), abs((d3_a - d3_ref) / d3_ref))
print("Testing Convex Prism using marching squares algorithm...")
d = [
self.convex_marching_squares(92),
self.convex_marching_squares(192),
self.convex_marching_squares(392),
]
self.assertLess(d[1], d[0])
self.assertLess(d[2], d[1])
print("Testing Convex Prism #1 using circle formula (without symmetry)...")
r = 1.0458710786934182
d_nosym = [
self.convex_circle(51, r, False),
self.convex_circle(101, r, False),
self.convex_circle(201, r, False),
]
self.assertLess(d_nosym[1], d_nosym[0])
self.assertLess(d_nosym[2], d_nosym[1])
print("Testing Convex Prism #1 using circle formula (with symmetry)...")
d_sym = [
self.convex_circle(51, r, True),
self.convex_circle(101, r, True),
self.convex_circle(201, r, True),
]
self.assertLess(d_sym[1], d_sym[0])
self.assertLess(d_sym[2], d_sym[1])
self.assertAlmostEqual(d_nosym[0], d_sym[0], places=3)
self.assertAlmostEqual(d_nosym[1], d_sym[1], places=3)
self.assertAlmostEqual(d_nosym[2], d_sym[2], places=3)
print("Testing Convex Prism #2 using circle formula (without symmetry)...")
r = 1.2896871096581341
d_nosym = [
self.convex_circle(31, r, False),
self.convex_circle(61, r, False),
self.convex_circle(121, r, False),
]
self.assertLess(d_nosym[1], d_nosym[0])
self.assertLess(d_nosym[2], d_nosym[1])
print("Testing Convex Prism #2 using circle formula (with symmetry)...")
d_sym = [
self.convex_circle(31, r, True),
self.convex_circle(61, r, True),
self.convex_circle(121, r, True),
]
self.assertLess(d_sym[1], d_sym[0])
self.assertLess(d_sym[2], d_sym[1])
self.assertAlmostEqual(d_nosym[0], d_sym[0], places=3)
self.assertAlmostEqual(d_nosym[1], d_sym[1], places=3)
self.assertAlmostEqual(d_nosym[2], d_sym[2], places=3)
print("Testing Non-Convex Prism from GDSII file...")
d = self.spiral_gds()
d_ref = 455.01744881372224
self.assertAlmostEqual(d, d_ref, places=5)
def test_prism(self):
print("Testing Non-Convex Prism #3 using marching squares algorithm...")
d3_a = self.nonconvex_marching_squares(3, 164)
d3_b = self.nonconvex_marching_squares(3, 336)
d3_ref = 640.0738356076143 ## self.nonconvex_marching_squares(3,672)
self.assertLess(abs((d3_b - d3_ref) / d3_ref), abs((d3_a - d3_ref) / d3_ref))
self.assertLess(abs((d3_b - d3_ref) / d3_ref), 0.02)
if __name__ == "__main__":
unittest.main()
|