1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
|
/* Copyright (C) 2005-2022 Massachusetts Institute of Technology.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* Nonlinear test program checking 2nd and 3rd harmonic generation */
#include <meep.hpp>
using namespace meep;
using std::max;
double the_value = 1.0;
double value(const vec &) { return the_value; }
void harmonics(double freq, double chi2, double chi3, double J, double &A2, double &A3) {
const double dpml = 5.0;
const double res = 20;
const double sz = 100 + 2 * dpml;
grid_volume gv = vol1d(sz, res);
gv.center_origin();
the_value = 1.0;
structure s(gv, value, pml(dpml));
the_value = chi2;
s.set_chi2(value);
the_value = chi3;
s.set_chi3(value);
fields f(&s);
f.use_real_fields();
gaussian_src_time src(freq, freq / 20);
f.add_point_source(Ex, src, vec(-0.5 * sz + dpml), J);
vec fpt(0.5 * sz - dpml - 0.5);
dft_flux d1 =
f.add_dft_flux(Z, volume(fpt), freq, freq, 1, true, true, 1 /* decimation_factor */);
dft_flux d2 =
f.add_dft_flux(Z, volume(fpt), 2 * freq, 2 * freq, 1, true, true, 1 /* decimation_factor */);
dft_flux d3 =
f.add_dft_flux(Z, volume(fpt), 3 * freq, 3 * freq, 1, true, true, 1 /* decimation_factor */);
double emax = 0;
while (f.time() < f.last_source_time()) {
emax = max(emax, abs(f.get_field(Ex, fpt)));
f.step();
}
do {
double emaxcur = 0;
double T = f.time() + 50;
while (f.time() < T) {
double e = abs(f.get_field(Ex, fpt));
emax = max(emax, e);
emaxcur = max(emaxcur, e);
f.step();
}
if (emaxcur < 1e-6 * emax) break;
} while (1);
double *d1f = d1.flux();
double *d2f = d2.flux();
double *d3f = d3.flux();
A2 = *d2f / *d1f;
A3 = *d3f / *d1f;
master_printf("harmonics(%g,%g,%g) = %g, %g\n", chi2, chi3, J, A2, A3);
delete[] d1f;
delete[] d2f;
delete[] d3f;
}
int different(double a, double a0, double thresh, const char *msg) {
if (fabs(a - a0) > thresh * fabs(a0)) {
master_printf("error: %s\n --- %g vs. %g (%g error > %g)\n", msg, a, a0,
fabs(a - a0) / fabs(a0), thresh);
return 1;
}
else
return 0;
}
int main(int argc, char **argv) {
initialize mpi(argc, argv);
verbosity = 0;
const double freq = 1.0 / 3.0;
double a2, a3, a2_2, a3_2;
double thresh = sizeof(realnum) == sizeof(float) ? 1e-3 : 1e-5;
harmonics(freq, 0.27e-4, 1e-4, 1.0, a2, a3);
if (different(a2, 9.80330e-07, thresh, "2nd harmonic mismatches known val")) return 1;
if (sizeof(realnum) == sizeof(float)) {
if (different(a3, 9.99349e-07, thresh, "3rd harmonic mismatches known val")) return 1;
}
else {
if (different(a3, 9.97747e-07, thresh, "3rd harmonic mismatches known val")) return 1;
}
harmonics(freq, 0.54e-4, 2e-4, 1.0, a2_2, a3_2);
master_printf("doubling chi2, chi3 = %g x 2nd harmonic, %g x 3rd\n", a2_2 / a2, a3_2 / a3);
if (different(a2_2 / a2, 4.0, 0.01, "incorrect chi2 scaling")) return 1;
if (different(a3_2 / a3, 4.0, 0.01, "incorrect chi3 scaling")) return 1;
harmonics(freq, 0.27e-4, 1e-4, 2.0, a2_2, a3_2);
master_printf("doubling J = %g x 2nd harmonic, %g x 3rd\n", a2_2 / a2, a3_2 / a3);
if (different(a2_2 / a2, 4.0, 0.01, "incorrect J scaling for 2nd harm.")) return 1;
if (different(a3_2 / a3, 16.0, 0.01, "incorrect J scaling for 3rd harm.")) return 1;
harmonics(freq, 0.27e-4, 0.0, 1.0, a2_2, a3_2);
if (different(a2, a2_2, 1e-2, "chi3 has too big effect on 2nd harmonic")) return 1;
if (a3_2 / a3 > 1e-4) {
master_printf("error: too much 3rd harmonic without chi3\n");
return 1;
}
harmonics(freq, 0.0, 1e-4, 1.0, a2_2, a3_2);
if (sizeof(realnum) == sizeof(float)) {
if (different(a3, a3_2, 0.0017, "chi2 has too big effect on 3rd harmonic")) return 1;
}
else {
if (different(a3, a3_2, 0.001, "chi2 has too big effect on 3rd harmonic")) return 1;
}
if (a2_2 / a2 > 1e-5) {
master_printf("error: too much 2nd harmonic without chi3\n");
return 1;
}
return 0;
}
|