1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
|
/* Copyright (C) 2005-2022 Massachusetts Institute of Technology
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2, or (at your option)
% any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software Foundation,
% Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <meep.hpp>
using namespace meep;
using std::complex;
double one(const vec &) { return 1.0; }
double targets(const vec &pt) {
const double r = sqrt(pt.x() * pt.x() + pt.y() * pt.y());
double dr = r;
while (dr > 1)
dr -= 1;
if (dr > 0.7001) return 12.0;
return 1.0;
}
#if MEEP_SINGLE
static const double tol = 1e-3, thresh = 1e-3;
#else
static const double tol = 1e-9, thresh = 1e-15;
#endif
int compare(double a, double b, const char *n) {
if (fabs(a - b) > fabs(b) * tol && fabs(b) > thresh) {
master_printf("%s differs by\t%g out of\t%g\n", n, a - b, b);
master_printf("This gives a fractional error of %g\n", fabs(a - b) / fabs(b));
return 0;
}
else { return 1; }
}
int compare_point(fields &f1, fields &f2, const vec &p) {
monitor_point m1, m_test;
f1.get_point(&m_test, p);
f2.get_point(&m1, p);
for (int i = 0; i < 10; i++) {
component c = (component)i;
if (f1.gv.has_field(c)) {
complex<double> v1 = m_test.get_component(c), v2 = m1.get_component(c);
if (abs(v1 - v2) > tol * abs(v2) && abs(v2) > thresh) {
master_printf("%s differs: %g %g out of %g %g\n", component_name(c), real(v2 - v1),
imag(v2 - v1), real(v2), imag(v2));
master_printf("This comes out to a fractional error of %g\n", abs(v1 - v2) / abs(v2));
master_printf("Right now I'm looking at %g %g %g, time %g\n", p.x(), p.y(), p.z(),
f1.time());
return 0;
}
}
}
return 1;
}
int approx_point(fields &f1, fields &f2, const vec &p) {
monitor_point m1, m_test;
f1.get_point(&m_test, p);
f2.get_point(&m1, p);
for (int i = 0; i < 10; i++) {
component c = (component)i;
if (f1.gv.has_field(c)) {
complex<double> v1 = m_test.get_component(c), v2 = m1.get_component(c);
if (abs(v1 - v2) > tol * abs(v2) && abs(v2) > thresh) {
master_printf("%s differs: %g %g out of %g %g\n", component_name(c), real(v2 - v1),
imag(v2 - v1), real(v2), imag(v2));
master_printf("This comes out to a fractional error of %g\n", abs(v1 - v2) / abs(v2));
master_printf("Right now I'm looking at %g %g %g, time %g\n", p.x(), p.y(), p.z(),
f1.time());
return 0;
}
}
}
return 1;
}
std::string structure_dump(structure *s, const std::string &filename_prefix,
const std::string &output_name) {
std::string filename = filename_prefix + "-structure-" + output_name;
s->dump(filename.c_str());
master_printf("Dumping structure: %s\n", filename.c_str());
return filename;
}
void structure_load(structure *s, const std::string &filename) {
master_printf("Loading structure: %s\n", filename.c_str());
s->load(filename.c_str());
}
std::string fields_dump(fields *f, const std::string &filename_prefix,
const std::string &output_name) {
std::string filename = filename_prefix + "-fields-" + output_name;
f->dump(filename.c_str());
master_printf("Dumping fields: %s\n", filename.c_str());
return filename;
}
void fields_load(fields *f, const std::string &filename) {
master_printf("Loading fields: %s\n", filename.c_str());
f->load(filename.c_str());
}
int test_metal(double eps(const vec &), int splitting, const char *tmpdir) {
double a = 10.0;
double ttot = 17.0;
grid_volume gv = vol3d(1.5, 0.5, 1.0, a);
structure s(gv, eps, no_pml(), identity(), splitting);
std::string filename_prefix = std::string(tmpdir) + "/test_metal_" + std::to_string(splitting);
std::string structure_filename = structure_dump(&s, filename_prefix, "original");
master_printf("Metal test using %d chunks...\n", splitting);
fields f(&s);
f.add_point_source(Ez, 0.8, 0.6, 0.0, 4.0, vec(1.299, 0.299, 0.401), 1.0);
while (f.time() < ttot)
f.step();
std::string fields_filename = fields_dump(&f, filename_prefix, "original");
structure s_load(gv, eps, no_pml(), identity(), splitting);
structure_load(&s_load, structure_filename);
fields f_load(&s_load);
f_load.add_point_source(Ez, 0.8, 0.6, 0.0, 4.0, vec(1.299, 0.299, 0.401), 1.0);
fields_load(&f_load, fields_filename);
if (!compare_point(f, f_load, vec(0.5, 0.5, 0.01))) return 0;
if (!compare_point(f, f_load, vec(0.46, 0.33, 0.33))) return 0;
if (!compare_point(f, f_load, vec(1.301, 0.301, 0.399))) return 0;
if (!compare(f.field_energy(), f_load.field_energy(), " total energy")) return 0;
if (!compare(f.electric_energy_in_box(gv.surroundings()),
f_load.electric_energy_in_box(gv.surroundings()), "electric energy"))
return 0;
if (!compare(f.magnetic_energy_in_box(gv.surroundings()),
f_load.magnetic_energy_in_box(gv.surroundings()), "magnetic energy"))
return 0;
return 1;
}
int test_periodic(double eps(const vec &), int splitting, const char *tmpdir) {
double a = 10.0;
double ttot = 17.0;
grid_volume gv = vol3d(1.5, 0.5, 1.0, a);
structure s(gv, eps, no_pml(), identity(), splitting);
std::string filename_prefix = std::string(tmpdir) + "/test_periodic_" + std::to_string(splitting);
std::string structure_filename = structure_dump(&s, filename_prefix, "original");
master_printf("Periodic test using %d chunks...\n", splitting);
fields f(&s);
f.use_bloch(vec(0.1, 0.7, 0.3));
f.add_point_source(Ez, 0.7, 2.5, 0.0, 4.0, vec(0.3, 0.25, 0.5), 1.0);
while (f.time() < ttot)
f.step();
std::string fields_filename = fields_dump(&f, filename_prefix, "original");
structure s_load(gv, eps, no_pml(), identity(), splitting);
structure_load(&s_load, structure_filename);
fields f_load(&s_load);
f_load.use_bloch(vec(0.1, 0.7, 0.3));
f_load.add_point_source(Ez, 0.7, 2.5, 0.0, 4.0, vec(0.3, 0.25, 0.5), 1.0);
fields_load(&f_load, fields_filename);
if (!compare_point(f, f_load, vec(0.5, 0.01, 0.5))) return 0;
if (!compare_point(f, f_load, vec(0.46, 0.33, 0.2))) return 0;
if (!compare_point(f, f_load, vec(1.0, 0.25, 0.301))) return 0;
if (!compare(f.field_energy(), f_load.field_energy(), " total energy")) return 0;
if (!compare(f.electric_energy_in_box(gv.surroundings()),
f_load.electric_energy_in_box(gv.surroundings()), "electric energy"))
return 0;
if (!compare(f.magnetic_energy_in_box(gv.surroundings()),
f_load.magnetic_energy_in_box(gv.surroundings()), "magnetic energy"))
return 0;
return 1;
}
int main(int argc, char **argv) {
initialize mpi(argc, argv);
verbosity = 0;
std::unique_ptr<const char[]> temp_dir(make_output_directory());
master_printf("Testing 3D dump/load: temp_dir = %s...\n", temp_dir.get());
for (int s = 2; s < 7; s++)
if (!test_periodic(targets, s, temp_dir.get())) abort("error in test_periodic targets\n");
for (int s = 2; s < 8; s++)
if (!test_metal(one, s, temp_dir.get())) abort("error in test_metal vacuum\n");
delete_directory(temp_dir.get());
return 0;
}
|