1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
|
/* Copyright (C) 2005-2022 Massachusetts Institute of Technology.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* Check of fields::integrate, by giving it random volumes in which to
integrate purely linear functions of the coordinates--by
construction, we should be able to integrate these exactly. */
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <meep.hpp>
using namespace meep;
using std::complex;
double sz[3] = {3.0, 3.0, 2.6};
static double one(const vec &p) {
(void)p;
return 1.0;
}
typedef struct {
direction dx, dy, dz;
double c, ax, ay, az, axy, ayz, axz, axyz;
long double sum;
} linear_integrand_data;
/* integrand for integrating c + ax*x + ay*y + az*z. */
static complex<double> linear_integrand(const complex<realnum> *fields, const vec &loc,
void *data_) {
linear_integrand_data *data = (linear_integrand_data *)data_;
(void)fields; // unused
// clean_vec is only necessary because we reference X/Y/Z for any gv.dim
vec locS(clean_vec(loc));
return (data->c + data->ax * locS.in_direction(data->dx) +
data->ay * locS.in_direction(data->dy) + data->az * locS.in_direction(data->dz)
+ data->axy * locS.in_direction(data->dx) * locS.in_direction(data->dy)
+ data->ayz * locS.in_direction(data->dz) * locS.in_direction(data->dy)
+ data->axz * locS.in_direction(data->dx) * locS.in_direction(data->dz)
+ data->axyz * locS.in_direction(data->dx) * locS.in_direction(data->dy) *
locS.in_direction(data->dz));
}
/* integrals of 1 and x, respectively, from a to b, or 1 and x if a==b: */
static double integral1(double a, double b, direction d) {
if (d == R)
return a == b ? 2 * pi * a : pi * (b * b - a * a);
else
return a == b ? 1 : b - a;
}
static double integralx(double a, double b, direction d) {
if (d == R)
return a == b ? 2 * pi * a * a : 2 * pi * (b * b * b - a * a * a) * .3333333333333333333333333;
else
return a == b ? a : (b * b - a * a) * .5;
}
static double correct_integral(const volume &v, const linear_integrand_data &data) {
direction x = data.dx, y = data.dy, z = data.dz;
double x1 = v.in_direction_min(x);
double x2 = v.in_direction_max(x);
double y1 = v.in_direction_min(y);
double y2 = v.in_direction_max(y);
double z1 = v.in_direction_min(z);
double z2 = v.in_direction_max(z);
return (data.c * integral1(x1, x2, x) * integral1(y1, y2, y) * integral1(z1, z2, z) +
data.ax * integralx(x1, x2, x) * integral1(y1, y2, y) * integral1(z1, z2, z) +
data.ay * integral1(x1, x2, x) * integralx(y1, y2, y) * integral1(z1, z2, z) +
data.az * integral1(x1, x2, x) * integral1(y1, y2, y) * integralx(z1, z2, z) +
data.axy * integralx(x1, x2, x) * integralx(y1, y2, y) * integral1(z1, z2, z) +
data.ayz * integral1(x1, x2, x) * integralx(y1, y2, y) * integralx(z1, z2, z) +
data.axz * integralx(x1, x2, x) * integral1(y1, y2, y) * integralx(z1, z2, z) +
data.axyz * integralx(x1, x2, x) * integralx(y1, y2, y) * integralx(z1, z2, z));
}
// uniform pseudo-random number in [min,max]
static double urand(double min, double max) { return (rand() * ((max - min) / RAND_MAX) + min); }
static volume random_gv(ndim dim) {
volume v(dim);
double s[3] = {0, 0, 0};
int idim = dim == Dcyl ? 1 : int(dim);
switch (rand() % (idim + 2)) { /* dimensionality */
case 0: break;
case 1: {
int d = rand() % (idim + 1);
s[d] = urand(0, sz[d]);
break;
}
case 2: {
int d1 = rand() % (idim + 1);
int d2 = (d1 + 1 + rand() % 2) % 3;
s[d1] = urand(0, sz[d1]);
s[d2] = urand(0, sz[d2]);
break;
}
case 3:
s[0] = urand(0, sz[0]);
s[1] = urand(0, sz[1]);
s[2] = urand(0, sz[2]);
}
switch (dim) {
case D1:
v.set_direction_min(X, 0);
v.set_direction_max(X, 0);
v.set_direction_min(Y, 0);
v.set_direction_max(Y, 0);
v.set_direction_min(Z, urand(-100, 100));
v.set_direction_max(Z, s[0] + v.in_direction_min(Z));
break;
case D2:
v.set_direction_min(X, urand(-100, 100));
v.set_direction_min(Y, urand(-100, 100));
v.set_direction_max(X, s[0] + v.in_direction_min(X));
v.set_direction_max(Y, s[1] + v.in_direction_min(Y));
v.set_direction_min(Z, 0);
v.set_direction_max(Z, 0);
break;
case Dcyl:
v.set_direction_min(X, 0);
v.set_direction_max(X, 0);
v.set_direction_min(Y, 0);
v.set_direction_max(Y, 0);
v.set_direction_min(R, 0.1 + urand(0, sz[0] - s[0]));
v.set_direction_min(Z, urand(-100, 100));
v.set_direction_max(R, s[0] + v.in_direction_min(R));
v.set_direction_max(Z, s[1] + v.in_direction_min(Z));
v.set_direction_min(P, 0);
v.set_direction_max(P, 0);
break;
case D3:
v.set_direction_min(X, urand(-100, 100));
v.set_direction_min(Y, urand(-100, 100));
v.set_direction_max(X, s[0] + v.in_direction_min(X));
v.set_direction_max(Y, s[1] + v.in_direction_min(Y));
v.set_direction_min(Z, urand(-100, 100));
v.set_direction_max(Z, s[2] + v.in_direction_min(Z));
break;
default: meep::abort("unsupported dimensionality in integrate.cpp");
}
return v;
}
void check_integral(fields &f, linear_integrand_data &d, const volume &v, component cgrid) {
double x1 = v.in_direction_min(d.dx);
double x2 = v.in_direction_max(d.dx);
double y1 = v.in_direction_min(d.dy);
double y2 = v.in_direction_max(d.dy);
double z1 = v.in_direction_min(d.dz);
double z2 = v.in_direction_max(d.dz);
master_printf("Check %d-dim. %s integral in %s cell with %s integrand...",
(x2 - x1 > 0) + (y2 - y1 > 0) + (z2 - z1 > 0), component_name(cgrid),
v.dim == D3 ? "3d" : (v.dim == D2 ? "2d" : (v.dim == Dcyl ? "cylindrical" : "1d")),
(d.c == 1.0 && !d.axy && !d.ax && !d.ay && !d.az && !d.axy && !d.ayz && !d.axz)
? "unit"
: "linear");
if (0)
master_printf("\n... grid_volume (%g,%g,%g) at (%g,%g,%g) with integral (%g, %g,%g,%g, "
"%g,%g,%g, %g)...\n",
x2 - x1, y2 - y1, z2 - z1, (x1 + x2) / 2, (y1 + y2) / 2, (z1 + z2) / 2, d.c, d.ax,
d.ay, d.az, d.axy, d.ayz, d.axz, d.axyz);
double sum = real(f.integrate(0, 0, linear_integrand, (void *)&d, v));
if (fabs(sum - correct_integral(v, d)) > 1e-9 * fabs(sum))
meep::abort("FAILED: %0.16g instead of %0.16g\n", sum, correct_integral(v, d));
master_printf("...PASSED.\n");
}
void check_splitsym(const grid_volume &gv, int splitting, const symmetry &S, const char *Sname) {
const int num_random_trials = 100;
structure s(gv, one, no_pml(), S, splitting);
fields f(&s);
// periodic boundaries:
f.use_bloch(zero_vec(gv.dim));
linear_integrand_data d;
if (gv.dim == Dcyl) {
d.dx = R;
d.dy = P;
d.dz = Z;
}
else {
d.dx = X;
d.dy = Y;
d.dz = Z;
}
master_printf("\nCHECKS for splitting=%d, symmetry=%s\n...", splitting, Sname);
for (int i = 0; i < num_random_trials; ++i) {
volume v(random_gv(gv.dim));
component cgrid;
do {
cgrid = component(rand() % (Dielectric + 1));
} while (coordinate_mismatch(gv.dim, component_direction(cgrid)));
// try integral of 1 first (easier to debug, I hope)
d.c = 1.0;
d.ax = d.ay = d.az = d.axy = d.ayz = d.axz = d.axyz = 0.0;
check_integral(f, d, v, cgrid);
d.c = urand(-1, 1);
d.ax = urand(-1, 1);
d.ay = urand(-1, 1);
d.az = urand(-1, 1);
d.axy = urand(-1, 1);
d.ayz = urand(-1, 1);
d.axz = urand(-1, 1);
d.axyz = urand(-1, 1);
if (gv.dim == Dcyl) // cyl. doesn't integrate linear functions of r exactly
d.ax = d.axy = d.axz = d.axyz = 0;
check_integral(f, d, v, cgrid);
}
}
// check LOOP_OVER_VOL and LOOP_OVER_VOL_OWNED macros
void check_loop_vol(const grid_volume &gv, component c) {
size_t count = 0, count_owned = 0;
ptrdiff_t min_i = ptrdiff_t(gv.ntot()), max_i = 0;
master_printf("Checking %s loops for %s grid_volume...\n", component_name(c),
dimension_name(gv.dim));
ivec vmin(gv.little_corner() + gv.iyee_shift(c));
ivec vmax(gv.big_corner() + gv.iyee_shift(c));
LOOP_OVER_VOL(gv, c, i) {
IVEC_LOOP_ILOC(gv, ihere);
IVEC_LOOP_LOC(gv, here);
ivec ihere0(gv.iloc(c, i));
vec here0(gv[ihere0]);
if (ihere0 != ihere) meep::abort("FAILED: wrong LOOP_OVER_VOL iloc at i=%td\n", i);
if (abs(here0 - here) > 1e-13)
meep::abort("FAILED: wrong LOOP_OVER_VOL loc (err = %g) at i=%td\n", abs(here0 - here), i);
++count;
if (i < min_i) min_i = i;
if (i > max_i) max_i = i;
if (gv.owns(ihere)) ++count_owned;
if (ihere < vmin || ihere > vmax) meep::abort("FAILED: LOOP_OVER_VOL outside V at i=%td\n", i);
}
if (count != gv.ntot())
meep::abort("FAILED: LOOP_OVER_VOL has %zd iterations instead of ntot=%zd\n", count, gv.ntot());
if (count_owned != gv.nowned(c))
meep::abort("FAILED: LOOP_OVER_VOL has %zd owned points instead of nowned=%zd\n", count_owned,
gv.nowned(c));
if (min_i != 0) meep::abort("FAILED: LOOP_OVER_VOL has minimum index %td instead of 0\n", min_i);
if (size_t(max_i) != gv.ntot() - 1)
meep::abort("FAILED: LOOP_OVER_VOL has max index %td instead of ntot-1\n", max_i);
count = 0;
LOOP_OVER_VOL_OWNED(gv, c, i) {
IVEC_LOOP_ILOC(gv, ihere);
IVEC_LOOP_LOC(gv, here);
ivec ihere0(gv.iloc(c, i));
vec here0(gv[ihere0]);
if (ihere0 != ihere) meep::abort("FAILED: wrong LOOP_OVER_VOL_OWNED iloc at i=%td\n", i);
if (abs(here0 - here) > 1e-13)
meep::abort("FAILED: wrong LOOP_OVER_VOL_OWNED loc (err = %g) at i=%td\n", abs(here0 - here),
i);
if (!gv.owns(ihere))
meep::abort("FAILED: LOOP_OVER_VOL_OWNED includes non-owned at i=%td\n", i);
++count;
}
if (count != count_owned)
meep::abort("FAILED: LOOP_OVER_VOL_OWNED has %zd iterations instead of %zd\n", count,
count_owned);
count = 0;
LOOP_OVER_VOL_NOTOWNED(gv, c, i) {
IVEC_LOOP_ILOC(gv, ihere);
IVEC_LOOP_LOC(gv, here);
ivec ihere0(gv.iloc(c, i));
vec here0(gv[ihere0]);
if (ihere0 != ihere) meep::abort("FAILED: wrong LOOP_OVER_VOL_NOTOWNED iloc at i=%td\n", i);
if (abs(here0 - here) > 1e-13)
meep::abort("FAILED: wrong LOOP_OVER_VOL_NOTOWNED loc (err = %g) at i=%td\n",
abs(here0 - here), i);
if (gv.owns(ihere)) meep::abort("FAILED: LOOP_OVER_VOL_NOTOWNED includes owned at i=%td\n", i);
if (ihere < vmin || ihere > vmax)
meep::abort("FAILED: LOOP_OVER_VOL_NOTOWNED outside V at i=%td\n", i);
++count;
}
if (count != gv.ntot() - count_owned)
meep::abort("FAILED: LOOP_OVER_VOL_NOTOWNED has %zd iterations instead of %zd\n", count,
gv.ntot() - count_owned);
master_printf("...PASSED.\n");
}
int main(int argc, char **argv) {
const double a = 10.0;
initialize mpi(argc, argv);
verbosity = 0;
const grid_volume v3d = vol3d(sz[0], sz[1], sz[2], a);
const grid_volume v3d0 = vol3d(sz[0], sz[1], 0, a);
const grid_volume v3d00 = vol3d(sz[0], 0, 0, a);
const grid_volume v2d = vol2d(sz[0], sz[1], a);
const grid_volume v1d = vol1d(sz[0], a);
const grid_volume vcyl = volcyl(sz[0], sz[1], a);
srand(0); // use fixed random sequence
check_splitsym(v3d, 0, identity(), "identity");
check_splitsym(v3d, 0, mirror(X, v3d), "mirrorx");
return 0;
for (int splitting = 0; splitting < 5; ++splitting) {
check_splitsym(v3d, splitting, identity(), "identity");
check_splitsym(v3d, splitting, mirror(X, v3d), "mirrorx");
check_splitsym(v3d, splitting, mirror(Y, v3d), "mirrory");
check_splitsym(v3d, splitting, mirror(X, v3d) + mirror(Y, v3d), "mirrorxy");
check_splitsym(v3d, splitting, rotate4(Z, v3d), "rotate4");
}
for (int splitting = 0; splitting < 5; ++splitting) {
check_splitsym(v2d, splitting, identity(), "identity");
check_splitsym(v2d, splitting, mirror(X, v2d), "mirrorx");
check_splitsym(v2d, splitting, mirror(Y, v2d), "mirrory");
check_splitsym(v2d, splitting, mirror(X, v2d) + mirror(Y, v2d), "mirrorxy");
check_splitsym(v2d, splitting, rotate4(Z, v2d), "rotate4");
}
const grid_volume vcyl_pad = volcyl(sz[0] + 0.2, sz[1], a);
for (int splitting = 0; splitting < 5; ++splitting) {
check_splitsym(vcyl_pad, splitting, identity(), "identity");
check_splitsym(vcyl_pad, splitting, mirror(Z, vcyl), "mirrorz");
}
for (int splitting = 0; splitting < 5; ++splitting) {
check_splitsym(v1d, splitting, identity(), "identity");
check_splitsym(v1d, splitting, mirror(Z, v1d), "mirrorz");
}
return 0;
}
|