File: refl-angular.py

package info (click to toggle)
meep-openmpi 1.7.0-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 25,828 kB
  • sloc: cpp: 27,370; python: 10,574; lisp: 1,213; makefile: 437; sh: 28
file content (79 lines) | stat: -rw-r--r-- 3,053 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import meep as mp
import argparse
import math

def main(args):
    resolution = args.res

    dpml = 1.0                      # PML thickness
    sz = 10                         # size of computational cell (without PMLs)
    sz = 10 + 2*dpml
    cell_size = mp.Vector3(0,0,sz)
    pml_layers = [mp.PML(dpml)]

    wvl_min = 0.4                   # min wavelength
    wvl_max = 0.8                   # max wavelength
    fmin = 1/wvl_max                # min frequency
    fmax = 1/wvl_min                # max frequency
    fcen = 0.5*(fmin+fmax)          # center frequency
    df = fmax-fmin                  # frequency width
    nfreq = 50                      # number of frequency bins
    
    # rotation angle (in degrees) of source: CCW around Y axis, 0 degrees along +Z axis
    theta_r = math.radians(args.theta)

    # plane of incidence is XZ
    k = mp.Vector3(math.sin(theta_r),0,math.cos(theta_r)).scale(fmin)
    
    # if normal incidence, force number of dimensions to be 1
    if theta_r == 0:
        dimensions = 1
    else:
        dimensions = 3
    
    sources = [mp.Source(mp.GaussianSource(fcen,fwidth=df), component=mp.Ex, center=mp.Vector3(0,0,-0.5*sz+dpml))]

    sim = mp.Simulation(cell_size=cell_size,
                        boundary_layers=pml_layers,
                        sources=sources,
                        k_point=k,
                        dimensions=dimensions,
                        resolution=resolution)

    refl_fr = mp.FluxRegion(center=mp.Vector3(0,0,-0.25*sz))
    refl = sim.add_flux(fcen, df, nfreq, refl_fr)
    
    sim.run(until_after_sources=mp.stop_when_fields_decayed(50, mp.Ex, mp.Vector3(0,0,-0.5*sz+dpml), 1e-9))

    empty_flux = mp.get_fluxes(refl)
    empty_data = sim.get_flux_data(refl)
    sim.reset_meep()

    # add a block with n=3.5 for the air-dielectric interface
    geometry = [mp.Block(mp.Vector3(mp.inf,mp.inf,0.5*sz), center=mp.Vector3(0,0,0.25*sz), material=mp.Medium(index=3.5))]

    sim = mp.Simulation(cell_size=cell_size,
                        geometry=geometry,
                        boundary_layers=pml_layers,
                        sources=sources,
                        k_point=k,
                        dimensions=dimensions,
                        resolution=resolution)

    refl = sim.add_flux(fcen, df, nfreq, refl_fr)
    sim.load_minus_flux_data(refl, empty_data)

    sim.run(until_after_sources=mp.stop_when_fields_decayed(50, mp.Ex, mp.Vector3(0,0,-0.5*sz+dpml), 1e-9))

    refl_flux = mp.get_fluxes(refl)
    freqs = mp.get_flux_freqs(refl)
    
    for i in range(0,nfreq):
        print("refl:, {}, {}, {}, {}".format(k.x,1/freqs[i],math.degrees(math.asin(k.x/freqs[i])),-refl_flux[i]/empty_flux[i]))
    
if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('-res', type=int, default=200, help='resolution (default: 200 pixels/um)')
    parser.add_argument('-theta', type=float, default=0, help='angle of incident planewave (default: 0 degrees)')
    args = parser.parse_args()
    main(args)