1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
#include <vector>
#include <stdio.h>
#include <meep.hpp>
using namespace meep;
#include "config.h"
using std::complex;
double eps(const vec &pt) { return ((pt.r() < 0.5 + 1e-6) ? 9.0 : 1.0); }
#define MINRES 10
#define MAXRES 25
#define RESSTEP 3 // should be odd
int find_exponent(double a_mean, double a_meansqr, double a2_mean, double a2_meansqr,
const char *name) {
// Verdict on convergence
double a_sigma, a2_sigma;
a_sigma = sqrt(a_meansqr - a_mean * a_mean);
a2_sigma = sqrt(a2_meansqr - a2_mean * a2_mean);
master_printf("%s a's: ", name);
if (a2_sigma / a2_mean < 0.15) {
master_printf("converged as %3.1e / (a*a)\n", a_mean);
return 2;
}
else if (a_sigma / a_mean < 0.15) {
master_printf("converged as %3.1e / a\n", a_mean);
return 1;
}
else {
master_printf("Not clear if it converges...\n");
return 0;
}
}
void test_convergence_without_averaging() {
double w0 = 0.2858964; // exact to last digit
int n[2] = {0, 0};
double a_mean[2] = {0, 0}, a_meansqr[2] = {0, 0}, a2_mean[2] = {0, 0}, a2_meansqr[2] = {0, 0};
for (int a = MINRES; a <= MAXRES; a += RESSTEP) {
grid_volume vol = volcyl(1.0, 0.0, a);
structure s(vol, eps);
fields f(&s, 1);
f.use_bloch(0.1);
f.set_boundary(High, R, Metallic);
f.add_point_source(Hr, w0, 2.0, 0.0, 5.0, veccyl(0.2, 0.0));
while (f.time() < f.last_source_time())
f.step();
int t_harminv_max = 2500; // try increasing this in case of failure
std::vector<complex<double> > mon_data(t_harminv_max);
int t = 0;
monitor_point mp;
while (t < t_harminv_max) {
f.step();
f.get_point(&mp, veccyl(0.2, 0.0));
mon_data[t] = mp.get_component(Er);
t++;
}
const int maxbands = 10;
std::vector<complex<double> > amps(maxbands);
std::vector<double> freq_re(maxbands), freq_im(maxbands), errors(maxbands);
int nfreq = do_harminv(mon_data.data(), t_harminv_max - 1, f.dt, 0.10, 0.50, maxbands,
amps.data(), freq_re.data(), freq_im.data(), errors.data());
double w = 0.0;
for (int jf = 0; jf < nfreq; jf++)
if (abs(freq_re[jf] - w0) < abs(w - w0)) w = freq_re[jf];
double e = -(w - w0) / w0, ea = e * a, ea2 = e * a * a; // to check 1/a and 1/(a*a) convergence
// master_printf("Using a = %d ...\n", a);
// master_printf("a = %3d\tw = %g \t(w-w0)/w0*a = %4.2e \t(w-w0)/w0*a*a = %4.2e\n", a, w, ea,
// ea2);
master_printf("noavg:, %d, %g, %g\n", a, w, fabs(e));
// Statistical analysis
int index = (2 * (a / 2) == a) ? 0 : 1; // even / odd
a_mean[index] += ea;
a_meansqr[index] += ea * ea;
a2_mean[index] += ea2;
a2_meansqr[index] += ea2 * ea2;
n[index]++;
}
for (int i = 0; i < 2; i++)
a_mean[i] /= n[i];
for (int i = 0; i < 2; i++)
a_meansqr[i] /= n[i];
for (int i = 0; i < 2; i++)
a2_mean[i] /= n[i];
for (int i = 0; i < 2; i++)
a2_meansqr[i] /= n[i];
/* Note: in older versions of Meep, even with "no averaging" there
was some funny averaging that happened to give quadratic convergence
for the even-resolution cylindrical case here. We no longer do this
-- "no averaging" really means no averaging now. */
if (find_exponent(a_mean[0], a_meansqr[0], a2_mean[0], a2_meansqr[0], "Even") != 1)
meep::abort("Failed even convergence test with no fancy averaging!\n");
if (find_exponent(a_mean[1], a_meansqr[1], a2_mean[1], a2_meansqr[1], "Odd") != 1)
meep::abort("Failed odd convergence test with no fancy averaging!\n");
master_printf("Passed convergence test with no fancy averaging!\n");
}
void test_convergence_with_averaging() {
double w0 = 0.2858964; // exact to last digit
int n[2] = {0, 0};
double a_mean[2] = {0, 0}, a_meansqr[2] = {0, 0}, a2_mean[2] = {0, 0}, a2_meansqr[2] = {0, 0};
for (int a = MINRES; a <= MAXRES; a += RESSTEP) {
grid_volume vol = volcyl(1.0, 0.0, a);
structure s(vol, eps);
s.set_epsilon(eps);
fields f(&s, 1);
f.use_bloch(0.1);
f.set_boundary(High, R, Metallic);
f.add_point_source(Hr, w0, 2.0, 0.0, 5.0, veccyl(0.2, 0.0));
while (f.time() < f.last_source_time())
f.step();
int t_harminv_max = 2500; // try increasing this in case of failure
std::vector<complex<double> > mon_data(t_harminv_max);
int t = 0;
monitor_point mp;
while (t < t_harminv_max) {
f.step();
f.get_point(&mp, veccyl(0.2, 0.0));
mon_data[t] = mp.get_component(Er);
t++;
}
const int maxbands = 10;
std::vector<complex<double> > amps(maxbands);
std::vector<double> freq_re(maxbands), freq_im(maxbands), errors(maxbands);
int nfreq = do_harminv(mon_data.data(), t_harminv_max - 1, f.dt, 0.10, 0.50, maxbands,
amps.data(), freq_re.data(), freq_im.data(), errors.data());
double w = 0.0;
for (int jf = 0; jf < nfreq; jf++)
if (abs(freq_re[jf] - w0) < abs(w - w0)) w = freq_re[jf];
double e = -(w - w0) / w0, ea = e * a, ea2 = e * a * a; // to check 1/a and 1/(a*a) convergence
// master_printf("Using a = %d ...\n", a);
// master_printf("a = %3d\tw = %g \t(w-w0)/w0*a = %4.2e \t(w-w0)/w0*a*a = %4.2e\n", a, w, ea,
// ea2);
master_printf("avg:, %d, %g, %g\n", a, w, fabs(e));
// Statistical analysis
int index = (2 * (a / 2) == a) ? 0 : 1; // even / odd
a_mean[index] += ea;
a_meansqr[index] += ea * ea;
a2_mean[index] += ea2;
a2_meansqr[index] += ea2 * ea2;
n[index]++;
}
for (int i = 0; i < 2; i++)
a_mean[i] /= n[i];
for (int i = 0; i < 2; i++)
a_meansqr[i] /= n[i];
for (int i = 0; i < 2; i++)
a2_mean[i] /= n[i];
for (int i = 0; i < 2; i++)
a2_meansqr[i] /= n[i];
if (find_exponent(a_mean[0], a_meansqr[0], a2_mean[0], a2_meansqr[0], "Even") != 2)
meep::abort("Failed convergence test with anisotropic dielectric averaging!\n");
if (find_exponent(a_mean[1], a_meansqr[1], a2_mean[1], a2_meansqr[1], "Odd") != 2)
meep::abort("Failed convergence test with anisotropic dielectric averaging!\n");
master_printf("Passed convergence test with anisotropic dielectric averaging!\n");
}
int main(int argc, char **argv) {
initialize mpi(argc, argv);
verbosity = 0;
#ifdef HAVE_HARMINV
master_printf("Testing convergence of a waveguide mode frequency...\n");
test_convergence_without_averaging();
test_convergence_with_averaging();
#endif
return 0;
}
|