1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
/* Copyright (C) 2005-2022 Massachusetts Institute of Technology
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2, or (at your option)
% any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software Foundation,
% Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <stdio.h>
#include <stdlib.h>
#include <meep.hpp>
using namespace meep;
using std::complex;
#include "config.h"
double one(const vec &) { return 1.0; }
double rods(const vec &r) {
vec p = r;
while (p.x() < -0.5)
p.set_direction(X, p.x() + 1.0);
while (p.x() > 0.5)
p.set_direction(X, p.x() - 1.0);
while (p.y() < -0.5)
p.set_direction(Y, p.y() + 1.0);
while (p.y() > 0.5)
p.set_direction(Y, p.y() - 1.0);
if (p.x() * p.x() + p.y() * p.y() < 0.3) return 12.0;
return 1.0;
}
void compare(double b, double a, const char *n) {
double thresh = sizeof(realnum) == sizeof(float) ? 1e-4 : 1e-5;
if (fabs(a - b) > fabs(b) * thresh || b != b) {
meep::abort("Failed %s (%g instead of %g, relerr %0.2g)\n", n, a, b, fabs(a - b) / fabs(b));
}
else { master_printf("Passed %s\n", n); }
}
static double dpml = 1.0;
double using_pml_ez(const grid_volume &gv, double eps(const vec &)) {
const double ttot = 30.0;
structure s(gv, eps, pml(dpml));
fields f(&s);
f.add_point_source(Ez, 0.2, 3.0, 0.0, 2.0, gv.center(), complex<double>(0, -2 * pi * 0.2));
while (f.round_time() < ttot)
f.step();
monitor_point p;
f.get_point(&p, gv.center());
return real(p.get_component(Ez));
}
double x_periodic_y_pml(const grid_volume &gv, double eps(const vec &)) {
const double ttot = 30.0;
structure s(gv, eps, pml(dpml, Y));
fields f(&s);
f.add_point_source(Ez, 0.2, 3.0, 0.0, 2.0, gv.center(), complex<double>(0, -2 * pi * 0.2));
f.use_bloch(X, 0.1);
while (f.round_time() < ttot)
f.step();
monitor_point p;
f.get_point(&p, gv.center());
return real(p.get_component(Ez));
}
double x_periodic(const grid_volume &gv, double eps(const vec &)) {
const double ttot = 30.0;
structure s(gv, eps);
fields f(&s);
f.add_point_source(Ez, 0.2, 3.0, 0.0, 2.0, gv.center(), complex<double>(0, -2 * pi * 0.2));
f.use_bloch(X, 0.1);
while (f.round_time() < ttot)
f.step();
monitor_point p;
f.get_point(&p, gv.center());
return real(p.get_component(Ez));
}
double periodic_ez(const grid_volume &gv, double eps(const vec &)) {
const double ttot = 30.0;
structure s(gv, eps);
fields f(&s);
f.add_point_source(Ez, 0.2, 3.0, 0.0, 2.0, gv.center(), complex<double>(0, -2 * pi * 0.2));
vec k;
switch (gv.dim) {
case D1: k = vec(0.3); break;
case D2: k = vec(0.3, 0.4); break;
case D3: k = vec(0.3, 0.5, 0.8); break;
case Dcyl: k = veccyl(0.3, 0.2); break;
}
f.use_bloch(k);
while (f.round_time() < ttot)
f.step();
monitor_point p;
f.get_point(&p, gv.center());
return real(p.get_component(Ez));
}
double metallic_ez(const grid_volume &gv, double eps(const vec &)) {
const double ttot = 10.0;
structure s(gv, eps);
fields f(&s);
f.add_point_source(Ez, 0.2, 3.0, 0.0, 2.0, gv.center(), complex<double>(0, -2 * pi * 0.2));
while (f.round_time() < ttot)
f.step();
monitor_point p;
f.get_point(&p, gv.center());
return real(p.get_component(Ez));
}
double sigma(const vec &) { return 7.63; }
double polariton_ex(const grid_volume &gv, double eps(const vec &)) {
const double ttot = 10.0;
structure s(gv, eps);
s.add_susceptibility(sigma, E_stuff, lorentzian_susceptibility(0.3, 0.1));
fields f(&s);
f.add_point_source(Ex, 0.2, 3.0, 0.0, 2.0, gv.center(), complex<double>(0, -2 * pi * 0.2));
while (f.round_time() < ttot)
f.step();
monitor_point p;
f.get_point(&p, gv.center());
return real(p.get_component(Ex));
}
double polariton_energy(const grid_volume &gv, double eps(const vec &)) {
const double ttot = 10.0;
structure s(gv, eps);
s.add_susceptibility(sigma, E_stuff, lorentzian_susceptibility(0.3, 0.1));
fields f(&s, 0);
f.add_point_source(Ex, 0.2, 3.0, 0.0, 2.0, gv.center(), complex<double>(0, -2 * pi * 0.2));
while (f.round_time() < ttot)
f.step();
return f.field_energy();
}
int main(int argc, char **argv) {
initialize mpi(argc, argv);
verbosity = 0;
master_printf("Testing with some known results...\n");
const double a = 10.0;
compare(-0.0894851, polariton_ex(volone(1.0, a), one), "1D polariton");
compare(0.0863443, polariton_energy(volone(1.0, a), one), "1D polariton energy");
compare(5.20605, metallic_ez(voltwo(1.0, 1.0, a), one), "1x1 metallic 2D TM");
compare(0.883776, using_pml_ez(voltwo(1.0 + 2 * dpml, 1.0 + 2 * dpml, a), one), "1x1 PML 2D TM");
compare(0.110425, x_periodic(voltwo(1.0, 1.0, a), one), "1x1 X periodic 2D TM");
compare(-4.78767, periodic_ez(voltwo(1.0, 3.0, a), rods), "1x1 fully periodic 2D TM rods");
compare(1.12502, periodic_ez(voltwo(1.0, 3.0, a), one), "1x1 fully periodic 2D TM");
compare(0.608815, x_periodic_y_pml(voltwo(1.0, 1.0 + 2 * dpml, a), one),
"1x1 X periodic Y PML 2D TM");
compare(-41.8057, metallic_ez(vol3d(1.0, 1.0, 1.0, a), one), "1x1x1 metallic 3D");
compare(-100.758, x_periodic(vol3d(1.0, 1.0, 1.0, a), one), "1x1x1 X periodic 3D");
compare(-101.398, x_periodic_y_pml(vol3d(1.0, 1.0 + 2 * dpml, 1.0, a), one),
"1x1x1 X periodic Y PML 3D");
compare(-103.844, periodic_ez(vol3d(1.0, 1.0, 1.0, a), rods), "1x1x1 fully periodic 3D rods");
compare(-99.1618, periodic_ez(vol3d(1.0, 1.0, 1.0, a), one), "1x1x1 fully periodic 3D");
return 0;
}
|