1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
|
/***************************************************************/
/* unit test for dft_fields and output_dft functionality */
/***************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <complex>
#include <vector>
#include "meep.hpp"
#include "ctl-math.h"
#include "ctlgeom.h"
#include "meepgeom.hpp"
using namespace meep;
vector3 v3(double x, double y = 0.0, double z = 0.0) {
vector3 v;
v.x = x;
v.y = y;
v.z = z;
return v;
}
/***************************************************************/
/* dummy material function needed to pass to structure( ) */
/* constructor as a placeholder before we can call */
/* set_materials_from_geometry */
/***************************************************************/
double dummy_eps(const vec &) { return 1.0; }
/***************************************************************/
/***************************************************************/
/***************************************************************/
void Run(bool Pulse, double resolution, std::complex<meep::realnum> **field_array = 0,
int *array_rank = 0, size_t *array_dims = 0) {
/***************************************************************/
/* initialize geometry */
/***************************************************************/
double n = 3.4; // index of waveguide
double w = 1.0; // width of waveguide
double r = 1.0; // inner radius of ring
double pad = 4; // padding between waveguide and edge of PML
double dpml = 2; // thickness of PML
double sxy = 2.0 * (r + w + pad + dpml); // cell size
geometry_lattice.size.x = sxy;
geometry_lattice.size.y = sxy;
geometry_lattice.size.z = 0.0;
grid_volume gv = voltwo(sxy, sxy, resolution);
gv.center_origin();
symmetry sym = identity(); // mirror(Y, gv);
structure the_structure(gv, dummy_eps, pml(dpml), sym);
/***************************************************************/
/* add objects */
/***************************************************************/
meep_geom::material_type dielectric = meep_geom::make_dielectric(n * n);
geometric_object objects[2];
vector3 v3zero = {0.0, 0.0, 0.0};
vector3 zaxis = {0.0, 0.0, 1.0};
objects[0] = make_cylinder(dielectric, v3zero, r + w, meep_geom::ENORMOUS, zaxis);
objects[1] = make_cylinder(meep_geom::vacuum, v3zero, r, meep_geom::ENORMOUS, zaxis);
geometric_object_list g = {2, objects};
meep_geom::set_materials_from_geometry(&the_structure, g);
fields f(&the_structure);
f.step(); // single timestep to trigger internal initialization
/***************************************************************/
/***************************************************************/
/***************************************************************/
double fcen = 0.118; // ; pulse center frequency
double df = 0.1; // ; df
vec x0(r + 0.1, 0.0); // ; source location
if (Pulse) {
f.add_point_source(Ez, gaussian_src_time(fcen, df), x0);
component components[6] = {Ex, Ey, Ez, Hx, Hy, Hz};
dft_fields dftFields = f.add_dft_fields(components, 6, f.v, fcen, fcen, 1);
dft_flux dftFlux = f.add_dft_flux(X, f.v, fcen, fcen, 1);
while (f.round_time() < f.last_source_time() + 100.0)
f.step();
f.output_dft(dftFlux, "dft-flux");
f.output_dft(dftFields, "dft-fields");
*field_array = f.get_dft_array(dftFlux, Ez, 0, array_rank, array_dims);
}
else {
f.add_point_source(Ez, continuous_src_time(fcen, df), x0);
f.solve_cw(sizeof(realnum) == sizeof(float) ? 1e-5 : 1e-8, 10000, 10);
h5file *file = f.open_h5file("cw-fields", h5file::WRITE, 0, false);
f.output_hdf5(Ez, f.v, file);
f.output_hdf5(Hx, f.v, file);
f.output_hdf5(Hy, f.v, file);
delete file;
}
}
/***************************************************************/
/* return L2 norm of error normalized by average of L2 norms */
/***************************************************************/
double compare_array_to_dataset(std::complex<meep::realnum> *field_array, int array_rank,
size_t *array_dims, const char *file, const char *name) {
int file_rank;
size_t file_dims[3];
h5file f(file, h5file::READONLY, false);
char dataname[100];
snprintf(dataname, 100, "%s.r", name);
double *rdata =
(double *)f.read(dataname, &file_rank, file_dims, 2, false /* single_precision */);
snprintf(dataname, 100, "%s.i", name);
double *idata =
(double *)f.read(dataname, &file_rank, file_dims, 2, false /* single_precision */);
if (!rdata || !idata) return -1.0;
if (file_rank != array_rank) return -1.0;
for (int n = 0; n < file_rank; n++)
if (file_dims[n] != array_dims[n]) return -1.0;
double NormArray = 0.0, NormFile = 0.0, NormDelta = 0.0;
for (size_t n = 0; n < file_dims[0] * file_dims[1]; n++) {
std::complex<double> zArray = field_array[n];
std::complex<double> zFile = std::complex<double>(rdata[n], idata[n]);
NormArray += norm(zArray);
NormFile += norm(zFile);
NormDelta += norm(zArray - zFile);
}
NormArray = sqrt(NormArray);
NormFile = sqrt(NormFile);
NormDelta = sqrt(NormDelta);
double RelErr = NormDelta / (0.5 * (NormArray + NormFile));
return RelErr;
}
/***************************************************************/
/* compute the L2 norm of two complex-valued HDF5 datasets, */
/* after (a) normalizing each data set by its maximum amplitude*/
/* and (b) compensating for a constant overall phase factor */
/* between the datasets. */
/***************************************************************/
double compare_complex_hdf5_datasets(const char *file1, const char *name1, const char *file2,
const char *name2, int expected_rank = 2,
double *max_dft = 0) {
char dataname[100];
// read dataset 1
h5file f1(file1, h5file::READONLY, false);
int rank1;
size_t *dims1 = new size_t[expected_rank];
snprintf(dataname, 100, "%s.r", name1);
double *rdata1 =
(double *)f1.read(dataname, &rank1, dims1, expected_rank, false /* single_precision */);
snprintf(dataname, 100, "%s.i", name1);
double *idata1 =
(double *)f1.read(dataname, &rank1, dims1, expected_rank, false /* single_precision */);
if (!rdata1 || !idata1) return -1.0;
// read dataset 2
h5file f2(file2, h5file::READONLY, false);
int rank2;
size_t *dims2 = new size_t[expected_rank];
snprintf(dataname, 100, "%s.r", name2);
double *rdata2 =
(double *)f2.read(dataname, &rank2, dims2, expected_rank, false /* single_precision */);
snprintf(dataname, 100, "%s.i", name2);
double *idata2 =
(double *)f2.read(dataname, &rank2, dims2, expected_rank, false /* single_precision */);
if (!rdata2 || !idata2) return -1.0;
// check same size
bool same_size = (rank1 == rank2);
for (int d = 0; same_size && d < rank1; d++)
if (dims1[d] != dims2[d]) same_size = false;
if (!same_size) return -1.0;
// first pass to normalize each dataset to its maximum absolute magnitude;
// we also note the phase difference between the datasets at their points
// of maximum magnitude so we can compensate for this in the comparison below.
size_t length = dims1[0];
for (int d = 1; d < rank1; d++)
length *= dims1[d];
double max_abs1 = 0.0, max_abs2 = 0.0;
double max_arg1 = 0.0, max_arg2 = 0.0;
for (size_t n = 0; n < length; n++) {
std::complex<double> z1 = std::complex<double>(rdata1[n], idata1[n]);
if (abs(z1) > max_abs1) {
max_abs1 = abs(z1);
max_arg1 = arg(z1);
}
std::complex<double> z2 = std::complex<double>(rdata2[n], idata2[n]);
if (abs(z2) > max_abs2) {
max_abs2 = abs(z2);
max_arg2 = arg(z2);
}
}
*max_dft = max_abs1;
// second pass to get L2 norm of difference between normalized data sets
double norm1 = 0.0, norm2 = 0.0, normdiff = 0.0;
std::complex<double> phase1 = exp(-std::complex<double>(0, 1) * max_arg1);
std::complex<double> phase2 = exp(-std::complex<double>(0, 1) * max_arg2);
for (size_t n = 0; n < length; n++) {
std::complex<double> z1 = phase1 * std::complex<double>(rdata1[n], idata1[n]) / max_abs1;
std::complex<double> z2 = phase2 * std::complex<double>(rdata2[n], idata2[n]) / max_abs2;
norm1 += norm(z1);
norm2 += norm(z2);
normdiff += norm(z1 - z2);
}
norm1 = sqrt(norm1) / ((double)length);
norm2 = sqrt(norm2) / ((double)length);
normdiff = sqrt(normdiff) / ((double)length);
master_printf("norm (DFT)=%e, norm(CW)=%e, norm(DFT-CT)=%e\n", norm1, norm2, normdiff);
return normdiff / fmax(norm1, norm2);
}
/***************************************************************/
/***************************************************************/
/***************************************************************/
int main(int argc, char *argv[]) {
initialize mpi(argc, argv);
double resolution = 10.0;
bool verbose = false;
for (int narg = 1; narg < argc; narg++) {
if (!strcasecmp(argv[narg], "--resolution")) {
if (narg + 1 >= argc) meep::abort("--resolution requires an argument");
sscanf(argv[narg + 1], "%le", &resolution);
master_printf("Setting resolution=%e.\n", resolution);
narg++;
}
else if (!strcasecmp(argv[narg], "--verbose"))
verbose = true;
else
meep::abort("unknown argument %s", argv[narg]);
}
std::complex<meep::realnum> *field_array = 0;
int array_rank;
size_t array_dims[3];
Run(true, resolution, &field_array, &array_rank, array_dims);
Run(false, resolution);
/* compare DFT field array to DFT HDF5 output */
double L2ErrorArray =
compare_array_to_dataset(field_array, array_rank, array_dims, "dft-fields.h5", "ez_0");
if (verbose) master_printf("L2Error (array<-->file) = %e\n", L2ErrorArray);
/* compare DFT fields to CW fields *****************************/
double max_dft;
double L2ErrorFile =
compare_complex_hdf5_datasets("dft-fields.h5", "ez_0", "cw-fields.h5", "ez", 2, &max_dft);
if (verbose) master_printf("L2Error (file<-->file) = %e\n", L2ErrorFile);
bool unit_test = (argc == 1); // run unit-test checks if no command-line arguments
if (unit_test) {
if (L2ErrorFile == -1.0) // files couldn't be read or datasets had different sizes
{
master_printf("failed to compare data files");
return -1;
}
#define REF_MAX_DFT 6.740116e+00
if ((max_dft - REF_MAX_DFT) > 1.0e-5 * REF_MAX_DFT) {
master_printf("max dft amplitude=%e, should be %e\n", max_dft, REF_MAX_DFT);
return -1;
}
if (L2ErrorFile > 1.0) {
master_printf("L2 norm of file-file error=%e (should be <1)\n", L2ErrorFile);
return -1;
}
if (L2ErrorArray == -1.0) {
master_printf("failed to compare array to data file");
return -1;
}
if (L2ErrorArray > 1.0) {
master_printf("L2 norm of array-file error=%e (should be <1)\n", L2ErrorArray);
return -1;
}
return 0;
}
}
|