1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
|
from collections import namedtuple
import warnings
from time import sleep
import matplotlib.pyplot as plt
import numpy as np
import meep as mp
from meep.geom import Vector3, init_do_averaging
from meep.source import EigenModeSource, check_positive
from meep.simulation import Simulation, Volume
## Typing imports
from matplotlib.axes import Axes
from matplotlib.figure import Figure
from typing import Callable, Union, Any, Tuple, List, Optional
# ------------------------------------------------------- #
# Visualization
# ------------------------------------------------------- #
# Contains all necessary visualization routines for use with
# pymeep and pympb.
# ------------------------------------------------------- #
# Functions used to define the default plotting parameters
# for the different plotting routines.
default_source_parameters = {
"color": "r",
"edgecolor": "r",
"facecolor": "none",
"hatch": "/",
"linewidth": 2,
}
default_monitor_parameters = {
"color": "b",
"edgecolor": "b",
"facecolor": "none",
"hatch": "/",
"linewidth": 2,
}
default_field_parameters = {
"interpolation": "spline36",
"cmap": "RdBu",
"alpha": 0.8,
"post_process": np.real,
"colorbar": False,
}
default_eps_parameters = {
"interpolation": "spline36",
"cmap": "binary",
"alpha": 1.0,
"contour": False,
"contour_linewidth": 1,
"frequency": None,
"resolution": None,
"colorbar": False,
}
default_colorbar_parameters = {
"label": None,
"orientation": "vertical",
"extend": None,
"position": "right",
"size": "5%",
"pad": "2%",
}
default_boundary_parameters = {
"color": "g",
"edgecolor": "g",
"facecolor": "none",
"hatch": "/",
}
default_volume_parameters = {
"alpha": 1.0,
"color": "k",
"linestyle": "-",
"linewidth": 1,
"marker": ".",
"edgecolor": "k",
"facecolor": "none",
"hatch": "/",
}
default_label_parameters = {"label_color": "r", "offset": 20, "label_alpha": 0.3}
# Used to remove the elements of a dictionary (dict_to_filter) that
# don't correspond to the keyword arguments of a particular
# function (func_with_kwargs.)
# Adapted from https://stackoverflow.com/questions/26515595/how-does-one-ignore-unexpected-keyword-arguments-passed-to-a-function/44052550
def filter_dict(dict_to_filter: dict, func_with_kwargs: Callable) -> dict:
import inspect
filter_keys = []
try:
# Python3 ...
sig = inspect.signature(func_with_kwargs)
filter_keys = [param.name for param in sig.parameters.values()]
except:
# Python2 ...
filter_keys = inspect.getargspec(func_with_kwargs)[0]
filtered_dict = {
filter_key: dict_to_filter[filter_key]
for filter_key in filter_keys
if filter_key in dict_to_filter
}
return filtered_dict
# ------------------------------------------------------- #
# Routines to add legends to plot
def place_label(
ax: Axes,
label_text: str,
x: float,
y: float,
centerx: float,
centery: float,
label_parameters: Optional[dict] = None,
) -> Axes:
if label_parameters is None:
label_parameters = default_label_parameters
else:
label_parameters = dict(default_label_parameters, **label_parameters)
offset = label_parameters["offset"]
alpha = label_parameters["label_alpha"]
color = label_parameters["label_color"]
if x > centerx:
xtext = -offset
else:
xtext = offset
if y > centery:
ytext = -offset
else:
ytext = offset
ax.annotate(
label_text,
xy=(x, y),
xytext=(xtext, ytext),
textcoords="offset points",
ha="center",
va="bottom",
bbox=dict(boxstyle="round,pad=0.2", fc=color, alpha=alpha),
arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=0.5", color=color),
)
return ax
# ------------------------------------------------------- #
# Helper functions used to plot volumes on a 2D plane
# Returns the intersection points of two Volumes.
# Volumes must be a line, plane, or rectangular prism
# (since they are volume objects)
def intersect_volume_volume(volume1: Volume, volume2: Volume) -> List[Vector3]:
# volume1 ............... [volume]
# volume2 ............... [volume]
# Represent the volumes by an "upper" and "lower" coordinate
U1 = [
volume1.center.x + volume1.size.x / 2,
volume1.center.y + volume1.size.y / 2,
volume1.center.z + volume1.size.z / 2,
]
L1 = [
volume1.center.x - volume1.size.x / 2,
volume1.center.y - volume1.size.y / 2,
volume1.center.z - volume1.size.z / 2,
]
U2 = [
volume2.center.x + volume2.size.x / 2,
volume2.center.y + volume2.size.y / 2,
volume2.center.z + volume2.size.z / 2,
]
L2 = [
volume2.center.x - volume2.size.x / 2,
volume2.center.y - volume2.size.y / 2,
volume2.center.z - volume2.size.z / 2,
]
# Evaluate intersection
U = np.min([U1, U2], axis=0)
L = np.max([L1, L2], axis=0)
# For single points we have to check manually
if np.all(U - L == 0):
if (not volume1.pt_in_volume(Vector3(*U))) or (
not volume2.pt_in_volume(Vector3(*U))
):
return []
# Check for two volumes that don't intersect
if np.any(U - L < 0):
return []
# Pull all possible vertices
vertices = []
for x_vals in [L[0], U[0]]:
for y_vals in [L[1], U[1]]:
for z_vals in [L[2], U[2]]:
vertices.append(Vector3(x_vals, y_vals, z_vals))
# Remove any duplicate points caused by coplanar lines
vertices = [
vertices[i] for i, x in enumerate(vertices) if x not in vertices[i + 1 :]
]
return vertices
# All of the 2D plotting routines need an output plane over which to plot.
# The user has many options to specify this output plane. They can pass
# the output_plane parameter, which is a 2D volume object. They can specify
# a volume using in_volume, which stores the volume as a C volume, not a Python
# volume. They can also do nothing and plot the XY plane through Z=0.
#
# Not only do we need to check for all of these possibilities, but we also need
# to check if the user accidentally specifies a plane that stretches beyond the
# simulation domain.
def get_2D_dimensions(sim: Simulation, output_plane: Volume) -> Tuple[Vector3, Vector3]:
# Pull correct plane from user
if output_plane:
plane_center, plane_size = (output_plane.center, output_plane.size)
elif sim.output_volume:
plane_center, plane_size = mp.get_center_and_size(sim.output_volume)
else:
if (sim.dimensions == mp.CYLINDRICAL) or sim.is_cylindrical:
plane_center, plane_size = (
sim.geometry_center + Vector3(sim.cell_size.x / 2),
sim.cell_size,
)
else:
plane_center, plane_size = (sim.geometry_center, sim.cell_size)
plane_volume = Volume(center=plane_center, size=plane_size)
if plane_size.x != 0 and plane_size.y != 0 and plane_size.z != 0:
raise ValueError("Plane volume must be 2D (a plane).")
if (sim.dimensions == mp.CYLINDRICAL) or sim.is_cylindrical:
center = sim.geometry_center + Vector3(sim.cell_size.x / 2)
check_volume = Volume(center=center, size=sim.cell_size)
else:
check_volume = Volume(center=sim.geometry_center, size=sim.cell_size)
vertices = intersect_volume_volume(check_volume, plane_volume)
if len(vertices) == 0:
raise ValueError(
"The specified user volume is completely outside of the simulation domain."
)
intersection_vol = Volume(vertices=vertices)
if (intersection_vol.size != plane_volume.size) or (
intersection_vol.center != plane_volume.center
):
warnings.warn(
"The specified user volume is larger than the simulation domain and has been truncated."
)
sim_center, sim_size = (intersection_vol.center, intersection_vol.size)
return sim_center, sim_size
def box_vertices(
box_center: Vector3, box_size: Vector3, is_cylindrical: bool = False
) -> Tuple[float, float, float, float, float, float]:
# in cylindrical coordinates, radial (R) axis
# is in the range (0,R) rather than (-R/2,+R/2)
# as in Cartesian coordinates.
if is_cylindrical:
xmin = 0
xmax = box_size.x
else:
xmin = box_center.x - 0.5 * box_size.x
xmax = box_center.x + 0.5 * box_size.x
ymin = box_center.y - 0.5 * box_size.y
ymax = box_center.y + 0.5 * box_size.y
zmin = box_center.z - 0.5 * box_size.z
zmax = box_center.z + 0.5 * box_size.z
return xmin, xmax, ymin, ymax, zmin, zmax
# ------------------------------------------------------- #
# actual plotting routines
def plot_volume(
sim: Simulation,
ax: Axes,
volume: Volume,
output_plane: Optional[Volume] = None,
plotting_parameters: Optional[dict] = None,
label: Optional[str] = None,
) -> Axes:
import matplotlib.patches as patches
from matplotlib import pyplot as plt
# Set up the plotting parameters
if plotting_parameters is None:
plotting_parameters = default_volume_parameters
else:
plotting_parameters = dict(default_volume_parameters, **plotting_parameters)
# Get domain measurements
sim_center, sim_size = get_2D_dimensions(sim, output_plane)
plane = Volume(center=sim_center, size=sim_size)
size = volume.size
center = volume.center
xmin, xmax, ymin, ymax, zmin, zmax = box_vertices(center, size, sim.is_cylindrical)
# Add labels if requested
if label is not None and mp.am_master():
if sim_size.x == 0:
ax = place_label(
ax,
label,
center.y,
center.z,
sim_center.y,
sim_center.z,
label_parameters=plotting_parameters,
)
elif sim_size.y == 0:
ax = place_label(
ax,
label,
center.x,
center.z,
sim_center.x,
sim_center.z,
label_parameters=plotting_parameters,
)
elif sim_size.z == 0:
ax = place_label(
ax,
label,
center.x,
center.y,
sim_center.x,
sim_center.y,
label_parameters=plotting_parameters,
)
# Intersect plane with volume
intersection = intersect_volume_volume(volume, plane)
# Sort the points in a counter clockwise manner to ensure convex polygon is formed
def sort_points(xy):
xy = np.squeeze(xy)
xy_mean = np.mean(xy, axis=0)
theta = np.arctan2(xy[:, 1] - xy_mean[1], xy[:, 0] - xy_mean[0])
return xy[np.argsort(theta, axis=0), :]
if mp.am_master():
# Point volume
if len(intersection) == 1:
point_args = {
key: value
for key, value in plotting_parameters.items()
if key in ["color", "marker", "alpha", "linewidth"]
}
if sim_size.y == 0:
ax.scatter(center.x, center.z, **point_args)
return ax
elif sim_size.x == 0:
ax.scatter(center.y, center.z, **point_args)
return ax
elif sim_size.z == 0:
ax.scatter(center.x, center.y, **point_args)
return ax
else:
return ax
# Line volume
elif len(intersection) == 2:
line_args = {
key: value
for key, value in plotting_parameters.items()
if key in ["color", "linestyle", "linewidth", "alpha"]
}
# Plot YZ
if sim_size.x == 0:
ax.plot(
[a.y for a in intersection],
[a.z for a in intersection],
**line_args,
)
return ax
# Plot XZ
elif sim_size.y == 0:
ax.plot(
[a.x for a in intersection],
[a.z for a in intersection],
**line_args,
)
return ax
# Plot XY
elif sim_size.z == 0:
ax.plot(
[a.x for a in intersection],
[a.y for a in intersection],
**line_args,
)
return ax
else:
return ax
# Planar volume
elif len(intersection) > 2:
planar_args = {
key: value
for key, value in plotting_parameters.items()
if key in ["edgecolor", "linewidth", "facecolor", "hatch", "alpha"]
}
# Plot YZ
if sim_size.x == 0:
ax.add_patch(
patches.Polygon(
sort_points([[a.y, a.z] for a in intersection]), **planar_args
)
)
return ax
# Plot XZ
elif sim_size.y == 0:
ax.add_patch(
patches.Polygon(
sort_points([[a.x, a.z] for a in intersection]), **planar_args
)
)
return ax
# Plot XY
elif sim_size.z == 0:
ax.add_patch(
patches.Polygon(
sort_points([[a.x, a.y] for a in intersection]), **planar_args
)
)
return ax
else:
return ax
else:
return ax
return ax
def _add_colorbar(
ax: Axes,
cmap: str,
vmin: float,
vmax: float,
default_label: Optional[str] = None,
colorbar_parameters: Optional[dict] = None,
) -> None:
"""Add a colorbar to the parent Figure of 'ax' by creating an additional Axes."""
import matplotlib as mpl
from mpl_toolkits.axes_grid1 import make_axes_locatable
if colorbar_parameters is None:
colorbar_parameters = default_colorbar_parameters
else:
colorbar_parameters = dict(default_colorbar_parameters, **colorbar_parameters)
# Use default label (specified by plot_eps or plot_fields) if no user-specified label
if colorbar_parameters["label"] is None:
colorbar_parameters["label"] = default_label
# Create a map between field/eps values and colors in the colormap.
# Note: cm.get_cmap() is deprecated for matplotlib>=3.6, use mpl.colormaps[cmap] instead if necessary.
sm = mpl.cm.ScalarMappable(
norm=mpl.colors.Normalize(vmin, vmax),
cmap=mpl.cm.get_cmap(cmap),
)
# Pop specific values out of colorbar params so user can add any kwargs to plt.colorbar
cax = make_axes_locatable(ax).append_axes(
pad=colorbar_parameters.pop("pad"),
size=colorbar_parameters.pop("size"),
position=colorbar_parameters.pop("position"),
)
plt.colorbar(mappable=sm, cax=cax, **colorbar_parameters)
def plot_eps(
sim: Simulation,
ax: Optional[Axes] = None,
output_plane: Optional[Volume] = None,
eps_parameters: Optional[dict] = None,
colorbar_parameters: Optional[dict] = None,
frequency: Optional[float] = None,
) -> Union[Axes, Any]:
# consolidate plotting parameters
if eps_parameters is None:
eps_parameters = default_eps_parameters
else:
eps_parameters = dict(default_eps_parameters, **eps_parameters)
# Determine a frequency to plot all epsilon
if frequency is not None:
warnings.warn(
"The frequency parameter of plot2D has been deprecated. "
"Use the frequency key of the eps_parameters dictionary instead."
)
eps_parameters["frequency"] = frequency
if eps_parameters["frequency"] is None:
try:
# Continuous sources
eps_parameters["frequency"] = sim.sources[0].frequency
except:
try:
# Gaussian sources
eps_parameters["frequency"] = sim.sources[0].src.frequency
except:
try:
# Custom sources
eps_parameters["frequency"] = sim.sources[0].src.center_frequency
except:
# No sources
eps_parameters["frequency"] = 0
# Get domain measurements
sim_center, sim_size = get_2D_dimensions(sim, output_plane)
xmin, xmax, ymin, ymax, zmin, zmax = box_vertices(
sim_center, sim_size, sim.is_cylindrical
)
if eps_parameters["resolution"]:
grid_resolution = eps_parameters["resolution"]
else:
grid_resolution = sim.resolution
Nx = int((xmax - xmin) * grid_resolution + 1)
Ny = int((ymax - ymin) * grid_resolution + 1)
Nz = int((zmax - zmin) * grid_resolution + 1)
if sim_size.x == 0:
# Plot y on x axis, z on y axis (YZ plane)
extent = [ymin, ymax, zmin, zmax]
xlabel = "Y"
ylabel = "Z"
xtics = np.array([sim_center.x])
ytics = np.linspace(ymin, ymax, Ny)
ztics = np.linspace(zmin, zmax, Nz)
elif sim_size.y == 0:
# Plot x on x axis, z on y axis (XZ plane)
extent = [xmin, xmax, zmin, zmax]
if (sim.dimensions == mp.CYLINDRICAL) or sim.is_cylindrical:
xlabel = "R"
else:
xlabel = "X"
ylabel = "Z"
xtics = np.linspace(xmin, xmax, Nx)
ytics = np.array([sim_center.y])
ztics = np.linspace(zmin, zmax, Nz)
elif sim_size.z == 0:
# Plot x on x axis, y on y axis (XY plane)
extent = [xmin, xmax, ymin, ymax]
xlabel = "X"
ylabel = "Y"
xtics = np.linspace(xmin, xmax, Nx)
ytics = np.linspace(ymin, ymax, Ny)
ztics = np.array([sim_center.z])
else:
raise ValueError("A 2D plane has not been specified...")
eps_data = np.rot90(
np.real(sim.get_epsilon_grid(xtics, ytics, ztics, eps_parameters["frequency"]))
)
if mp.am_master():
# If Axes was not provided, just return the eps_data, otherwise plot
if not ax:
return eps_data
if eps_parameters["contour"]:
ax.contour(
eps_data,
0,
levels=np.unique(eps_data),
colors="black",
origin="upper",
extent=extent,
linewidths=eps_parameters["contour_linewidth"],
)
else:
ax.imshow(eps_data, extent=extent, **filter_dict(eps_parameters, ax.imshow))
if eps_parameters["colorbar"]:
_add_colorbar(
ax=ax,
cmap=eps_parameters["cmap"],
vmin=np.amin(eps_data),
vmax=np.amax(eps_data),
default_label=r"$\epsilon_r$",
colorbar_parameters=colorbar_parameters,
)
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
return ax
def plot_boundaries(
sim: Simulation,
ax: Axes,
output_plane: Optional[Volume] = None,
boundary_parameters: Optional[dict] = None,
) -> Axes:
# consolidate plotting parameters
if boundary_parameters is None:
boundary_parameters = default_boundary_parameters
else:
boundary_parameters = dict(default_boundary_parameters, **boundary_parameters)
def get_boundary_volumes(thickness: float, direction: float, side) -> Volume:
thickness = boundary.thickness
xmin, xmax, ymin, ymax, zmin, zmax = box_vertices(
sim.geometry_center, sim.cell_size, sim.is_cylindrical
)
if direction == mp.X and side == mp.Low:
return Volume(
center=Vector3(
xmin + 0.5 * thickness, sim.geometry_center.y, sim.geometry_center.z
),
size=Vector3(thickness, sim.cell_size.y, sim.cell_size.z),
)
elif (direction == mp.X and side == mp.High) or direction == mp.R:
return Volume(
center=Vector3(
xmax - 0.5 * thickness, sim.geometry_center.y, sim.geometry_center.z
),
size=Vector3(thickness, sim.cell_size.y, sim.cell_size.z),
)
elif direction == mp.Y and side == mp.Low:
return Volume(
center=Vector3(
sim.geometry_center.x, ymin + 0.5 * thickness, sim.geometry_center.z
),
size=Vector3(sim.cell_size.x, thickness, sim.cell_size.z),
)
elif direction == mp.Y and side == mp.High:
return Volume(
center=Vector3(
sim.geometry_center.x, ymax - 0.5 * thickness, sim.geometry_center.z
),
size=Vector3(sim.cell_size.x, thickness, sim.cell_size.z),
)
elif direction == mp.Z and side == mp.Low:
xcen = sim.geometry_center.x
if sim.is_cylindrical:
xcen += 0.5 * sim.cell_size.x
return Volume(
center=Vector3(xcen, sim.geometry_center.y, zmin + 0.5 * thickness),
size=Vector3(sim.cell_size.x, sim.cell_size.y, thickness),
)
elif direction == mp.Z and side == mp.High:
xcen = sim.geometry_center.x
if sim.is_cylindrical:
xcen += 0.5 * sim.cell_size.x
return Volume(
center=Vector3(xcen, sim.geometry_center.y, zmax - 0.5 * thickness),
size=Vector3(sim.cell_size.x, sim.cell_size.y, thickness),
)
else:
raise ValueError("Invalid boundary type")
import itertools
for boundary in sim.boundary_layers:
# boundary on all four sides
if boundary.direction == mp.ALL and boundary.side == mp.ALL:
if sim.dimensions == 1:
dims = [mp.X]
elif sim.dimensions == mp.CYLINDRICAL or sim.is_cylindrical:
dims = [mp.X, mp.Z]
elif sim.dimensions == 2:
dims = [mp.X, mp.Y]
elif sim.dimensions == 3:
dims = [mp.X, mp.Y, mp.Z]
else:
raise ValueError("Invalid simulation dimensions")
for permutation in itertools.product(dims, [mp.Low, mp.High]):
if ((permutation[0] == mp.X) and (permutation[1] == mp.Low)) and (
sim.dimensions == mp.CYLINDRICAL or sim.is_cylindrical
):
continue
vol = get_boundary_volumes(boundary.thickness, *permutation)
ax = plot_volume(
sim, ax, vol, output_plane, plotting_parameters=boundary_parameters
)
# boundary on only two of four sides
elif boundary.side == mp.ALL:
for side in [mp.Low, mp.High]:
if ((boundary.direction == mp.X) and (side == mp.Low)) and (
sim.dimensions == mp.CYLINDRICAL or sim.is_cylindrical
):
continue
vol = get_boundary_volumes(boundary.thickness, boundary.direction, side)
ax = plot_volume(
sim, ax, vol, output_plane, plotting_parameters=boundary_parameters
)
# boundary on just one side
else:
if ((boundary.direction == mp.X) and (boundary.side == mp.Low)) and (
sim.dimensions == mp.CYLINDRICAL or sim.is_cylindrical
):
continue
vol = get_boundary_volumes(
boundary.thickness, boundary.direction, boundary.side
)
ax = plot_volume(
sim, ax, vol, output_plane, plotting_parameters=boundary_parameters
)
return ax
def plot_sources(
sim: Simulation,
ax: Axes,
output_plane: Optional[Volume] = None,
labels: bool = False,
source_parameters: Optional[dict] = None,
) -> Axes:
# consolidate plotting parameters
if source_parameters is None:
source_parameters = default_source_parameters
else:
source_parameters = dict(default_source_parameters, **source_parameters)
label = "source" if labels else None
for src in sim.sources:
vol = Volume(center=src.center, size=src.size)
ax = plot_volume(
sim,
ax,
vol,
output_plane,
plotting_parameters=source_parameters,
label=label,
)
return ax
def plot_monitors(
sim: Simulation,
ax: Axes,
output_plane: Optional[Volume] = None,
labels: bool = False,
monitor_parameters: Optional[dict] = None,
) -> Axes:
# consolidate plotting parameters
if monitor_parameters is None:
monitor_parameters = default_monitor_parameters
else:
monitor_parameters = dict(default_monitor_parameters, **monitor_parameters)
label = "monitor" if labels else None
for mon in sim.dft_objects:
for reg in mon.regions:
vol = Volume(center=reg.center, size=reg.size)
ax = plot_volume(
sim,
ax,
vol,
output_plane,
plotting_parameters=monitor_parameters,
label=label,
)
return ax
def plot_fields(
sim: Simulation,
ax: Optional[Axes] = None,
fields: Optional = None,
output_plane: Optional[Volume] = None,
field_parameters: Optional[dict] = None,
colorbar_parameters: Optional[dict] = None,
) -> Union[Axes, Any]:
components = {
mp.Ex,
mp.Ey,
mp.Ez,
mp.Er,
mp.Ep,
mp.Dx,
mp.Dy,
mp.Dz,
mp.Dr,
mp.Dp,
mp.Hx,
mp.Hy,
mp.Hz,
mp.Hr,
mp.Hp,
mp.Bx,
mp.By,
mp.Bz,
mp.Br,
mp.Bp,
mp.Sx,
mp.Sy,
mp.Sz,
mp.Sr,
mp.Sp,
}
if not sim._is_initialized:
sim.init_sim()
if fields is None:
return ax
if field_parameters is None:
field_parameters = default_field_parameters
else:
field_parameters = dict(default_field_parameters, **field_parameters)
# user specifies a field component
if fields not in components:
raise ValueError("Please specify a valid field component (mp.Ex, mp.Ey, ...")
# Get domain measurements
sim_center, sim_size = get_2D_dimensions(sim, output_plane)
xmin, xmax, ymin, ymax, zmin, zmax = box_vertices(
sim_center, sim_size, sim.is_cylindrical
)
if sim_size.x == 0:
# Plot y on x axis, z on y axis (YZ plane)
extent = [ymin, ymax, zmin, zmax]
xlabel = "Y"
ylabel = "Z"
elif sim_size.y == 0:
# Plot x on x axis, z on y axis (XZ plane)
extent = [xmin, xmax, zmin, zmax]
if (sim.dimensions == mp.CYLINDRICAL) or sim.is_cylindrical:
xlabel = "R"
else:
xlabel = "X"
ylabel = "Z"
elif sim_size.z == 0:
# Plot x on x axis, y on y axis (XY plane)
extent = [xmin, xmax, ymin, ymax]
xlabel = "X"
ylabel = "Y"
field_data = sim.get_array(center=sim_center, size=sim_size, component=fields)
field_data = field_parameters["post_process"](field_data)
if (sim.dimensions == mp.CYLINDRICAL) or sim.is_cylindrical:
field_data = np.flipud(field_data)
else:
field_data = np.rot90(field_data)
# Either plot the field, or return the array
if not ax:
return field_data
if mp.am_master():
ax.imshow(field_data, extent=extent, **filter_dict(field_parameters, ax.imshow))
if field_parameters["colorbar"]:
_add_colorbar(
ax=ax,
cmap=field_parameters["cmap"],
vmin=np.amin(field_data),
vmax=np.amax(field_data),
default_label="field value",
colorbar_parameters=colorbar_parameters,
)
return ax
def plot2D(
sim: Simulation,
ax: Optional[Axes] = None,
output_plane: Optional[Volume] = None,
fields: Optional = None,
labels: Optional[bool] = False,
eps_parameters: Optional[dict] = None,
boundary_parameters: Optional[dict] = None,
source_parameters: Optional[dict] = None,
monitor_parameters: Optional[dict] = None,
field_parameters: Optional[dict] = None,
colorbar_parameters: Optional[dict] = None,
frequency: Optional[float] = None,
plot_eps_flag: bool = True,
plot_sources_flag: bool = True,
plot_monitors_flag: bool = True,
plot_boundaries_flag: bool = True,
nb: bool = False,
) -> Axes:
# Ensure a figure axis exists
if ax is None and mp.am_master():
from matplotlib import pyplot as plt
# nb = plt.get_backend() == 'module://ipympl.backend_nbagg'
ax = plt.gca()
# validate the output plane to ensure proper 2D coordinates
sim_center, sim_size = get_2D_dimensions(sim, output_plane)
output_plane = Volume(center=sim_center, size=sim_size)
if eps_parameters is not None and field_parameters is not None:
if field_parameters.get("colorbar", False) and eps_parameters.get(
"colorbar", False
):
raise ValueError(
"'colorbar' parameter can only be specified for epsilon or fields, but not both."
)
# Plot geometry
if plot_eps_flag:
ax = plot_eps(
sim,
ax,
output_plane=output_plane,
eps_parameters=eps_parameters,
colorbar_parameters=colorbar_parameters,
frequency=frequency,
)
# Plot boundaries
if plot_boundaries_flag:
ax = plot_boundaries(
sim,
ax,
output_plane=output_plane,
boundary_parameters=boundary_parameters,
)
# Plot sources
if plot_sources_flag:
ax = plot_sources(
sim,
ax,
output_plane=output_plane,
labels=labels,
source_parameters=source_parameters,
)
# Plot monitors
if plot_monitors_flag:
ax = plot_monitors(
sim,
ax,
output_plane=output_plane,
labels=labels,
monitor_parameters=monitor_parameters,
)
# Plot fields
if fields is not None:
ax = plot_fields(
sim,
ax,
fields,
output_plane=output_plane,
field_parameters=field_parameters,
colorbar_parameters=colorbar_parameters,
)
# If using %matplotlib ipympl magic, we need to force the figure to be displayed immediately
if mp.am_master() and nb:
display_figure_immediately(ax.figure)
sleep(0.05)
return ax
def plot3D(sim, save_to_image: bool = False, image_name: str = "sim.png", **kwargs):
from vispy.scene.visuals import Box, Mesh
from vispy.scene import SceneCanvas, transforms
try:
from skimage.measure import marching_cubes
except:
from skimage.measure import marching_cubes_lewiner as marching_cubes
from vispy.visuals.filters import ShadingFilter
# Set canvas
canvas = SceneCanvas(keys="interactive", bgcolor="white")
view = canvas.central_widget.add_view()
view.camera = "turntable"
# Get domain measurements
sim_center, sim_size = sim.geometry_center, sim.cell_size
xmin, xmax, ymin, ymax, zmin, zmax = mp.visualization.box_vertices(
sim_center, sim_size, sim.is_cylindrical
)
grid_resolution = sim.resolution
Nx = int((xmax - xmin) * grid_resolution + 1)
Ny = int((ymax - ymin) * grid_resolution + 1)
Nz = int((zmax - zmin) * grid_resolution + 1)
xtics = np.linspace(xmin, xmax, Nx)
ytics = np.linspace(ymin, ymax, Ny)
ztics = np.linspace(zmin, zmax, Nz)
# Get eps for geometry
eps_data = np.round(np.real(sim.get_epsilon_grid(xtics, ytics, ztics)), 2)
unique = np.unique(np.abs(eps_data)).tolist()
# Remove background material
unique.remove(np.round(np.abs(np.asarray(sim.default_material.epsilon_diag)), 2)[0])
mesh_midpoint = (sim_size[0] / 2, sim_size[1] / 2, sim_size[2] / 2)
light_dir = (0, 0, -1, 0)
# Build geometry
for i, eps in enumerate(unique):
eps_ = np.array(eps_data.flatten() == eps).astype(int).reshape(eps_data.shape)
marching_cube = marching_cubes(
eps_,
0.99,
spacing=(sim.cell_size.x / Nx, sim.cell_size.y / Ny, sim.cell_size.z / Nz),
)
vertices, faces = marching_cube[0], marching_cube[1]
mesh = Mesh(
vertices,
faces,
color=(
1 - ((i + 1) / len(unique)),
1 - ((i + 1) / len(unique)),
1 - ((i + 1) / len(unique)),
0.8,
),
)
mesh.transform = transforms.MatrixTransform()
mesh.transform.translate(np.asarray(sim.geometry_center))
shading_filter = ShadingFilter(shininess=100)
shading_filter.light_dir = light_dir[:3]
mesh.attach(shading_filter)
view.add(mesh)
# Build source
thickness = (
sim.boundary_layers[0].thickness if not len(sim.boundary_layers) < 1 else 0
)
for source in sim.sources:
size = tuple(source.size)
source_box = Box(
*size,
color=(1, 0, 0, 1), # red
)
center = list(source.center)
source_box.transform = transforms.MatrixTransform()
source_box.transform.translate(np.asarray(mesh_midpoint))
source_box.transform.translate(center)
source_box.transform.translate(tuple(sim.geometry_center))
view.add(source_box)
# Build monitors
for mon in sim.dft_objects:
for reg in mon.regions:
size = list(reg.size)
monitor_box = Box(
*size,
color=(0, 0, 1, 1), # blue
)
center = list(reg.center)
monitor_box.transform = transforms.MatrixTransform()
vector = [0, 0, 0]
vector[reg.direction] = 1
vector = mp.Vector3(*vector)
monitor_box.transform.translate(tuple(mesh_midpoint))
monitor_box.transform.translate(center)
monitor_box.transform.translate(tuple(sim.geometry_center))
view.add(monitor_box)
# Build boundaries
for box_center_top in [
np.add(mesh_midpoint, (0, 0, sim_size[2] / 2 - thickness / 2)),
np.subtract(mesh_midpoint, (0, 0, sim_size[2] / 2 - thickness / 2)),
]:
box = _build_3d_pml(sim_size[0], sim_size[1], thickness, box_center_top)
view.add(box)
for box_center_right in [
np.add(mesh_midpoint, (sim_size[0] / 2 - thickness / 2, 0, 0)),
np.subtract(mesh_midpoint, (sim_size[0] / 2 - thickness / 2, 0, 0)),
]:
box = _build_3d_pml(thickness, sim_size[1], sim_size[2], box_center_right)
view.add(box)
for box_center_front in [
np.add(mesh_midpoint, (0, sim_size[1] / 2 - thickness / 2, 0)),
np.subtract(mesh_midpoint, (0, sim_size[1] / 2 - thickness / 2, 0)),
]:
box = _build_3d_pml(sim_size[0], thickness, sim_size[2], box_center_front)
view.add(box)
# Camera options
view.camera.center = mesh_midpoint
view.camera.scale_factor = getattr(
kwargs, "scale_factor", 2 * np.linalg.norm(sim_size)
)
view.camera.elevation = getattr(kwargs, "elevation", 10)
view.camera.azimuth = getattr(kwargs, "azimuth", 45)
view.camera.transform.imap(light_dir)
# Plot or save
if save_to_image:
image = canvas.render()
import imageio
imageio.imwrite(image_name, image)
return
canvas.show(run=True)
def _build_3d_pml(x: float, y: float, thickness: float, translate: tuple):
from vispy.scene.visuals import Box
from vispy.scene import transforms
from vispy.visuals.filters import WireframeFilter
box = Box(
x,
y,
thickness,
color=(0, 1, 0, 0.2), # green but transparent
# color=None,
)
box.transform = transforms.MatrixTransform()
box.transform.rotate(90, (1, 0, 0))
box.transform.translate(translate)
wireframe_filter = WireframeFilter(width=2)
box.mesh.attach(wireframe_filter)
return box
def visualize_chunks(sim: Simulation):
if sim.structure is None:
sim.init_sim()
import matplotlib.pyplot as plt
import matplotlib.cm
import matplotlib.colors
if sim.structure.gv.dim == 2:
from mpl_toolkits.mplot3d import Axes3D
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
else:
from matplotlib.collections import PolyCollection
vols = sim.structure.get_chunk_volumes()
owners = sim.structure.get_chunk_owners()
def plot_box(box, proc, fig, ax: Axes):
if sim.structure.gv.dim == 2:
low = Vector3(box.low.x, box.low.y, box.low.z)
high = Vector3(box.high.x, box.high.y, box.high.z)
points = [low, high]
x_len = Vector3(high.x) - Vector3(low.x)
y_len = Vector3(y=high.y) - Vector3(y=low.y)
xy_len = Vector3(high.x, high.y) - Vector3(low.x, low.y)
points += [low + x_len]
points += [low + y_len]
points += [low + xy_len]
points += [high - x_len]
points += [high - y_len]
points += [high - xy_len]
points = np.array([np.array(v) for v in points])
edges = [
[points[0], points[2], points[4], points[3]],
[points[1], points[5], points[7], points[6]],
[points[0], points[3], points[5], points[7]],
[points[1], points[4], points[2], points[6]],
[points[3], points[4], points[1], points[5]],
[points[0], points[7], points[6], points[2]],
]
faces = Poly3DCollection(edges, linewidths=1, edgecolors="k")
color_with_alpha = matplotlib.colors.to_rgba(chunk_colors[proc], alpha=0.2)
faces.set_facecolor(color_with_alpha)
ax.add_collection3d(faces)
# Plot the points themselves to force the scaling of the axes
ax.scatter(points[:, 0], points[:, 1], points[:, 2], s=0)
else:
low = Vector3(box.low.x, box.low.y)
high = Vector3(box.high.x, box.high.y)
points = [low, high]
x_len = Vector3(high.x) - Vector3(low.x)
y_len = Vector3(y=high.y) - Vector3(y=low.y)
points += [low + x_len]
points += [low + y_len]
points = np.array([np.array(v)[:-1] for v in points])
edges = [[points[0], points[2], points[1], points[3]]]
faces = PolyCollection(edges, linewidths=1, edgecolors="k")
color_with_alpha = matplotlib.colors.to_rgba(chunk_colors[proc])
faces.set_facecolor(color_with_alpha)
ax.add_collection(faces)
# Plot the points themselves to force the scaling of the axes
ax.scatter(points[:, 0], points[:, 1], s=0)
if mp.am_master():
fig = plt.figure()
ax = fig.add_subplot(
111, projection="3d" if sim.structure.gv.dim == 2 else None
)
chunk_colors = matplotlib.cm.rainbow(np.linspace(0, 1, mp.count_processors()))
for i, v in enumerate(vols):
plot_box(mp.gv2box(v.surroundings()), owners[i], fig, ax)
ax.set_xlabel("x")
ax.set_ylabel("y")
ax.set_aspect("equal")
cell_box = mp.gv2box(sim.structure.gv.surroundings())
if sim.structure.gv.dim == 2:
ax.set_xlim3d(left=cell_box.low.x, right=cell_box.high.x)
ax.set_ylim3d(bottom=cell_box.low.y, top=cell_box.high.y)
ax.set_zlim3d(bottom=cell_box.low.z, top=cell_box.high.z)
ax.set_zlabel("z")
else:
ax.set_xlim(left=cell_box.low.x, right=cell_box.high.x)
ax.set_ylim(bottom=cell_box.low.y, top=cell_box.high.y)
plt.tight_layout()
plt.show()
def display_figure_immediately(fig: Figure) -> None:
"""
Trigger the specified figure to display immediately, rather than waiting on the cell execution to end.
Due to limitations in ipympl: https://github.com/matplotlib/ipympl/issues/290, which might be fixed at some
point in the future.
"""
from IPython.display import display
canvas = fig.canvas
display(canvas)
canvas._handle_message(canvas, {"type": "send_image_mode"}, [])
canvas._handle_message(canvas, {"type": "refresh"}, [])
canvas._handle_message(canvas, {"type": "initialized"}, [])
canvas._handle_message(canvas, {"type": "draw"}, [])
# ------------------------------------------------------- #
# JS_Animation
# ------------------------------------------------------- #
# A helper class used to make jshtml animations embed
# seamlessly within Jupyter notebooks.
class JS_Animation:
def __init__(self, jshtml: str):
self.jshtml = jshtml
def _repr_html_(self) -> str:
return self.jshtml
def get_jshtml(self) -> str:
return self.jshtml
# ------------------------------------------------------- #
# Animate2D
# ------------------------------------------------------- #
# An extensive run function used to visualize the fields
# of a 2D simulation after every specified time step.
# ------------------------------------------------------- #
# Required arguments
# sim ................. [Simulation object]
# fields .............. [mp.Ex, mp.Ey, ..., mp. Hz]
# ------------------------------------------------------- #
# Optional arguments
# f ................... [matplotlib figure object]
# realtime ............ [bool] Update plot in each step
# normalize ........... [bool] saves fields to normalize
# after simulation ends.
# plot_modifiers ...... [list] additional functions to
# modify plot
# customization_args .. [dict] other customization args
# to pass to plot2D()
#
class Animate2D:
"""
A class used to record the fields during timestepping (i.e., a [`run`](#run-functions)
function). The object is initialized prior to timestepping by specifying the field component.
The object can then be passed to any [step-function modifier](#step-function-modifiers).
For example, one can record the $E_z$ fields at every one time unit using:
```py
animate = mp.Animate2D(fields=mp.Ez,
realtime=True,
field_parameters={'alpha':0.8, 'cmap':'RdBu', 'interpolation':'none'},
boundary_parameters={'hatch':'o', 'linewidth':1.5, 'facecolor':'y', 'edgecolor':'b', 'alpha':0.3})
sim.run(mp.at_every(1,animate),until=25)
```
By default, the object saves each frame as a PNG image into memory (not disk). This is
typically more memory efficient than storing the actual fields. If the user sets the
`normalize` argument, then the object will save the actual field information as a
NumPy array to be normalized for post processing. The fields of a figure can also be
updated in realtime by setting the `realtime` flag. This does not work for
IPython/Jupyter notebooks, however.
Once the simulation is run, the animation can be output as an interactive JSHTML
object, an mp4, or a GIF.
Multiple `Animate2D` objects can be initialized and passed to the run function to
track different volume locations (using `mp.in_volume`) or field components.
"""
def __init__(
self,
sim: Optional[Simulation] = None,
fields: Optional = None,
f: Optional[Figure] = None,
realtime: bool = False,
normalize: bool = False,
plot_modifiers: Optional[list] = None,
update_epsilon: bool = False,
nb: bool = False,
**customization_args
):
"""
Construct an `Animate2D` object.
+ **`sim=None`** — Optional Simulation object (this has no effect, and is included for backwards compatibility).
+ **`fields=None`** — Optional Field component to record at each time instant.
+ **`f=None`** — Optional `matplotlib` figure object that the routine will update
on each call. If not supplied, then a new one will be created upon
initialization.
+ **`realtime=False`** — Whether or not to update a figure window in realtime as
the simulation progresses. Disabled by default.
+ **`normalize=False`** — Records fields at each time step in memory in a NumPy
array and then normalizes the result by dividing by the maximum field value at a
single point in the cell over all the time snapshots.
+ **`plot_modifiers=None`** — A list of functions that can modify the figure's
`axis` object. Each function modifier accepts a single argument, an `axis`
object, and must return that same axis object. The following modifier changes
the `xlabel`:
```py
def mod1(ax):
ax.set_xlabel('Testing')
return ax
plot_modifiers = [mod1]
```
+ **`update_epsilon=False`** — Redraw epsilon on each call. (Useful for topology optimization)
+ **`nb=False`** — For the animation work in a Jupyter notebook, set to True and use the cell magic:
`%matplotlib ipympl`
+ **`**customization_args`** — Customization keyword arguments passed to
`plot2D()` (i.e. `labels`, `eps_parameters`, `boundary_parameters`, etc.)
"""
if sim is not None:
warnings.warn(
"Warning: The 'sim' argument in Animate2D is deprecated and has no effect. It will be removed "
"in a future release."
)
self.fields = fields
self.update_epsilon = update_epsilon
self.nb = nb
if f:
self.f: Figure = f
self.ax: Axes = self.f.gca()
elif mp.am_master():
from matplotlib import pyplot as plt
# To prevent 2 figures from being created in a notebook, interactive must be turned off and back on here
# https://matplotlib.org/ipympl/examples/full-example.html#fixing-the-double-display-with-ioff
if self.nb:
plt.ioff()
self.f: Figure = plt.figure()
if self.nb:
plt.ion()
self.ax: Axes = self.f.gca()
# This is another option for enabling notebook plotting
# self.nb = plt.get_backend() == 'module://ipympl.backend_nbagg'
else:
self.f = None
self.ax = None
self.realtime = realtime
self.normalize = normalize
self.plot_modifiers = plot_modifiers
self.customization_args = customization_args
self.cumulative_fields = []
self._saved_frames = []
self.frame_format = "png" # format in which each frame is saved in memory
self.codec = "h264" # encoding of mp4 video
self.default_mode = "loop" # html5 video control mode
self.init = False
# Needed for step functions
self.__code__ = namedtuple("gna_hack", ["co_argcount"])
self.__code__.co_argcount = 2
def __call__(self, sim: Simulation, todo: str) -> None:
from matplotlib import pyplot as plt
if todo == "step":
# Initialize the plot
if not self.init:
filtered_plot2D = filter_dict(self.customization_args, plot2D)
ax = sim.plot2D(
ax=self.ax, fields=self.fields, nb=self.nb, **filtered_plot2D
)
# Run the plot modifier functions
if self.plot_modifiers:
for k in range(len(self.plot_modifiers)):
ax = self.plot_modifiers[k](self.ax)
# Store the fields
if mp.am_master():
fields = ax.images[-1].get_array()
self.ax = ax
self.w, self.h = self.f.get_size_inches()
self.init = True
else:
if self.update_epsilon:
# Update epsilon
filtered_plot_eps = filter_dict(self.customization_args, plot_eps)
# when calling with no 'ax', returns array of epsilon data
eps = plot_eps(sim=sim, **filtered_plot_eps)
if mp.am_master():
eps_idx = -1 if not self.fields else -2
self.ax.images[eps_idx].set_data(eps)
# Need to check if None because mp.Ex == 0
if self.fields is not None:
# Update fields
filtered_plot_fields = filter_dict(
self.customization_args, plot_fields
)
# when calling with no 'ax', returns array of fields data
fields = sim.plot_fields(fields=self.fields, **filtered_plot_fields)
if mp.am_master():
self.ax.images[-1].set_data(fields)
self.ax.images[-1].set_clim(
vmin=0.8 * np.min(fields), vmax=0.8 * np.max(fields)
)
# If in a Jupyter notebook, we need to redraw the canvas
if self.nb and mp.am_master():
self.f.canvas.draw()
if self.realtime and mp.am_master():
# Redraw the current figure if requested
# For some reason, plt.pause() causes ipympl to redraw the same figure, and we end up with
# a new copy of the figure every time this class is called.
plt.pause(0.05) if not self.nb else sleep(0.05)
if self.normalize and mp.am_master():
# Save fields as a numpy array to be normalized
# and saved later.
self.cumulative_fields.append(fields)
elif mp.am_master():
# Capture figure as a png, but store the png in memory
# to avoid writing to disk.
self.grab_frame()
return
elif todo == "finish":
# Normalize the frames, if requested, and export
if self.normalize and mp.am_master():
if mp.verbosity.meep > 0:
print("Normalizing field data...")
fields = np.array(self.cumulative_fields) / np.max(
np.abs(self.cumulative_fields), axis=(0, 1, 2)
)
for k in range(len(self.cumulative_fields)):
self.ax.images[-1].set_data(fields[k, :, :])
self.ax.images[-1].set_clim(vmin=-0.8, vmax=0.8)
self.grab_frame()
return
@property
def frame_size(self) -> Tuple[int, int]:
# A tuple ``(width, height)`` in pixels of a movie frame.
# modified from matplotlib library
w, h = self.f.get_size_inches()
return int(w * self.f.dpi), int(h * self.f.dpi)
def grab_frame(self) -> None:
# Saves the figures frame to memory.
# modified from matplotlib library
from io import BytesIO
bin_data = BytesIO()
self.f.savefig(bin_data, format=self.frame_format)
# imgdata64 = base64.encodebytes(bin_data.getvalue()).decode('ascii')
self._saved_frames.append(bin_data.getvalue())
def _embedded_frames(self, frame_list: list, frame_format: str) -> str:
# converts frame data stored in memory to html5 friendly format
# frame_list should be a list of base64-encoded png files
# modified from matplotlib
import base64
template = ' frames[{0}] = "data:image/{1};base64,{2}"\n'
return "\n" + "".join(
template.format(
i,
frame_format,
base64.encodebytes(frame_data).decode("ascii").replace("\n", "\\\n"),
)
for i, frame_data in enumerate(frame_list)
)
def to_jshtml(self, fps: int) -> JS_Animation:
"""
Outputs an interactable JSHTML animation object that is embeddable in Jupyter
notebooks. The object is packaged with controls to manipulate the video's
playback. User must specify a frame rate `fps` in frames per second.
"""
# Exports a javascript enabled html object that is
# ready for jupyter notebook embedding.
# modified from matplotlib/animation.py code.
# Only works with Python3 and matplotlib > 3.1.0
from distutils.version import LooseVersion
import matplotlib
if LooseVersion(matplotlib.__version__) < LooseVersion("3.1.0"):
print("-------------------------------")
print(
"Warning: JSHTML output is not supported with your current matplotlib build. Consider upgrading to 3.1.0+"
)
print("-------------------------------")
return
if mp.am_master():
from uuid import uuid4
from matplotlib._animation_data import (
DISPLAY_TEMPLATE,
INCLUDED_FRAMES,
JS_INCLUDE,
STYLE_INCLUDE,
)
# save the frames to an html file
fill_frames = self._embedded_frames(self._saved_frames, self.frame_format)
Nframes = len(self._saved_frames)
mode_dict = dict(once_checked="", loop_checked="", reflect_checked="")
mode_dict[self.default_mode + "_checked"] = "checked"
interval = 1000 // fps
html_string = ""
html_string += JS_INCLUDE
html_string += STYLE_INCLUDE
html_string += DISPLAY_TEMPLATE.format(
id=uuid4().hex,
Nframes=Nframes,
fill_frames=fill_frames,
interval=interval,
**mode_dict,
)
return JS_Animation(html_string)
def to_gif(self, fps: int, filename: str) -> None:
"""
Generates and outputs a GIF file of the animation with the filename, `filename`,
and the frame rate, `fps`. Note that GIFs are significantly larger than mp4 videos
since they don't use any compression. Artifacts are also common because the GIF
format only supports 256 colors from a _predefined_ color palette. Requires
`ffmpeg`.
"""
# Exports a gif of the recorded animation
# requires ffmpeg to be installed
# modified from the matplotlib library
if mp.am_master():
from subprocess import Popen, PIPE
from io import TextIOWrapper, BytesIO
FFMPEG_BIN = "ffmpeg"
command = [
FFMPEG_BIN,
"-f",
"image2pipe", # force piping of rawvideo
"-vcodec",
self.frame_format, # raw input codec
"-s",
"%dx%d" % (self.frame_size),
"-r",
str(fps), # frame rate in frames per second
"-i",
"pipe:", # The input comes from a pipe
"-vcodec",
"gif", # output gif format
"-r",
str(fps), # frame rate in frames per second
"-y",
"-vf",
"pad=width=ceil(iw/2)*2:height=ceil(ih/2)*2",
"-an",
filename, # output filename
]
if mp.verbosity.meep > 0:
print("Generating GIF...")
proc = Popen(command, stdin=PIPE, stdout=PIPE, stderr=PIPE)
for i in range(len(self._saved_frames)):
proc.stdin.write(self._saved_frames[i])
out, err = proc.communicate() # pipe in images
proc.stdin.close()
proc.wait()
return
def to_mp4(self, fps: int, filename: str) -> None:
"""
Generates and outputs an mp4 video file of the animation with the filename,
`filename`, and the frame rate, `fps`. Default encoding is h264 with yuv420p
format. Requires `ffmpeg`.
"""
# Exports an mp4 of the recorded animation
# requires ffmpeg to be installed
# modified from the matplotlib library
if mp.am_master():
from subprocess import Popen, PIPE
from io import TextIOWrapper, BytesIO
FFMPEG_BIN = "ffmpeg"
command = [
FFMPEG_BIN,
"-f",
"image2pipe", # force piping of rawvideo
"-vcodec",
self.frame_format, # raw input codec
"-s",
"%dx%d" % (self.frame_size),
#'-pix_fmt', self.frame_format,
"-r",
str(fps), # frame rate in frames per second
"-i",
"pipe:", # The input comes from a pipe
"-vcodec",
self.codec, # output mp4 format
"-pix_fmt",
"yuv420p",
"-r",
str(fps), # frame rate in frames per second
"-y",
"-vf",
"pad=width=ceil(iw/2)*2:height=ceil(ih/2)*2",
"-an",
filename, # output filename
]
if mp.verbosity.meep > 0:
print("Generating MP4...")
proc = Popen(command, stdin=PIPE, stdout=PIPE, stderr=PIPE)
for i in range(len(self._saved_frames)):
proc.stdin.write(self._saved_frames[i])
out, err = proc.communicate() # pipe in images
proc.stdin.close()
proc.wait()
return
def reset(self) -> None:
self.cumulative_fields = []
self.ax = None
self.f = None
def set_figure(self, f: Figure) -> None:
self.f = f
|