File: test_special_kz.py

package info (click to toggle)
meep-openmpi 1.25.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 64,556 kB
  • sloc: cpp: 32,214; python: 27,958; lisp: 1,225; makefile: 505; sh: 249; ansic: 131; javascript: 5
file content (194 lines) | stat: -rw-r--r-- 5,874 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import cmath
import math
import unittest
from time import time

import parameterized

import meep as mp


class TestSpecialKz(unittest.TestCase):
    def refl_planar(self, theta, kz_2d):
        resolution = 100  # pixels/um

        dpml = 1.0
        sx = 3.0 + 2 * dpml
        sy = 1 / resolution
        cell_size = mp.Vector3(sx, sy)
        pml_layers = [mp.PML(dpml, direction=mp.X)]

        fcen = 1.0

        # plane of incidence is XZ
        k_point = mp.Vector3(1, 0, 0).rotate(mp.Vector3(0, 1, 0), theta).scale(fcen)

        sources = [
            mp.Source(
                mp.GaussianSource(fcen, fwidth=0.2 * fcen),
                component=mp.Ez,  # P-polarization
                center=mp.Vector3(-0.5 * sx + dpml),
                size=mp.Vector3(y=sy),
            )
        ]

        sim = mp.Simulation(
            cell_size=cell_size,
            boundary_layers=pml_layers,
            sources=sources,
            k_point=k_point,
            kz_2d=kz_2d,
            resolution=resolution,
        )

        refl_fr = mp.FluxRegion(center=mp.Vector3(-0.25 * sx), size=mp.Vector3(y=sy))
        refl = sim.add_flux(fcen, 0, 1, refl_fr)

        sim.run(
            until_after_sources=mp.stop_when_fields_decayed(
                50, mp.Ez, mp.Vector3(), 1e-9
            )
        )

        empty_flux = mp.get_fluxes(refl)
        empty_data = sim.get_flux_data(refl)
        sim.reset_meep()

        geometry = [
            mp.Block(
                material=mp.Medium(index=3.5),
                size=mp.Vector3(0.5 * sx, mp.inf, mp.inf),
                center=mp.Vector3(0.25 * sx),
            )
        ]

        sim = mp.Simulation(
            cell_size=cell_size,
            boundary_layers=pml_layers,
            geometry=geometry,
            sources=sources,
            k_point=k_point,
            kz_2d=kz_2d,
            resolution=resolution,
        )

        refl = sim.add_flux(fcen, 0, 1, refl_fr)
        sim.load_minus_flux_data(refl, empty_data)

        sim.run(
            until_after_sources=mp.stop_when_fields_decayed(
                50, mp.Ez, mp.Vector3(), 1e-9
            )
        )

        refl_flux = mp.get_fluxes(refl)

        return -refl_flux[0] / empty_flux[0]

    def test_special_kz(self):
        n1 = 1
        n2 = 3.5

        # compute angle of refracted planewave in medium n2
        # for incident planewave in medium n1 at angle theta_in
        theta_out = lambda theta_in: math.asin(n1 * math.sin(theta_in) / n2)

        # compute Fresnel reflectance for P-polarization in medium n2
        # for incident planewave in medium n1 at angle theta_in
        Rfresnel = (
            lambda theta_in: math.fabs(
                (n1 * math.cos(theta_out(theta_in)) - n2 * math.cos(theta_in))
                / (n1 * math.cos(theta_out(theta_in)) + n2 * math.cos(theta_in))
            )
            ** 2
        )

        # angle of incident planewave; clockwise (CW) about Y axis, 0 degrees along +X axis
        theta = math.radians(23)

        start = time()
        Rmeep_complex = self.refl_planar(theta, "complex")
        t_complex = time() - start

        start = time()
        Rmeep_real_imag = self.refl_planar(theta, "real/imag")
        t_real_imag = time() - start

        Rfres = Rfresnel(theta)

        self.assertAlmostEqual(Rmeep_complex, Rfres, places=2)
        self.assertAlmostEqual(Rmeep_real_imag, Rfres, places=2)

        # the real/imag algorithm should be faster, but on CI machines performance is too variable
        # for this to reliably hold
        # self.assertLess(t_real_imag,t_complex)

    @parameterized.parameterized.expand([("complex",), ("real/imag",)])
    def test_eigsrc_kz(self, kz_2d):
        resolution = 30  # pixels/um

        cell_size = mp.Vector3(14, 14)

        pml_layers = [mp.PML(thickness=2)]

        geometry = [
            mp.Block(
                center=mp.Vector3(),
                size=mp.Vector3(mp.inf, 1, mp.inf),
                material=mp.Medium(epsilon=12),
            )
        ]

        fsrc = 0.3  # frequency of eigenmode or constant-amplitude source
        bnum = 1  # band number of eigenmode
        kz = 0.2  # fixed out-of-plane wavevector component

        sources = [
            mp.EigenModeSource(
                src=mp.GaussianSource(fsrc, fwidth=0.2 * fsrc),
                center=mp.Vector3(),
                size=mp.Vector3(y=14),
                eig_band=bnum,
                eig_parity=mp.EVEN_Y,
                eig_match_freq=True,
            )
        ]

        sim = mp.Simulation(
            cell_size=cell_size,
            resolution=resolution,
            boundary_layers=pml_layers,
            sources=sources,
            geometry=geometry,
            symmetries=[mp.Mirror(mp.Y)],
            k_point=mp.Vector3(z=kz),
            kz_2d=kz_2d,
        )

        tran = sim.add_flux(
            fsrc, 0, 1, mp.FluxRegion(center=mp.Vector3(x=5), size=mp.Vector3(y=14))
        )

        sim.run(until_after_sources=50)

        res = sim.get_eigenmode_coefficients(tran, [1, 2], eig_parity=mp.EVEN_Y)

        total_flux = mp.get_fluxes(tran)[0]
        mode1_flux = abs(res.alpha[0, 0, 0]) ** 2
        mode2_flux = abs(res.alpha[1, 0, 0]) ** 2

        mode1_frac = 0.99
        self.assertGreater(mode1_flux / total_flux, mode1_frac)
        self.assertLess(mode2_flux / total_flux, 1 - mode1_frac)

        d = 3.5
        ez1 = sim.get_field_point(mp.Ez, mp.Vector3(2.3, -5.7, 4.8))
        ez2 = sim.get_field_point(mp.Ez, mp.Vector3(2.3, -5.7, 4.8 + d))
        ratio_ez = ez2 / ez1
        phase_diff = cmath.exp(1j * 2 * cmath.pi * kz * d)
        self.assertAlmostEqual(ratio_ez.real, phase_diff.real, places=10)
        self.assertAlmostEqual(ratio_ez.imag, phase_diff.imag, places=10)


if __name__ == "__main__":
    unittest.main()