1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
import math
import unittest
import numpy as np
import parameterized
from utils import ApproxComparisonTestCase
import meep as mp
class TestReflAngular(ApproxComparisonTestCase):
@classmethod
def setUpClass(cls):
cls.resolution = 400 # pixels/μm
cls.n1 = 1.4 # refractive index of medium 1
cls.n2 = 3.5 # refractive index of medium 2
cls.dpml = 1.0
cls.dz = 7.0
cls.sz = cls.dz + 2 * cls.dpml
cls.wvl_min = 0.4
cls.wvl_max = 0.8
cls.fmin = 1 / cls.wvl_max
cls.fmax = 1 / cls.wvl_min
cls.fcen = 0.5 * (cls.fmin + cls.fmax)
cls.df = cls.fmax - cls.fmin
cls.nfreq = 11
def refl_angular(self, theta):
theta_r = math.radians(theta)
# wavevector (in source medium); plane of incidence is XZ
k = (
mp.Vector3(0, 0, 1)
.rotate(mp.Vector3(0, 1, 0), theta_r)
.scale(self.n1 * self.fmin)
)
dimensions = 1 if theta == 0 else 3
cell_size = mp.Vector3(z=self.sz)
pml_layers = [mp.PML(self.dpml)]
sources = [
mp.Source(
mp.GaussianSource(self.fcen, fwidth=self.df),
component=mp.Ex, # P polarization
center=mp.Vector3(z=-0.5 * self.sz + self.dpml),
)
]
sim = mp.Simulation(
resolution=self.resolution,
cell_size=cell_size,
dimensions=dimensions,
default_material=mp.Medium(index=self.n1),
sources=sources,
boundary_layers=pml_layers,
k_point=k,
)
mon_pt = -0.5 * self.sz + self.dpml + 0.25 * self.dz
refl_fr = mp.FluxRegion(center=mp.Vector3(z=mon_pt))
refl = sim.add_flux(self.fcen, self.df, self.nfreq, refl_fr)
termination_cond = mp.stop_when_fields_decayed(
50, mp.Ex, mp.Vector3(z=mon_pt), 1e-9
)
sim.run(until_after_sources=termination_cond)
empty_data = sim.get_flux_data(refl)
empty_flux = mp.get_fluxes(refl)
sim.reset_meep()
geometry = [
mp.Block(
size=mp.Vector3(mp.inf, mp.inf, 0.5 * self.sz),
center=mp.Vector3(z=0.25 * self.sz),
material=mp.Medium(index=self.n2),
)
]
sim = mp.Simulation(
resolution=self.resolution,
cell_size=cell_size,
dimensions=dimensions,
default_material=mp.Medium(index=self.n1),
sources=sources,
boundary_layers=pml_layers,
k_point=k,
geometry=geometry,
)
refl = sim.add_flux(self.fcen, self.df, self.nfreq, refl_fr)
sim.load_minus_flux_data(refl, empty_data)
sim.run(until_after_sources=termination_cond)
refl_flux = mp.get_fluxes(refl)
freqs = mp.get_flux_freqs(refl)
Rs = -np.array(refl_flux) / np.array(empty_flux)
thetas = [math.asin(k.x / (self.n1 * freqs[i])) for i in range(self.nfreq)]
return freqs, thetas, Rs
@parameterized.parameterized.expand([(0,), (20.6,)])
def test_refl_angular(self, theta):
fmeep, tmeep, Rmeep = self.refl_angular(theta)
# angle of refracted planewave in medium n2 for an
# incident planewave in medium n1 at angle theta_in
theta_out = lambda theta_in: math.asin(self.n1 * math.sin(theta_in) / self.n2)
# Fresnel reflectance for P polarization in medium n2 for
# an incident planewave in medium n1 at angle theta_in
Rfresnel = lambda theta_in: (
math.fabs(
(self.n1 * math.cos(theta_out(theta_in)) - self.n2 * math.cos(theta_in))
/ (
self.n1 * math.cos(theta_out(theta_in))
+ self.n2 * math.cos(theta_in)
)
)
** 2
)
Ranalytic = np.empty((self.nfreq,))
print(
"refl:, wavelength (μm), incident angle (°), reflectance (Meep), reflectance (analytic), error"
)
for i in range(self.nfreq):
Ranalytic[i] = Rfresnel(tmeep[i])
err = abs(Rmeep[i] - Ranalytic[i]) / Ranalytic[i]
print(
"refl:, {:4.2f}, {:4.2f}, {:8.6f}, {:8.6f}, {:6.4f}".format(
1 / fmeep[i], math.degrees(tmeep[i]), Rmeep[i], Ranalytic[i], err
)
)
tol = 0.005 if mp.is_single_precision() else 0.004
self.assertClose(Rmeep, Ranalytic, epsilon=tol)
if __name__ == "__main__":
unittest.main()
|