1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
|
/***************************************************************/
/***************************************************************/
/***************************************************************/
#include <memory>
#include <vector>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <complex>
#include "meep.hpp"
#include "ctl-math.h"
#include "ctlgeom.h"
#include "meepgeom.hpp"
#ifndef DATADIR
#define DATADIR "./"
#endif
using namespace meep;
vector3 v3(double x, double y = 0.0, double z = 0.0) {
vector3 v;
v.x = x;
v.y = y;
v.z = z;
return v;
}
// passthrough field function
std::complex<double> default_field_function(const std::complex<double> *fields, const vec &loc,
void *data_) {
(void)loc; // unused
(void)data_; // unused
return fields[0];
}
/***************************************************************/
/***************************************************************/
/***************************************************************/
const double RELTOL = sizeof(realnum) == sizeof(float) ? 1.0e-4 : 1.0e-6;
double Compare(realnum *d1, realnum *d2, int N, const char *Name) {
double Norm1 = 0.0, Norm2 = 0.0, NormDelta = 0.0;
for (int n = 0; n < N; n++) {
Norm1 += d1[n] * d1[n];
Norm2 += d2[n] * d2[n];
NormDelta += (d1[n] - d2[n]) * (d1[n] - d2[n]);
};
Norm1 = sqrt(Norm1);
Norm2 = sqrt(Norm2);
NormDelta = sqrt(NormDelta);
double RelErr = NormDelta / (0.5 * (Norm1 + Norm2));
if (RelErr > RELTOL) meep::abort("fail: rel error in %s data = %e\n", Name, RelErr);
return RelErr;
}
double Compare(std::complex<realnum> *d1, std::complex<realnum> *d2, int N, const char *Name) {
double Norm1 = 0.0, Norm2 = 0.0, NormDelta = 0.0;
for (int n = 0; n < N; n++) {
Norm1 += norm(d1[n]);
Norm2 += norm(d2[n]);
NormDelta += norm(d1[n] - d2[n]);
};
Norm1 = sqrt(Norm1);
Norm2 = sqrt(Norm2);
NormDelta = sqrt(NormDelta);
double RelErr = NormDelta / (0.5 * (Norm1 + Norm2));
if (RelErr > RELTOL) meep::abort("fail: rel error in %s data = %e\n", Name, RelErr);
return RelErr;
}
/***************************************************************/
/* dummy material function needed to pass to structure( ) */
/* constructor as a placeholder before we can call */
/* set_materials_from_geometry */
/***************************************************************/
double dummy_eps(const vec &) { return 1.0; }
/***************************************************************/
/***************************************************************/
/***************************************************************/
void usage(char *progname) {
master_printf("usage: %s [options]\n", progname);
master_printf("options: \n");
master_printf(" --use-symmetry use geometric symmetries\n");
master_printf(" --write-files write reference data files\n");
}
/***************************************************************/
/***************************************************************/
/***************************************************************/
int main(int argc, char *argv[]) {
initialize mpi(argc, argv);
/***************************************************************/
/* parse command-line options **********************************/
/***************************************************************/
bool use_symmetry = false;
bool write_files = false;
for (int narg = 1; narg < argc; narg++) {
if (argv[narg] == 0) continue;
if (!strcasecmp(argv[narg], "--use-symmetry")) {
use_symmetry = true;
master_printf("Using symmetry.\n");
}
else if (!strcasecmp(argv[narg], "--write-files")) {
write_files = true;
master_printf("writing HDF5 data files");
}
else {
master_printf("unknown command-line option %s", argv[narg]);
usage(argv[0]);
exit(1);
};
};
/***************************************************************/
/* initialize geometry, similar to holey_wvg_cavity **********/
/***************************************************************/
double eps = 13.0; // dielectric constant of waveguide
double w = 1.2; // width of waveguide
double r = 0.36; // radius of holes
double d = 1.4; // defect spacing (ordinary spacing = 1)
int N = 3; // number of holes on either side of defect
double sy = 6.0; // size of cell in y direction (perpendicular to wvg.)
double pad = 2.0; // padding between last hole and PML edge
double dpml = 1.0; // PML thickness
double sx = 2.0 * (pad + dpml + N) + d - 1.0; // size of cell in x dir
double resolution = 20.0;
geometry_lattice.size.x = sx;
geometry_lattice.size.y = sy;
geometry_lattice.size.z = 0.0;
grid_volume gv = voltwo(sx, sy, resolution);
gv.center_origin();
symmetry sym = use_symmetry ? -mirror(Y, gv) : identity();
structure the_structure(gv, dummy_eps, pml(dpml), sym);
meep_geom::material_type vacuum = meep_geom::vacuum;
auto material_deleter = [](meep_geom::material_data *m) { meep_geom::material_free(m); };
std::unique_ptr<meep_geom::material_data, decltype(material_deleter)> dielectric(
meep_geom::make_dielectric(eps), material_deleter);
geometric_object objects[7];
vector3 origin = v3(0.0, 0.0, 0.0);
vector3 xhat = v3(1.0, 0.0, 0.0);
vector3 yhat = v3(0.0, 1.0, 0.0);
vector3 zhat = v3(0.0, 0.0, 1.0);
vector3 size = v3(meep_geom::ENORMOUS, w, meep_geom::ENORMOUS);
double x0 = 0.5 * d;
double deltax = 1.0;
double height = meep_geom::ENORMOUS;
objects[0] = make_block(dielectric.get(), origin, xhat, yhat, zhat, size);
int no = 1;
for (int n = 0; n < N; n++) {
vector3 center = v3(x0 + n * deltax, 0.0, 0.0);
objects[no++] = make_cylinder(vacuum, center, r, height, zhat);
};
for (int n = 0; n < N; n++) {
vector3 center = v3(-x0 - n * deltax, 0.0, 0.0);
objects[no++] = make_cylinder(vacuum, center, r, height, zhat);
};
geometric_object_list g = {no, objects};
meep_geom::set_materials_from_geometry(&the_structure, g);
fields f(&the_structure);
/***************************************************************/
/* add source and timestep until source has finished (no later)*/
/***************************************************************/
double fcen = 0.25; // pulse center frequency
double df = 0.2; // pulse width (in frequency)
gaussian_src_time src(fcen, df);
component src_cmpt = Hz;
f.add_point_source(src_cmpt, src, vec(0.0, 0.0));
while (f.round_time() < f.last_source_time())
f.step();
/***************************************************************/
/***************************************************************/
/***************************************************************/
double xMin = -0.25 * sx, xMax = +0.25 * sx;
double yMin = -0.15 * sy, yMax = +0.15 * sy;
volume v1d(vec(xMin, 0.0), vec(xMax, 0.0));
volume v2d(vec(xMin, yMin), vec(xMax, yMax));
int rank;
size_t dims1D[1], dims2D[2];
direction dirs1D[1], dirs2D[2];
#define H5FILENAME DATADIR "array-slice-ll-ref"
#define NX 126
#define NY 38
if (write_files) {
h5file *file = f.open_h5file(H5FILENAME);
f.output_hdf5(Hz, v1d, file);
f.output_hdf5(Sy, v2d, file);
master_printf("Wrote binary data to file %s.h5\n", H5FILENAME);
delete file;
exit(0);
}
else {
//
// read 1D and 2D array-slice data from HDF5 file
//
h5file *file = f.open_h5file(H5FILENAME, h5file::READONLY);
std::unique_ptr<realnum[]> rdata(static_cast<realnum *>(
file->read("hz.r", &rank, dims1D, 1, sizeof(realnum) == sizeof(float))));
if (rank != 1 || dims1D[0] != NX)
meep::abort("failed to read 1D data(hz.r) from file %s.h5", H5FILENAME);
std::unique_ptr<realnum[]> idata(static_cast<realnum *>(
file->read("hz.i", &rank, dims1D, 1, sizeof(realnum) == sizeof(float))));
if (rank != 1 || dims1D[0] != NX)
meep::abort("failed to read 1D data(hz.i) from file %s.h5", H5FILENAME);
std::vector<std::complex<realnum> > file_slice1d;
for (size_t n = 0; n < dims1D[0]; n++)
file_slice1d.emplace_back(rdata[n], idata[n]);
std::unique_ptr<realnum[]> file_slice2d(static_cast<realnum *>(
file->read("sy", &rank, dims2D, 2, sizeof(realnum) == sizeof(float))));
if (rank != 2 || dims2D[0] != NX || dims2D[1] != NY)
meep::abort("failed to read 2D reference data from file %s.h5", H5FILENAME);
delete file;
//
// generate 1D and 2D array slices and compare to
// data read from file
//
rank = f.get_array_slice_dimensions(v1d, dims1D, dirs1D, true, false);
if (rank != 1 || dims1D[0] != NX) meep::abort("incorrect dimensions for 1D slice");
std::unique_ptr<std::complex<realnum>[]> slice1d(
f.get_complex_array_slice(v1d, Hz, 0, 0, true));
std::vector<std::complex<realnum> > slice1d_realnum;
for (int i = 0; i < NX; ++i)
slice1d_realnum.emplace_back(slice1d[i]);
double RelErr1D = Compare(slice1d_realnum.data(), file_slice1d.data(), NX, "Hz_1d");
master_printf("1D: rel error %e\n", RelErr1D);
rank = f.get_array_slice_dimensions(v2d, dims2D, dirs2D, true, false);
if (rank != 2 || dims2D[0] != NX || dims2D[1] != NY)
meep::abort("incorrect dimensions for 2D slice");
std::unique_ptr<realnum[]> slice2d(f.get_array_slice(v2d, Sy, 0, 0, true));
std::unique_ptr<realnum[]> slice2d_realnum(new realnum[NX * NY]);
for (int i = 0; i < NX * NY; ++i)
slice2d_realnum[i] = static_cast<realnum>(slice2d[i]);
double RelErr2D = Compare(slice2d_realnum.get(), file_slice2d.get(), NX * NY, "Sy_2d");
master_printf("2D: rel error %e\n", RelErr2D);
}; // if (write_files) ... else ...
for (int n = 0; n < no; n++) {
geometric_object_destroy(objects[n]);
}
meep_geom::unset_default_material();
return 0;
}
|