1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
|
/***************************************************************/
/* C++ port of meep/examples/bend-flux.ctl, using the */
/* "low-level" meep C++ interface stack, which consists of */
/* libmeep_geom + libctlgeom + libmeep */
/***************************************************************/
/*
; From the Meep tutorial: transmission around a 90-degree waveguide
; bend in 2d.
*/
#include <stdio.h>
#include <stdlib.h>
#include <complex>
#include "meep.hpp"
#include "ctl-math.h"
#include "ctlgeom.h"
#include "meepgeom.hpp"
using namespace meep;
typedef std::complex<double> cdouble;
vector3 v3(double x, double y = 0.0, double z = 0.0) {
vector3 v;
v.x = x;
v.y = y;
v.z = z;
return v;
}
/***************************************************************/
/* dummy material function needed to pass to structure( ) */
/* constructor as a placeholder before we can call */
/* set_materials_from_geometry */
/***************************************************************/
double dummy_eps(const vec &) { return 1.0; }
/***************************************************************/
/* define geometry from GDSII file *****************************/
/***************************************************************/
#define GEOM_LAYER 0 // hard-coded indices of GDSII layers
#define STRAIGHT_WVG_LAYER 1 // on which various geometric entities are defined
#define BENT_WVG_LAYER 2
#define SOURCE_LAYER 3
#define RFLUX_LAYER 4
#define STRAIGHT_TFLUX_LAYER 5
#define BENT_TFLUX_LAYER 6
structure create_structure_from_GDSII(char *GDSIIFile, bool no_bend, volume &vsrc, volume &vrefl,
volume &vtrans) {
// set computational cell
double dpml = 1.0;
double resolution = 10.0;
grid_volume gv = meep_geom::set_geometry_from_GDSII(resolution, GDSIIFile, GEOM_LAYER);
structure the_structure(gv, dummy_eps, pml(dpml));
// define waveguide
geometric_object objects[1];
meep_geom::material_type dielectric = meep_geom::make_dielectric(12.0);
int GDSIILayer = (no_bend ? STRAIGHT_WVG_LAYER : BENT_WVG_LAYER);
objects[0] = meep_geom::get_GDSII_prism(dielectric, GDSIIFile, GDSIILayer);
geometric_object_list g = {1, objects};
meep_geom::set_materials_from_geometry(&the_structure, g);
// define volumes for source and flux-monitor regions
vsrc = meep_geom::get_GDSII_volume(GDSIIFile, SOURCE_LAYER);
vrefl = meep_geom::get_GDSII_volume(GDSIIFile, RFLUX_LAYER);
vtrans =
meep_geom::get_GDSII_volume(GDSIIFile, (no_bend ? STRAIGHT_TFLUX_LAYER : BENT_TFLUX_LAYER));
return the_structure;
}
/***************************************************************/
/***************************************************************/
/***************************************************************/
structure create_structure_by_hand(bool no_bend, bool use_prisms, volume &vsrc, volume &vrefl,
volume &vtrans) {
double sx = 16.0; // size of cell in X direction
double sy = 32.0; // size of cell in Y direction
double pad = 4.0; // padding distance between waveguide and cell edge
double w = 1.0; // width of waveguide
double dpml = 1.0; // PML thickness
double resolution = 10.0;
// (set! geometry-lattice (make lattice (size sx sy no-size)))
// (set! pml-layers (list (make pml (thickness 1.0))))
geometry_lattice.size.x = sx;
geometry_lattice.size.y = sy;
geometry_lattice.size.z = 0.0;
grid_volume gv = voltwo(sx, sy, resolution);
gv.center_origin();
structure the_structure(gv, dummy_eps, pml(dpml));
double wvg_ycen = -0.5 * (sy - w - 2.0 * pad); // y center of horiz. wvg
double wvg_xcen = 0.5 * (sx - w - 2.0 * pad); // x center of vert. wvg
// (set! geometry
// (if no-bend?
// (list
// (list
// (make block
// (center wvg-xcen (* 0.5 pad))
// (size w (- sy pad) infinity)
// (material (make dielectric (epsilon 12)))))))
// (make block
// (center 0 wvg-ycen)
// (size infinity w infinity)
// (material (make dielectric (epsilon 12)))))
// (make block
// (center (* -0.5 pad) wvg-ycen)
// (size (- sx pad) w infinity)
// (material (make dielectric (epsilon 12))))
vector3 e1 = v3(1.0, 0.0, 0.0);
vector3 e2 = v3(0.0, 1.0, 0.0);
vector3 e3 = v3(0.0, 0.0, 1.0);
meep_geom::material_type dielectric = meep_geom::make_dielectric(12.0);
if (no_bend) {
if (use_prisms) {
vector3 vertices[4];
vertices[0] = v3(-0.5 * sx, wvg_ycen - 0.5 * w, 0.0);
vertices[1] = v3(+0.5 * sx, wvg_ycen - 0.5 * w, 0.0);
vertices[2] = v3(+0.5 * sx, wvg_ycen + 0.5 * w, 0.0);
vertices[3] = v3(-0.5 * sx, wvg_ycen + 0.5 * w, 0.0);
double height = 0.0;
vector3 axis = v3(0.0, 0.0, 1.0);
geometric_object objects[1];
objects[0] = make_prism(dielectric, vertices, 4, height, axis);
geometric_object_list g = {1, objects};
meep_geom::set_materials_from_geometry(&the_structure, g);
}
else {
vector3 center = v3(0.0, wvg_ycen, 0.0);
vector3 size = v3(sx, w, 0.0);
geometric_object objects[1];
objects[0] = make_block(dielectric, center, e1, e2, e3, size);
geometric_object_list g = {1, objects};
meep_geom::set_materials_from_geometry(&the_structure, g);
}
}
else {
if (use_prisms) {
vector3 vertices[6];
vertices[0] = v3(-0.5 * sx, wvg_ycen - 0.5 * w);
vertices[1] = v3(wvg_xcen + 0.5 * w, wvg_ycen - 0.5 * w);
vertices[2] = v3(wvg_xcen + 0.5 * w, +0.5 * sy);
vertices[3] = v3(wvg_xcen - 0.5 * w, +0.5 * sy);
vertices[4] = v3(wvg_xcen - 0.5 * w, wvg_ycen + 0.5 * w);
vertices[5] = v3(-0.5 * sx, wvg_ycen + 0.5 * w);
double height = 0.0;
vector3 axis = v3(0.0, 0.0, 1.0);
geometric_object objects[1];
objects[0] = make_prism(dielectric, vertices, 6, height, axis);
geometric_object_list g = {1, objects};
meep_geom::set_materials_from_geometry(&the_structure, g);
}
else {
geometric_object objects[2];
vector3 hcenter = v3(-0.5 * pad, wvg_ycen), hsize = v3(sx - pad, w);
vector3 vcenter = v3(wvg_xcen, 0.5 * pad), vsize = v3(w, sy - pad);
objects[0] = make_block(dielectric, hcenter, e1, e2, e3, hsize);
objects[1] = make_block(dielectric, vcenter, e1, e2, e3, vsize);
geometric_object_list g = {2, objects};
meep_geom::set_materials_from_geometry(&the_structure, g);
}
}
vsrc =
volume(vec(-0.5 * sx + dpml, wvg_ycen - 0.5 * w), vec(-0.5 * sx + dpml, wvg_ycen + 0.5 * w));
vrefl = volume(vec(-0.5 * sx + 1.5, wvg_ycen - w), vec(-0.5 * sx + 1.5, wvg_ycen + w));
vtrans = (no_bend ? volume(vec(0.5 * sx - 1.5, wvg_ycen - w), vec(0.5 * sx - 1.5, wvg_ycen + w))
: volume(vec(wvg_xcen - w, 0.5 * sy - 1.5), vec(wvg_xcen + w, 0.5 * sy - 1.5)));
return the_structure;
}
/***************************************************************/
/***************************************************************/
/***************************************************************/
void bend_flux(bool no_bend, char *GDSIIFile, bool use_prisms) {
vec v0;
volume vsrc(v0), vrefl(v0), vtrans(v0);
structure the_structure =
GDSIIFile ? create_structure_from_GDSII(GDSIIFile, no_bend, vsrc, vrefl, vtrans)
: create_structure_by_hand(no_bend, use_prisms, vsrc, vrefl, vtrans);
fields f(&the_structure);
// (set! sources (list
// (make source
// (src (make gaussian-src (frequency fcen) (fwidth df)))
// (component Ez)
// (center (+ 1 (* -0.5 sx)) wvg-ycen)
// (size 0 w))))
//
double fcen = 0.15; // ; pulse center frequency
double df = 0.1; // ; df
gaussian_src_time src(fcen, df);
f.add_volume_source(Ez, src, vsrc);
//(define trans ; transmitted flux
// (add-flux fcen df nfreq
// (if no-bend?
// (make flux-region
// (center (- (/ sx 2) 1.5) wvg-ycen) (size 0 (* w 2)))
// (make flux-region
// (center wvg-xcen (- (/ sy 2) 1.5)) (size (* w 2) 0)))))
double f_start = fcen - 0.5 * df;
double f_end = fcen + 0.5 * df;
int nfreq = 100; // number of frequencies at which to compute flux
direction trans_dir = no_bend ? X : Y;
dft_flux trans = f.add_dft_flux(trans_dir, vtrans, f_start, f_end, nfreq);
//(define refl ; reflected flux
// (add-flux fcen df nfreq
// (make flux-region
// (center (+ (* -0.5 sx) 1.5) wvg-ycen) (size 0 (* w 2)))))
//
dft_flux refl = f.add_dft_flux(NO_DIRECTION, vrefl, f_start, f_end, nfreq);
char *prefix = const_cast<char *>(no_bend ? "straight" : "bent");
f.output_hdf5(Dielectric, f.total_volume(), 0, false, true, prefix);
//; for normal run, load negated fields to subtract incident from refl. fields
//(if (not no-bend?) (load-minus-flux "refl-flux" refl))
const char *dataname = "refl-flux";
if (!no_bend) {
refl.load_hdf5(f, dataname);
refl.scale_dfts(-1.0);
}
//(run-sources+
// (stop-when-fields-decayed 50 Ez
// (if no-bend?
// (vector3 (- (/ sx 2) 1.5) wvg-ycen)
// (vector3 wvg-xcen (- (/ sy 2) 1.5)))
// 1e-3)
// (at-beginning output-epsilon))
vec eval_point = vtrans.center();
double DeltaT = 10.0, NextCheckTime = f.round_time() + DeltaT;
double Tol = 1.0e-3;
double max_abs = 0.0, cur_max = 0.0;
bool Done = false;
do {
f.step();
// manually check fields-decayed condition
double absEz = abs(f.get_field(Ez, eval_point));
cur_max = fmax(cur_max, absEz);
if (f.round_time() >= NextCheckTime) {
NextCheckTime += DeltaT;
max_abs = fmax(max_abs, cur_max);
if ((max_abs > 0.0) && cur_max < Tol * max_abs) Done = true;
cur_max = 0.0;
}
// printf("%.2e %.2e %.2e %.2e\n",f.round_time(),absEz,max_abs,cur_max);
} while (!Done);
//; for normalization run, save flux fields for refl. plane
//(if no-bend? (save-flux "refl-flux" refl))
if (no_bend) refl.save_hdf5(f, dataname);
//(display-fluxes trans refl)
printf("%11s | %12s | %12s\n", " Freq ", " trans flux", " refl flux");
double f0 = fcen - 0.5 * df, fstep = df / (nfreq - 1);
double *trans_flux = trans.flux();
double *refl_flux = refl.flux();
for (int nf = 0; nf < nfreq; nf++)
printf("%.4e | %+.4e | %+.4e\n", f0 + nf * fstep, trans_flux[nf], refl_flux[nf]);
}
/***************************************************************/
/***************************************************************/
/***************************************************************/
int main(int argc, char *argv[]) {
initialize mpi(argc, argv);
bool use_prisms = false;
char *GDSIIFile = 0;
for (int narg = 1; narg < argc; narg++)
if (!strcasecmp(argv[narg], "--use-prisms")) use_prisms = true;
for (int narg = 1; narg < argc - 1; narg++)
if (!strcasecmp(argv[narg], "--GDSIIFile")) GDSIIFile = argv[narg + 1];
if (GDSIIFile != 0 && use_prisms == true)
fprintf(stderr, "warning: --use-prisms is ignored if --GDSIIFile is specified\n");
bend_flux(true, GDSIIFile, use_prisms);
bend_flux(false, GDSIIFile, use_prisms);
// success if we made it here
return 0;
}
|