1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
|
/* Copyright (C) 2005-2022 Massachusetts Institute of Technology
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2, or (at your option)
% any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software Foundation,
% Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <stdio.h>
#include <stdlib.h>
#include <meep.hpp>
using namespace meep;
double one(const vec &) { return 1.0; }
static double width = 20.0;
double bump(const vec &pt) { return (fabs(pt.z() - 50.0) > width) ? 1.0 : 12.0; }
double bump2(const vec &pt) { return (fabs(pt.z() - 5.0) > 3.0) ? 1.0 : 12.0; }
double cavity(const vec &pt) {
const double zz = fabs(pt.z() - 7.5) + 0.3001;
if (zz > 5.0) return 1.0;
if (zz < 2.0) return 1.0;
double norm = zz;
while (norm > 1.0)
norm -= 1.0;
if (norm > 0.3) return 1.0;
return 12.0;
}
int compare(double a, double b, double eps, double thresh, const char *n) {
if (fabs(a - b) > fabs(b) * eps && fabs(b) > thresh) {
master_printf("%s differs by\t%g out of\t%g\n", n, a - b, b);
master_printf("This gives a fractional error of %g\n", fabs(a - b) / fabs(b));
return 0;
}
else {
if (fabs(a - b) > fabs(b) * eps * 1.1 && fabs(b) > thresh)
master_printf("%s fractional error is %g, close to %g threshold.\n", n, fabs(a - b) / fabs(b),
eps);
return 1;
}
}
static inline double min(double a, double b) { return (a < b) ? a : b; }
int flux_1d(const double zmax, double eps(const vec &)) {
const double a = 10.0;
grid_volume gv = volone(zmax, a);
structure s(gv, eps, pml(zmax / 6));
fields f(&s);
f.use_real_fields();
f.add_point_source(Ex, 0.25, 3.5, 0.0, 8.0, vec(zmax / 6 + 0.3), 1.0);
flux_vol *left = f.add_flux_plane(vec(zmax / 3.0), vec(zmax / 3.0));
flux_vol *right = f.add_flux_plane(vec(zmax * 2.0 / 3.0), vec(zmax * 2.0 / 3.0));
const double ttot = min(10.0 + 1e5 / zmax, f.last_source_time());
f.step();
grid_volume mid = volone(zmax / 3, a);
mid.set_origin(vec(zmax / 3));
double flux_left = 0.0, flux_right = 0.0;
double delta_energy = f.field_energy_in_box(mid.surroundings());
master_printf("Initial energy is %g\n", f.field_energy_in_box(mid.surroundings()));
master_printf("Initial electric energy is %g\n", f.electric_energy_in_box(mid.surroundings()));
while (f.time() < ttot) {
f.step();
flux_left += f.dt * left->flux();
flux_right += f.dt * right->flux();
}
delta_energy -= f.field_energy_in_box(mid.surroundings());
master_printf("Final energy is %g\n", f.field_energy_in_box(mid.surroundings()));
master_printf("Final electric energy is %g\n", f.electric_energy_in_box(mid.surroundings()));
const double del = flux_left;
const double der = flux_right - delta_energy;
master_printf(" Delta E:\t%g\n Flux left:\t%g\n Flux right:\t%g\n Ratio:\t%g\n", delta_energy,
del, der, del / der);
return compare(del, der, 0.06, 0, "Flux");
}
int split_1d(double eps(const vec &), int splitting) {
const double boxwidth = 5.0, timewait = 1.0;
const double zmax = 15.0, a = 10.0;
grid_volume gv = volone(zmax, a);
structure s1(gv, eps, pml(2.0));
structure s(gv, eps, pml(2.0), identity(), splitting);
fields f1(&s1);
fields f(&s);
f1.use_real_fields();
f.use_real_fields();
f1.add_point_source(Ex, 0.25, 4.5, 0.0, 8.0, vec(zmax / 2 + 0.3), 1.0e2);
f.add_point_source(Ex, 0.25, 4.5, 0.0, 8.0, vec(zmax / 2 + 0.3), 1.0e2);
flux_vol *left1 = f1.add_flux_plane(vec(zmax * .5 - boxwidth), vec(zmax * .5 - boxwidth));
flux_vol *left = f.add_flux_plane(vec(zmax * .5 - boxwidth), vec(zmax * .5 - boxwidth));
grid_volume mid = volone(2 * boxwidth, a);
mid.set_origin(vec(zmax * .5 - boxwidth - 0.25 / a));
const double ttot = f.last_source_time() + timewait;
const double tol = sizeof(realnum) == sizeof(float) ? 1e-3 : 1e-9;
while (f.time() < ttot) {
f1.step();
f.step();
if (!compare(f.dt * left1->flux(), f.dt * left->flux(), tol, tol, "Flux")) return 0;
}
return 1;
}
int cavity_1d(const double boxwidth, const double timewait, double eps(const vec &)) {
const double zmax = 15.0;
const double a = 10.0;
grid_volume gv = volone(zmax, a);
structure s(gv, eps, pml(2.0));
fields f(&s);
f.use_real_fields();
f.add_point_source(Ex, 0.25, 4.5, 0.0, 8.0, vec(zmax / 2 + 0.3), 1.0e2);
flux_vol *left = f.add_flux_plane(vec(zmax * .5 - boxwidth), vec(zmax * .5 - boxwidth));
flux_vol *right = f.add_flux_plane(vec(zmax * .5 + boxwidth), vec(zmax * .5 + boxwidth));
grid_volume mid = volone(2 * boxwidth, a);
mid.set_origin(vec(zmax * .5 - boxwidth - 0.25 / a));
while (f.time() < f.last_source_time())
f.step();
const double ttot = f.time() + timewait;
double flux_left = 0.0, flux_right = 0.0;
const double start_energy = f.field_energy_in_box(mid.surroundings());
master_printf(" Energy starts at\t%g\n", start_energy);
while (f.time() < ttot) {
f.step();
flux_left += f.dt * left->flux();
flux_right += f.dt * right->flux();
}
const double delta_energy = start_energy - f.field_energy_in_box(mid.surroundings());
const double defl = flux_right - flux_left;
master_printf(" Delta E: \t%g\n Integrated Flux:\t%g\n", delta_energy, defl);
master_printf(" Ratio: \t%g\n", delta_energy / defl);
master_printf(" Fractional error:\t%g\n", (delta_energy - defl) / start_energy);
return compare(start_energy - delta_energy, start_energy - defl, (timewait > 50) ? 0.032 : 0.004,
0, "Flux");
}
int flux_2d(const double xmax, const double ymax, double eps(const vec &)) {
const double a = 8.0;
master_printf("\nFlux_2d(%g,%g) test...\n", xmax, ymax);
grid_volume gv = voltwo(xmax, ymax, a);
structure s(gv, eps, pml(0.5));
fields f(&s);
f.use_real_fields();
f.add_point_source(Ez, 0.25, 3.5, 0., 8., vec(xmax / 6 + 0.1, ymax / 6 + 0.3), 1.);
// corners of flux planes and energy box:
vec lb(vec(xmax / 3, ymax / 3)), rb(vec(2 * xmax / 3, ymax / 3));
vec lt(vec(xmax / 3, 2 * ymax / 3)), rt(vec(2 * xmax / 3, 2 * ymax / 3));
volume box(lb, rt);
flux_vol *left = f.add_flux_plane(lb, lt);
flux_vol *right = f.add_flux_plane(rb, rt);
flux_vol *bottom = f.add_flux_plane(lb, rb);
flux_vol *top = f.add_flux_plane(lt, rt);
/* measure flux spectra through two concentric flux boxes
around the source...should be positive and equal */
volume box1(vec(xmax / 6 - 0.4, ymax / 6 - 0.2), vec(xmax / 6 + 0.6, ymax / 6 + 0.8));
volume box2(vec(xmax / 6 - 0.9, ymax / 6 - 0.7), vec(xmax / 6 + 1.1, ymax / 6 + 1.3));
int Nfreq = 10;
double freq_array[] = {0.230, 0.232, 0.238, 0.241, 0.248, 0.254, 0.256, 0.265, 0.269, 0.270};
// workaround for C++98 which does not support list initialization
const std::vector<double> freq(freq_array, freq_array + sizeof(freq_array) / sizeof(double));
dft_flux flux1 = f.add_dft_flux_box(box1, freq);
dft_flux flux2 = f.add_dft_flux_box(box2, freq);
const double ttot = 130;
/* first check: integral of flux = change in energy of box */
f.step();
double init_energy = f.field_energy_in_box(box);
master_printf("Initial energy is %g\n", init_energy);
long double fluxL = 0;
while (f.time() < ttot) {
f.step();
fluxL += f.dt * (left->flux() - right->flux() + bottom->flux() - top->flux());
}
double flux = fluxL;
double del_energy = f.field_energy_in_box(box) - init_energy;
master_printf("Final energy is %g\n", f.field_energy_in_box(box));
master_printf(" delta E: %g\n net flux: %g\n ratio: %g\n", del_energy, flux,
del_energy / flux);
if (!compare(del_energy, flux, 0.09, 0, "Flux")) return 0;
/* second check: flux spectrum is same for two concentric
boxes containing the source. */
while (f.time() < ttot * 2) {
f.step();
}
master_printf(" energy after more time is %g\n", f.field_energy_in_box(box));
master_printf(" and energy in box2 is %g\n", f.field_energy_in_box(box2));
double *fl1 = flux1.flux();
double *fl2 = flux2.flux();
for (int i = 0; i < Nfreq; ++i) {
master_printf(" flux(%g) = %g vs. %g (rat. = %g)\n", flux1.freq[i], fl1[i], fl2[i],
fl1[i] / fl2[i]);
if (!compare(fl1[i], fl2[i], 0.09, 0, "Flux spectrum")) return 0;
}
delete[] fl2;
delete[] fl1;
return 1;
}
int flux_cyl(const double rmax, const double zmax, double eps(const vec &), int m) {
const double a = 8.0;
master_printf("\nFlux_cyl(%g,%g) test...\n", rmax, zmax);
grid_volume gv = volcyl(rmax, zmax, a);
structure s(gv, eps, pml(0.5), identity(), 0, min(0.5, 1 / (abs(m) + 0.5)));
fields f(&s, m);
// f.use_real_fields();
f.add_point_source(Ep, 0.25, 3.5, 0., 8., veccyl(rmax * 5 / 6 + 0.1, zmax / 6 + 0.3), 1.);
// corners of flux planes and energy box:
vec lb(veccyl(-rmax / 3, zmax / 3)), rb(veccyl(2 * rmax / 3, zmax / 3));
vec lt(veccyl(-rmax / 3, 2 * zmax / 3)), rt(veccyl(2 * rmax / 3, 2 * zmax / 3));
volume box(lb, rt);
/* measure flux spectra through two concentric flux boxes
around the source...should be positive and equal */
volume box1(veccyl(rmax * 5 / 6 - 0.4, zmax / 6 - 0.2),
veccyl(rmax * 5 / 6 + 0.6, zmax / 6 + 0.8));
volume box2(veccyl(rmax * 5 / 6 - 0.9, zmax / 6 - 0.7),
veccyl(rmax * 5 / 6 + 1.1, zmax / 6 + 1.3));
double fmin = 0.23, fmax = 0.27;
int Nfreq = 10;
dft_flux flux1 = f.add_dft_flux_box(box1, fmin, fmax, Nfreq);
dft_flux flux2 = f.add_dft_flux_box(box2, fmin, fmax, Nfreq);
flux_vol *left = f.add_flux_plane(lb, lt);
flux_vol *right = f.add_flux_plane(rb, rt);
flux_vol *bottom = f.add_flux_plane(lb, rb);
flux_vol *top = f.add_flux_plane(lt, rt);
const double ttot = 130;
f.step();
double init_energy = f.field_energy_in_box(box);
master_printf("Initial energy is %g\n", init_energy);
long double fluxL = 0;
while (f.time() < ttot) {
f.step();
fluxL += f.dt * (left->flux() - right->flux() + bottom->flux() - top->flux());
}
double flux = fluxL;
double del_energy = f.field_energy_in_box(box) - init_energy;
master_printf("Final energy is %g\n", f.field_energy_in_box(box));
master_printf(" delta E: %g\n net flux: %g\n ratio: %g\n", del_energy, flux,
del_energy / flux);
if (!compare(del_energy, flux, 0.08, 0, "Flux")) return 0;
while (f.time() < ttot * 2) {
f.step();
}
master_printf(" energy after more time is %g\n", f.field_energy_in_box(box));
master_printf(" and energy in box2 is %g\n", f.field_energy_in_box(box2));
double *fl1 = flux1.flux();
double *fl2 = flux2.flux();
for (int i = 0; i < Nfreq; ++i) {
master_printf(" flux(%g) = %g vs. %g (rat. = %g)\n", flux1.freq[i], fl1[i], fl2[i],
fl1[i] / fl2[i]);
if (!compare(fl1[i], fl2[i], 0.08, 0, "Flux spectrum")) return 0;
}
delete[] fl2;
delete[] fl1;
return 1;
}
void attempt(const char *name, int allright) {
if (allright)
master_printf("Passed %s\n", name);
else
meep::abort("Failed %s!\n", name);
}
int main(int argc, char **argv) {
initialize mpi(argc, argv);
verbosity = 0;
master_printf("Trying out the fluxes...\n");
attempt("Split flux plane split by 7...", split_1d(cavity, 7));
attempt("Cavity 1D 1.3 73", cavity_1d(1.3, 73.0, cavity));
attempt("Cavity 1D 5.0 1", cavity_1d(5.0, 1.0, cavity));
attempt("Cavity 1D 3.85 55", cavity_1d(3.85, 55.0, cavity));
width = 20.0;
attempt("Flux 1D 20", flux_1d(100.0, bump));
width = 10.0;
attempt("Flux 1D 10", flux_1d(100.0, bump));
width = 300.0;
attempt("Flux 1D 300", flux_1d(100, bump));
width = 5.0;
attempt("Flux 2D 5", flux_2d(10.0, 10.0, bump2));
width = 5.0;
attempt("Flux cylindrical 5", flux_cyl(20.0, 10.0, bump2, 1));
return 0;
}
|