1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
|
# -*- coding: utf-8 -*-
# Materials Library
import meep as mp
# default unit length is 1 um
um_scale = 1.0
# conversion factor for eV to 1/um [=1/hc]
eV_um_scale = um_scale/1.23984193
#------------------------------------------------------------------
# crystalline silicon (c-Si) from A. Deinega et al., J. Optical Society of America A, Vol. 28, No. 5, pp. 770-77, 2011
# based on experimental data for intrinsic silicon at T=300K from M.A. Green and M. Keevers, Progress in Photovoltaics, Vol. 3, pp. 189-92, 1995
# wavelength range: 0.4 - 1.0 um
cSi_range = mp.FreqRange(min=um_scale, max=um_scale/0.4)
cSi_frq1 = 3.64/um_scale
cSi_gam1 = 0
cSi_sig1 = 8
cSi_frq2 = 2.76/um_scale
cSi_gam2 = 2*0.063/um_scale
cSi_sig2 = 2.85
cSi_frq3 = 1.73/um_scale
cSi_gam3 = 2*2.5/um_scale
cSi_sig3 = -0.107
cSi_susc = [mp.LorentzianSusceptibility(frequency=cSi_frq1, gamma=cSi_gam1, sigma=cSi_sig1),
mp.LorentzianSusceptibility(frequency=cSi_frq2, gamma=cSi_gam2, sigma=cSi_sig2),
mp.LorentzianSusceptibility(frequency=cSi_frq3, gamma=cSi_gam3, sigma=cSi_sig3)]
cSi = mp.Medium(epsilon=1.0, E_susceptibilities=cSi_susc, valid_freq_range=cSi_range)
#------------------------------------------------------------------
# amorphous silicon (a-Si) from Horiba Technical Note 08: Lorentz Dispersion Model
# ref: http://www.horiba.com/fileadmin/uploads/Scientific/Downloads/OpticalSchool_CN/TN/ellipsometer/Lorentz_Dispersion_Model.pdf
# wavelength range: 0.21 - 0.83 um
aSi_range = mp.FreqRange(min=um_scale/0.83, max=um_scale/0.21)
aSi_frq1 = 1/(0.315481407124682*um_scale)
aSi_gam1 = 1/(0.645751005208333*um_scale)
aSi_sig1 = 14.571
aSi_susc = [mp.LorentzianSusceptibility(frequency=aSi_frq1, gamma=aSi_gam1, sigma=aSi_sig1)]
aSi = mp.Medium(epsilon=3.109, E_susceptibilities=aSi_susc, valid_freq_range=aSi_range)
#------------------------------------------------------------------
# hydrogenated amorphous silicon (a-Si:H) from Horiba Technical Note 08: Lorentz Dispersion Model
# ref: http://www.horiba.com/fileadmin/uploads/Scientific/Downloads/OpticalSchool_CN/TN/ellipsometer/Lorentz_Dispersion_Model.pdf
# wavelength range: 0.21 - 0.83 um
aSi_H_range = mp.FreqRange(min=um_scale/0.83, max=um_scale/0.21)
aSi_H_frq1 = 1/(0.334189199460916*um_scale)
aSi_H_gam1 = 1/(0.579365387850467*um_scale)
aSi_H_sig1 = 12.31
aSi_H_susc = [mp.LorentzianSusceptibility(frequency=aSi_H_frq1, gamma=aSi_H_gam1, sigma=aSi_H_sig1)]
aSi_H = mp.Medium(epsilon=3.22, E_susceptibilities=aSi_H_susc, valid_freq_range=aSi_H_range)
#------------------------------------------------------------------
# indium tin oxide (ITO) from Horiba Technical Note 08: Lorentz Dispersion Model
# ref: http://www.horiba.com/fileadmin/uploads/Scientific/Downloads/OpticalSchool_CN/TN/ellipsometer/Lorentz_Dispersion_Model.pdf
# wavelength range: 0.21 - 0.83 um
ITO_range = mp.FreqRange(min=um_scale/0.83, max=um_scale/0.21)
ITO_frq1 = 1/(0.182329695588235*um_scale)
ITO_gam1 = 1/(1.94637665620094*um_scale)
ITO_sig1 = 2.5
ITO_susc = [mp.LorentzianSusceptibility(frequency=ITO_frq1, gamma=ITO_gam1, sigma=ITO_sig1)]
ITO = mp.Medium(epsilon=1.0, E_susceptibilities=ITO_susc, valid_freq_range=ITO_range)
#------------------------------------------------------------------
# alumina (Al2O3) from Horiba Technical Note 08: Lorentz Dispersion Model
# ref: http://www.horiba.com/fileadmin/uploads/Scientific/Downloads/OpticalSchool_CN/TN/ellipsometer/Lorentz_Dispersion_Model.pdf
# wavelength range: 0.21 - 2.07 um
Al2O3_range = mp.FreqRange(min=um_scale/2.07, max=um_scale/0.21)
Al2O3_frq1 = 1/(0.101476668030774*um_scale)
Al2O3_gam1 = 0
Al2O3_sig1 = 1.52
Al2O3_susc = [mp.LorentzianSusceptibility(frequency=Al2O3_frq1, gamma=Al2O3_gam1, sigma=Al2O3_sig1)]
Al2O3 = mp.Medium(epsilon=1.0, E_susceptibilities=Al2O3_susc, valid_freq_range=Al2O3_range)
#------------------------------------------------------------------
# aluminum nitride (AlN) from Horiba Technical Note 08: Lorentz Dispersion Model
# ref: http://www.horiba.com/fileadmin/uploads/Scientific/Downloads/OpticalSchool_CN/TN/ellipsometer/Lorentz_Dispersion_Model.pdf
# wavelength range: 0.26 - 1.65 um
AlN_range = mp.FreqRange(min=um_scale/1.65, max=um_scale/0.26)
AlN_frq1 = 1/(0.139058089950651*um_scale)
AlN_gam1 = 0
AlN_sig1 = 3.306
AlN_susc = [mp.LorentzianSusceptibility(frequency=AlN_frq1, gamma=AlN_gam1, sigma=AlN_sig1)]
AlN = mp.Medium(epsilon=1.0, E_susceptibilities=AlN_susc, valid_freq_range=AlN_range)
#------------------------------------------------------------------
# aluminum arsenide (AlAs) from R.E. Fern and A. Onton, J. Applied Physics, Vol. 42, pp. 3499-500, 1971
# ref: https://refractiveindex.info/?shelf=main&book=AlAs&page=Fern
# wavelength range: 0.56 - 2.2 um
AlAs_range = mp.FreqRange(min=um_scale/2.2, max=um_scale/0.56)
AlAs_frq1 = 1/(0.2822*um_scale)
AlAs_gam1 = 0
AlAs_sig1 = 6.0840
AlAs_frq2 = 1/(27.62*um_scale)
AlAs_gam2 = 0
AlAs_sig2 = 1.900
AlAs_susc = [mp.LorentzianSusceptibility(frequency=AlAs_frq1, gamma=AlAs_gam1, sigma=AlAs_sig1),
mp.LorentzianSusceptibility(frequency=AlAs_frq2, gamma=AlAs_gam2, sigma=AlAs_sig2)]
AlAs = mp.Medium(epsilon=2.0792, E_susceptibilities=AlAs_susc, valid_freq_range=AlAs_range)
#------------------------------------------------------------------
# borosilicate glass (BK7) from SCHOTT Zemax catalog 2017-01-20b
# ref: https://refractiveindex.info/?shelf=glass&book=BK7&page=SCHOTT
# wavelength range: 0.3 - 2.5 um
BK7_range = mp.FreqRange(min=um_scale/2.5, max=um_scale/0.3)
BK7_frq1 = 1/(0.07746417668832478*um_scale)
BK7_gam1 = 0
BK7_sig1 = 1.03961212
BK7_frq2 = 1/(0.14148467902921502*um_scale)
BK7_gam2 = 0
BK7_sig2 = 0.231792344
BK7_frq3 = 1/(10.176475470417055*um_scale)
BK7_gam3 = 0
BK7_sig3 = 1.01046945
BK7_susc = [mp.LorentzianSusceptibility(frequency=BK7_frq1, gamma=BK7_gam1, sigma=BK7_sig1),
mp.LorentzianSusceptibility(frequency=BK7_frq2, gamma=BK7_gam2, sigma=BK7_sig2),
mp.LorentzianSusceptibility(frequency=BK7_frq3, gamma=BK7_gam3, sigma=BK7_sig3)]
BK7 = mp.Medium(epsilon=1.0, E_susceptibilities=BK7_susc, valid_freq_range=BK7_range)
#------------------------------------------------------------------
# fused quartz (silica) from I.H. Malitson, J. Optical Society of America, Vol. 55, pp. 1205-9, 1965
# ref: https://refractiveindex.info/?shelf=glass&book=fused_silica&page=Malitson
# wavelength range: 0.21 - 6.7 um
fused_quartz_range = mp.FreqRange(min=um_scale/6.7, max=um_scale/0.21)
fused_quartz_frq1 = 1/(0.0684043*um_scale)
fused_quartz_gam1 = 0
fused_quartz_sig1 = 0.696166300
fused_quartz_frq2 = 1/(0.1162414*um_scale)
fused_quartz_gam2 = 0
fused_quartz_sig2 = 0.407942600
fused_quartz_frq3 = 1/(9.896161*um_scale)
fused_quartz_gam3 = 0
fused_quartz_sig3 = 0.897479400
fused_quartz_susc = [mp.LorentzianSusceptibility(frequency=fused_quartz_frq1, gamma=fused_quartz_gam1, sigma=fused_quartz_sig1),
mp.LorentzianSusceptibility(frequency=fused_quartz_frq2, gamma=fused_quartz_gam2, sigma=fused_quartz_sig2),
mp.LorentzianSusceptibility(frequency=fused_quartz_frq3, gamma=fused_quartz_gam3, sigma=fused_quartz_sig3)]
fused_quartz = mp.Medium(epsilon=1.0, E_susceptibilities=fused_quartz_susc, valid_freq_range=fused_quartz_range)
#------------------------------------------------------------------
# gallium arsenide (GaAs) from T. Skauli et al., J. Applied Physics, Vol. 94, pp. 6447-55, 2003
# ref: https://refractiveindex.info/?shelf=main&book=GaAs&page=Skauli
# wavelength range: 0.97 - 17 um
GaAs_range = mp.FreqRange(min=um_scale/17, max=um_scale/0.97)
GaAs_frq1 = 1/(0.4431307*um_scale)
GaAs_gam1 = 0
GaAs_sig1 = 5.466742
GaAs_frq2 = 1/(0.8746453*um_scale)
GaAs_gam2 = 0
GaAs_sig2 = 0.02429960
GaAs_frq3 = 1/(36.9166*um_scale)
GaAs_gam3 = 0
GaAs_sig3 = 1.957522
GaAs_susc = [mp.LorentzianSusceptibility(frequency=GaAs_frq1, gamma=GaAs_gam1, sigma=GaAs_sig1),
mp.LorentzianSusceptibility(frequency=GaAs_frq2, gamma=GaAs_gam2, sigma=GaAs_sig2),
mp.LorentzianSusceptibility(frequency=GaAs_frq3, gamma=GaAs_gam3, sigma=GaAs_sig3)]
GaAs = mp.Medium(epsilon=5.372514, E_susceptibilities=GaAs_susc, valid_freq_range=GaAs_range)
#------------------------------------------------------------------
# silicon nitride (Si3N4) from H. R. Philipp, J. Electrochemical Society 120, 295-300, 1973
# ref: https://refractiveindex.info/?shelf=main&book=Si3N4&page=Philipp
# wavelength range: 0.207 - 1.24 um
Si3N4_VISNIR_range = mp.FreqRange(min=um_scale/1.24, max=um_scale/0.207)
Si3N4_VISNIR_frq1 = 1/(0.13967*um_scale)
Si3N4_VISNIR_gam1 = 0
Si3N4_VISNIR_sig1 = 2.8939
Si3N4_VISNIR_susc = [mp.LorentzianSusceptibility(frequency=Si3N4_VISNIR_frq1, gamma=Si3N4_VISNIR_gam1, sigma=Si3N4_VISNIR_sig1)]
Si3N4_VISNIR = mp.Medium(epsilon=1.0, E_susceptibilities=Si3N4_VISNIR_susc, valid_freq_range=Si3N4_VISNIR_range)
#------------------------------------------------------------------
# silicon nitride (Si3N4) from K. Luke, et. al., Optics Letters, Vol. 40, pp. 4823-26, 2015
# ref: https://refractiveindex.info/?shelf=main&book=Si3N4&page=Luke
# wavelength range: 0.310 - 5.504 um
Si3N4_NIR_range = mp.FreqRange(min=um_scale/5.504, max=um_scale/0.310)
Si3N4_NIR_frq1 = 0.1353406
Si3N4_NIR_gam1 = 0
Si3N4_NIR_sig1 = 3.0249
Si3N4_NIR_frq2 = 1239.842
Si3N4_NIR_gam2 = 0
Si3N4_NIR_sig2 = 40314
Si3N4_NIR_susc = [mp.LorentzianSusceptibility(frequency=Si3N4_NIR_frq1, gamma=Si3N4_NIR_gam1, sigma=Si3N4_NIR_sig1),
mp.LorentzianSusceptibility(frequency=Si3N4_NIR_frq2, gamma=Si3N4_NIR_gam2, sigma=Si3N4_NIR_sig2)]
Si3N4_NIR = mp.Medium(epsilon=1.0, E_susceptibilities=Si3N4_NIR_susc, valid_freq_range=Si3N4_NIR_range)
#------------------------------------------------------------------
# elemental metals from A.D. Rakic et al., Applied Optics, Vol. 37, No. 22, pp. 5271-83, 1998
# wavelength range: 0.2 - 12.4 um
metal_range = mp.FreqRange(min=um_scale/12.4, max=um_scale/0.2)
# silver (Ag)
Ag_plasma_frq = 9.01*eV_um_scale
Ag_f0 = 0.845
Ag_frq0 = 1e-10
Ag_gam0 = 0.048*eV_um_scale
Ag_sig0 = Ag_f0*Ag_plasma_frq**2/Ag_frq0**2
Ag_f1 = 0.065
Ag_frq1 = 0.816*eV_um_scale # 1.519 um
Ag_gam1 = 3.886*eV_um_scale
Ag_sig1 = Ag_f1*Ag_plasma_frq**2/Ag_frq1**2
Ag_f2 = 0.124
Ag_frq2 = 4.481*eV_um_scale # 0.273 um
Ag_gam2 = 0.452*eV_um_scale
Ag_sig2 = Ag_f2*Ag_plasma_frq**2/Ag_frq2**2
Ag_f3 = 0.011
Ag_frq3 = 8.185*eV_um_scale # 0.152 um
Ag_gam3 = 0.065*eV_um_scale
Ag_sig3 = Ag_f3*Ag_plasma_frq**2/Ag_frq3**2
Ag_f4 = 0.840
Ag_frq4 = 9.083*eV_um_scale # 0.137 um
Ag_gam4 = 0.916*eV_um_scale
Ag_sig4 = Ag_f4*Ag_plasma_frq**2/Ag_frq4**2
Ag_susc = [mp.DrudeSusceptibility(frequency=Ag_frq0, gamma=Ag_gam0, sigma=Ag_sig0),
mp.LorentzianSusceptibility(frequency=Ag_frq1, gamma=Ag_gam1, sigma=Ag_sig1),
mp.LorentzianSusceptibility(frequency=Ag_frq2, gamma=Ag_gam2, sigma=Ag_sig2),
mp.LorentzianSusceptibility(frequency=Ag_frq3, gamma=Ag_gam3, sigma=Ag_sig3),
mp.LorentzianSusceptibility(frequency=Ag_frq4, gamma=Ag_gam4, sigma=Ag_sig4)]
Ag = mp.Medium(epsilon=1.0, E_susceptibilities=Ag_susc, valid_freq_range=metal_range)
#------------------------------------------------------------------
# gold (Au)
Au_plasma_frq = 9.03*eV_um_scale
Au_f0 = 0.760
Au_frq0 = 1e-10
Au_gam0 = 0.053*eV_um_scale
Au_sig0 = Au_f0*Au_plasma_frq**2/Au_frq0**2
Au_f1 = 0.024
Au_frq1 = 0.415*eV_um_scale # 2.988 um
Au_gam1 = 0.241*eV_um_scale
Au_sig1 = Au_f1*Au_plasma_frq**2/Au_frq1**2
Au_f2 = 0.010
Au_frq2 = 0.830*eV_um_scale # 1.494 um
Au_gam2 = 0.345*eV_um_scale
Au_sig2 = Au_f2*Au_plasma_frq**2/Au_frq2**2
Au_f3 = 0.071
Au_frq3 = 2.969*eV_um_scale # 0.418 um
Au_gam3 = 0.870*eV_um_scale
Au_sig3 = Au_f3*Au_plasma_frq**2/Au_frq3**2
Au_f4 = 0.601
Au_frq4 = 4.304*eV_um_scale # 0.288 um
Au_gam4 = 2.494*eV_um_scale
Au_sig4 = Au_f4*Au_plasma_frq**2/Au_frq4**2
Au_susc = [mp.DrudeSusceptibility(frequency=Au_frq0, gamma=Au_gam0, sigma=Au_sig0),
mp.LorentzianSusceptibility(frequency=Au_frq1, gamma=Au_gam1, sigma=Au_sig1),
mp.LorentzianSusceptibility(frequency=Au_frq2, gamma=Au_gam2, sigma=Au_sig2),
mp.LorentzianSusceptibility(frequency=Au_frq3, gamma=Au_gam3, sigma=Au_sig3),
mp.LorentzianSusceptibility(frequency=Au_frq4, gamma=Au_gam4, sigma=Au_sig4)]
Au = mp.Medium(epsilon=1.0, E_susceptibilities=Au_susc, valid_freq_range=metal_range)
#------------------------------------------------------------------
# copper (Cu)
Cu_plasma_frq = 10.83*eV_um_scale
Cu_f0 = 0.575
Cu_frq0 = 1e-10
Cu_gam0 = 0.030*eV_um_scale
Cu_sig0 = Cu_f0*Cu_plasma_frq**2/Cu_frq0**2
Cu_f1 = 0.061
Cu_frq1 = 0.291*eV_um_scale # 4.261 um
Cu_gam1 = 0.378*eV_um_scale
Cu_sig1 = Cu_f1*Cu_plasma_frq**2/Cu_frq1**2
Cu_f2 = 0.104
Cu_frq2 = 2.957*eV_um_scale # 0.419 um
Cu_gam2 = 1.056*eV_um_scale
Cu_sig2 = Cu_f2*Cu_plasma_frq**2/Cu_frq2**2
Cu_f3 = 0.723
Cu_frq3 = 5.300*eV_um_scale # 0.234 um
Cu_gam3 = 3.213*eV_um_scale
Cu_sig3 = Cu_f3*Cu_plasma_frq**2/Cu_frq3**2
Cu_f4 = 0.638
Cu_frq4 = 11.18*eV_um_scale # 0.111 um
Cu_gam4 = 4.305*eV_um_scale
Cu_sig4 = Cu_f4*Cu_plasma_frq**2/Cu_frq4**2
Cu_susc = [mp.DrudeSusceptibility(frequency=Cu_frq0, gamma=Cu_gam0, sigma=Cu_sig0),
mp.LorentzianSusceptibility(frequency=Cu_frq1, gamma=Cu_gam1, sigma=Cu_sig1),
mp.LorentzianSusceptibility(frequency=Cu_frq2, gamma=Cu_gam2, sigma=Cu_sig2),
mp.LorentzianSusceptibility(frequency=Cu_frq3, gamma=Cu_gam3, sigma=Cu_sig3),
mp.LorentzianSusceptibility(frequency=Cu_frq4, gamma=Cu_gam4, sigma=Cu_sig4)]
Cu = mp.Medium(epsilon=1.0, E_susceptibilities=Cu_susc, valid_freq_range=metal_range)
#------------------------------------------------------------------
# aluminum (Al)
Al_plasma_frq = 14.98*eV_um_scale
Al_f0 = 0.523
Al_frq0 = 1e-10
Al_gam0 = 0.047*eV_um_scale
Al_sig0 = Al_f0*Al_plasma_frq**2/Al_frq0**2
Al_f1 = 0.227
Al_frq1 = 0.162*eV_um_scale # 7.654 um
Al_gam1 = 0.333*eV_um_scale
Al_sig1 = Al_f1*Al_plasma_frq**2/Al_frq1**2
Al_f2 = 0.050
Al_frq2 = 1.544*eV_um_scale # 0.803 um
Al_gam2 = 0.312*eV_um_scale
Al_sig2 = Al_f2*Al_plasma_frq**2/Al_frq2**2
Al_f3 = 0.166
Al_frq3 = 1.808*eV_um_scale # 0.686 um
Al_gam3 = 1.351*eV_um_scale
Al_sig3 = Al_f3*Al_plasma_frq**2/Al_frq3**2
Al_f4 = 0.030
Al_frq4 = 3.473*eV_um_scale # 0.357 um
Al_gam4 = 3.382*eV_um_scale
Al_sig4 = Al_f4*Al_plasma_frq**2/Al_frq4**2
Al_susc = [mp.DrudeSusceptibility(frequency=Al_frq0, gamma=Al_gam0, sigma=Al_sig0),
mp.LorentzianSusceptibility(frequency=Al_frq1, gamma=Al_gam1, sigma=Al_sig1),
mp.LorentzianSusceptibility(frequency=Al_frq2, gamma=Al_gam2, sigma=Al_sig2),
mp.LorentzianSusceptibility(frequency=Al_frq3, gamma=Al_gam3, sigma=Al_sig3),
mp.LorentzianSusceptibility(frequency=Al_frq4, gamma=Al_gam4, sigma=Al_sig4)]
Al = mp.Medium(epsilon=1.0, E_susceptibilities=Al_susc, valid_freq_range=metal_range)
#------------------------------------------------------------------
# beryllium (Be)
Be_plasma_frq = 18.51*eV_um_scale
Be_f0 = 0.084
Be_frq0 = 1e-10
Be_gam0 = 0.035*eV_um_scale
Be_sig0 = Be_f0*Be_plasma_frq**2/Be_frq0**2
Be_f1 = 0.031
Be_frq1 = 0.100*eV_um_scale # 12.398 um
Be_gam1 = 1.664*eV_um_scale
Be_sig1 = Be_f1*Be_plasma_frq**2/Be_frq1**2
Be_f2 = 0.140
Be_frq2 = 1.032*eV_um_scale # 1.201 um
Be_gam2 = 3.395*eV_um_scale
Be_sig2 = Be_f2*Be_plasma_frq**2/Be_frq2**2
Be_f3 = 0.530
Be_frq3 = 3.183*eV_um_scale # 0.390 um
Be_gam3 = 4.454*eV_um_scale
Be_sig3 = Be_f3*Be_plasma_frq**2/Be_frq3**2
Be_f4 = 0.130
Be_frq4 = 4.604*eV_um_scale # 0.269 um
Be_gam4 = 1.802*eV_um_scale
Be_sig4 = Be_f4*Be_plasma_frq**2/Be_frq4**2
Be_susc = [mp.DrudeSusceptibility(frequency=Be_frq0, gamma=Be_gam0, sigma=Be_sig0),
mp.LorentzianSusceptibility(frequency=Be_frq1, gamma=Be_gam1, sigma=Be_sig1),
mp.LorentzianSusceptibility(frequency=Be_frq2, gamma=Be_gam2, sigma=Be_sig2),
mp.LorentzianSusceptibility(frequency=Be_frq3, gamma=Be_gam3, sigma=Be_sig3),
mp.LorentzianSusceptibility(frequency=Be_frq4, gamma=Be_gam4, sigma=Be_sig4)]
Be = mp.Medium(epsilon=1.0, E_susceptibilities=Be_susc, valid_freq_range=metal_range)
#------------------------------------------------------------------
# chromium (Cr)
Cr_plasma_frq = 10.75*eV_um_scale
Cr_f0 = 0.168
Cr_frq0 = 1e-10
Cr_gam0 = 0.047*eV_um_scale
Cr_sig0 = Cr_f0*Cr_plasma_frq**2/Cr_frq0**2
Cr_f1 = 0.151
Cr_frq1 = 0.121*eV_um_scale # 10.247 um
Cr_gam1 = 3.175*eV_um_scale
Cr_sig1 = Cr_f1*Cr_plasma_frq**2/Cr_frq1**2
Cr_f2 = 0.150
Cr_frq2 = 0.543*eV_um_scale # 2.283 um
Cr_gam2 = 1.305*eV_um_scale
Cr_sig2 = Cr_f2*Cr_plasma_frq**2/Cr_frq2**2
Cr_f3 = 1.149
Cr_frq3 = 1.970*eV_um_scale # 0.629 um
Cr_gam3 = 2.676*eV_um_scale
Cr_sig3 = Cr_f3*Cr_plasma_frq**2/Cr_frq3**2
Cr_f4 = 0.825
Cr_frq4 = 8.775*eV_um_scale # 0.141 um
Cr_gam4 = 1.335*eV_um_scale
Cr_sig4 = Cr_f4*Cr_plasma_frq**2/Cr_frq4**2
Cr_susc = [mp.DrudeSusceptibility(frequency=Cr_frq0, gamma=Cr_gam0, sigma=Cr_sig0),
mp.LorentzianSusceptibility(frequency=Cr_frq1, gamma=Cr_gam1, sigma=Cr_sig1),
mp.LorentzianSusceptibility(frequency=Cr_frq2, gamma=Cr_gam2, sigma=Cr_sig2),
mp.LorentzianSusceptibility(frequency=Cr_frq3, gamma=Cr_gam3, sigma=Cr_sig3),
mp.LorentzianSusceptibility(frequency=Cr_frq4, gamma=Cr_gam4, sigma=Cr_sig4)]
Cr = mp.Medium(epsilon=1.0, E_susceptibilities=Cr_susc, valid_freq_range=metal_range)
#------------------------------------------------------------------
# nickel (Ni)
Ni_plasma_frq = 15.92*eV_um_scale
Ni_f0 = 0.096
Ni_frq0 = 1e-10
Ni_gam0 = 0.048*eV_um_scale
Ni_sig0 = Ni_f0*Ni_plasma_frq**2/Ni_frq0**2
Ni_f1 = 0.100
Ni_frq1 = 0.174*eV_um_scale # 7.126 um
Ni_gam1 = 4.511*eV_um_scale
Ni_sig1 = Ni_f1*Ni_plasma_frq**2/Ni_frq1**2
Ni_f2 = 0.135
Ni_frq2 = 0.582*eV_um_scale # 2.130 um
Ni_gam2 = 1.334*eV_um_scale
Ni_sig2 = Ni_f2*Ni_plasma_frq**2/Ni_frq2**2
Ni_f3 = 0.106
Ni_frq3 = 1.597*eV_um_scale # 0.776 um
Ni_gam3 = 2.178*eV_um_scale
Ni_sig3 = Ni_f3*Ni_plasma_frq**2/Ni_frq3**2
Ni_f4 = 0.729
Ni_frq4 = 6.089*eV_um_scale # 0.204 um
Ni_gam4 = 6.292*eV_um_scale
Ni_sig4 = Ni_f4*Ni_plasma_frq**2/Ni_frq4**2
Ni_susc = [mp.DrudeSusceptibility(frequency=Ni_frq0, gamma=Ni_gam0, sigma=Ni_sig0),
mp.LorentzianSusceptibility(frequency=Ni_frq1, gamma=Ni_gam1, sigma=Ni_sig1),
mp.LorentzianSusceptibility(frequency=Ni_frq2, gamma=Ni_gam2, sigma=Ni_sig2),
mp.LorentzianSusceptibility(frequency=Ni_frq3, gamma=Ni_gam3, sigma=Ni_sig3),
mp.LorentzianSusceptibility(frequency=Ni_frq4, gamma=Ni_gam4, sigma=Ni_sig4)]
Ni = mp.Medium(epsilon=1.0, E_susceptibilities=Ni_susc, valid_freq_range=metal_range)
#------------------------------------------------------------------
# palladium (Pd)
Pd_plasma_frq = 9.72*eV_um_scale
Pd_f0 = 0.330
Pd_frq0 = 1e-10
Pd_gam0 = 0.008*eV_um_scale
Pd_sig0 = Pd_f0*Pd_plasma_frq**2/Pd_frq0**2
Pd_f1 = 0.649
Pd_frq1 = 0.336*eV_um_scale # 3.690 um
Pd_gam1 = 2.950*eV_um_scale
Pd_sig1 = Pd_f1*Pd_plasma_frq**2/Pd_frq1**2
Pd_f2 = 0.121
Pd_frq2 = 0.501*eV_um_scale # 2.475 um
Pd_gam2 = 0.555*eV_um_scale
Pd_sig2 = Pd_f2*Pd_plasma_frq**2/Pd_frq2**2
Pd_f3 = 0.638
Pd_frq3 = 1.659*eV_um_scale # 0.747 um
Pd_gam3 = 4.621*eV_um_scale
Pd_sig3 = Pd_f3*Pd_plasma_frq**2/Pd_frq3**2
Pd_f4 = 0.453
Pd_frq4 = 5.715*eV_um_scale # 0.217 um
Pd_gam4 = 3.236*eV_um_scale
Pd_sig4 = Pd_f4*Pd_plasma_frq**2/Pd_frq4**2
Pd_susc = [mp.DrudeSusceptibility(frequency=Pd_frq0, gamma=Pd_gam0, sigma=Pd_sig0),
mp.LorentzianSusceptibility(frequency=Pd_frq1, gamma=Pd_gam1, sigma=Pd_sig1),
mp.LorentzianSusceptibility(frequency=Pd_frq2, gamma=Pd_gam2, sigma=Pd_sig2),
mp.LorentzianSusceptibility(frequency=Pd_frq3, gamma=Pd_gam3, sigma=Pd_sig3),
mp.LorentzianSusceptibility(frequency=Pd_frq4, gamma=Pd_gam4, sigma=Pd_sig4)]
Pd = mp.Medium(epsilon=1.0, E_susceptibilities=Pd_susc, valid_freq_range=metal_range)
#------------------------------------------------------------------
# platinum (Pt)
Pt_plasma_frq = 9.59*eV_um_scale
Pt_f0 = 0.333
Pt_frq0 = 1e-10
Pt_gam0 = 0.080*eV_um_scale
Pt_sig0 = Pt_f0*Pt_plasma_frq**2/Pt_frq0**2
Pt_f1 = 0.191
Pt_frq1 = 0.780*eV_um_scale # 1.590 um
Pt_gam1 = 0.517*eV_um_scale
Pt_sig1 = Pt_f1*Pt_plasma_frq**2/Pt_frq1**2
Pt_f2 = 0.659
Pt_frq2 = 1.314*eV_um_scale # 0.944 um
Pt_gam2 = 1.838*eV_um_scale
Pt_sig2 = Pt_f2*Pt_plasma_frq**2/Pt_frq2**2
Pt_f3 = 0.547
Pt_frq3 = 3.141*eV_um_scale # 0.395 um
Pt_gam3 = 3.668*eV_um_scale
Pt_sig3 = Pt_f3*Pt_plasma_frq**2/Pt_frq3**2
Pt_f4 = 3.576
Pt_frq4 = 9.249*eV_um_scale # 0.134 um
Pt_gam4 = 8.517*eV_um_scale
Pt_sig4 = Pt_f4*Pt_plasma_frq**2/Pt_frq4**2
Pt_susc = [mp.DrudeSusceptibility(frequency=Pt_frq0, gamma=Pt_gam0, sigma=Pt_sig0),
mp.LorentzianSusceptibility(frequency=Pt_frq1, gamma=Pt_gam1, sigma=Pt_sig1),
mp.LorentzianSusceptibility(frequency=Pt_frq2, gamma=Pt_gam2, sigma=Pt_sig2),
mp.LorentzianSusceptibility(frequency=Pt_frq3, gamma=Pt_gam3, sigma=Pt_sig3),
mp.LorentzianSusceptibility(frequency=Pt_frq4, gamma=Pt_gam4, sigma=Pt_sig4)]
Pt = mp.Medium(epsilon=1.0, E_susceptibilities=Pt_susc, valid_freq_range=metal_range)
#------------------------------------------------------------------
# titanium (Ti)
Ti_plasma_frq = 7.29*eV_um_scale
Ti_f0 = 0.148
Ti_frq0 = 1e-10
Ti_gam0 = 0.082*eV_um_scale
Ti_sig0 = Ti_f0*Ti_plasma_frq**2/Ti_frq0**2
Ti_f1 = 0.899
Ti_frq1 = 0.777*eV_um_scale # 1.596 um
Ti_gam1 = 2.276*eV_um_scale
Ti_sig1 = Ti_f1*Ti_plasma_frq**2/Ti_frq1**2
Ti_f2 = 0.393
Ti_frq2 = 1.545*eV_um_scale # 0.802 um
Ti_gam2 = 2.518*eV_um_scale
Ti_sig2 = Ti_f2*Ti_plasma_frq**2/Ti_frq2**2
Ti_f3 = 0.187
Ti_frq3 = 2.509*eV_um_scale # 0.494 um
Ti_gam3 = 1.663*eV_um_scale
Ti_sig3 = Ti_f3*Ti_plasma_frq**2/Ti_frq3**2
Ti_f4 = 0.001
Ti_frq4 = 19.43*eV_um_scale # 0.064 um
Ti_gam4 = 1.762*eV_um_scale
Ti_sig4 = Ti_f4*Ti_plasma_frq**2/Ti_frq4**2
Ti_susc = [mp.DrudeSusceptibility(frequency=Ti_frq0, gamma=Ti_gam0, sigma=Ti_sig0),
mp.LorentzianSusceptibility(frequency=Ti_frq1, gamma=Ti_gam1, sigma=Ti_sig1),
mp.LorentzianSusceptibility(frequency=Ti_frq2, gamma=Ti_gam2, sigma=Ti_sig2),
mp.LorentzianSusceptibility(frequency=Ti_frq3, gamma=Ti_gam3, sigma=Ti_sig3),
mp.LorentzianSusceptibility(frequency=Ti_frq4, gamma=Ti_gam4, sigma=Ti_sig4)]
Ti = mp.Medium(epsilon=1.0, E_susceptibilities=Ti_susc, valid_freq_range=metal_range)
#------------------------------------------------------------------
# tungsten (W)
W_plasma_frq = 13.22*eV_um_scale
W_f0 = 0.206
W_frq0 = 1e-10
W_gam0 = 0.064*eV_um_scale
W_sig0 = W_f0*W_plasma_frq**2/W_frq0**2
W_f1 = 0.054
W_frq1 = 1.004*eV_um_scale # 1.235 um
W_gam1 = 0.530*eV_um_scale
W_sig1 = W_f1*W_plasma_frq**2/W_frq1**2
W_f2 = 0.166
W_frq2 = 1.917*eV_um_scale # 0.647 um
W_gam2 = 1.281*eV_um_scale
W_sig2 = W_f2*W_plasma_frq**2/W_frq2**2
W_f3 = 0.706
W_frq3 = 3.580*eV_um_scale # 0.346 um
W_gam3 = 3.332*eV_um_scale
W_sig3 = W_f3*W_plasma_frq**2/W_frq3**2
W_f4 = 2.590
W_frq4 = 7.498*eV_um_scale # 0.165 um
W_gam4 = 5.836*eV_um_scale
W_sig4 = W_f4*W_plasma_frq**2/W_frq4**2
W_susc = [mp.DrudeSusceptibility(frequency=W_frq0, gamma=W_gam0, sigma=W_sig0),
mp.LorentzianSusceptibility(frequency=W_frq1, gamma=W_gam1, sigma=W_sig1),
mp.LorentzianSusceptibility(frequency=W_frq2, gamma=W_gam2, sigma=W_sig2),
mp.LorentzianSusceptibility(frequency=W_frq3, gamma=W_gam3, sigma=W_sig3),
mp.LorentzianSusceptibility(frequency=W_frq4, gamma=W_gam4, sigma=W_sig4)]
W = mp.Medium(epsilon=1.0, E_susceptibilities=W_susc, valid_freq_range=metal_range)
#------------------------------------------------------------------
# metals from D. Barchiesi and T. Grosges, J. Nanophotonics, Vol. 8, 08996, 2015
# wavelength range: 0.4 - 0.8 um
metal_visible_range = mp.FreqRange(min=um_scale/0.8, max=um_scale/0.4)
# gold (Au)
# fit to P.B. Johnson and R.W. Christy, Physical Review B, Vol. 6, pp. 4370-9, 1972
Au_JC_visible_frq0 = 1/(0.139779231751333*um_scale)
Au_JC_visible_gam0 = 1/(26.1269913352870*um_scale)
Au_JC_visible_sig0 = 1
Au_JC_visible_frq1 = 1/(0.404064525036786*um_scale)
Au_JC_visible_gam1 = 1/(1.12834046202759*um_scale)
Au_JC_visible_sig1 = 2.07118534879440
Au_JC_visible_susc = [mp.DrudeSusceptibility(frequency=Au_JC_visible_frq0, gamma=Au_JC_visible_gam0, sigma=Au_JC_visible_sig0),
mp.LorentzianSusceptibility(frequency=Au_JC_visible_frq1, gamma=Au_JC_visible_gam1, sigma=Au_JC_visible_sig1)]
Au_JC_visible = mp.Medium(epsilon=6.1599, E_susceptibilities=Au_JC_visible_susc)
#------------------------------------------------------------------
# gold (Au)
# fit to E.D. Palik, Handbook of Optical Constants, Academic Press, 1985
Au_visible_frq0 = 1/(0.0473629248511456*um_scale)
Au_visible_gam0 = 1/(0.255476199605166*um_scale)
Au_visible_sig0 = 1
Au_visible_frq1 = 1/(0.800619321082804*um_scale)
Au_visible_gam1 = 1/(0.381870287531951*um_scale)
Au_visible_sig1 = -169.060953137985
Au_visible_susc = [mp.DrudeSusceptibility(frequency=Au_visible_frq0, gamma=Au_visible_gam0, sigma=Au_visible_sig0),
mp.LorentzianSusceptibility(frequency=Au_visible_frq1, gamma=Au_visible_gam1, sigma=Au_visible_sig1)]
Au_visible = mp.Medium(epsilon=0.6888, E_susceptibilities=Au_visible_susc, valid_freq_range=metal_visible_range)
#------------------------------------------------------------------
## WARNING: unstable; field divergence may occur
# silver (Au)
# fit to E.D. Palik, Handbook of Optical Constants, Academic Press, 1985
Ag_visible_frq0 = 1/(0.142050162130618*um_scale)
Ag_visible_gam0 = 1/(18.0357292925015*um_scale)
Ag_visible_sig0 = 1
Ag_visible_frq1 = 1/(0.115692151792108*um_scale)
Ag_visible_gam1 = 1/(0.257794324096575*um_scale)
Ag_visible_sig1 = 3.74465275944019
Ag_visible_susc = [mp.DrudeSusceptibility(frequency=Ag_visible_frq0, gamma=Ag_visible_gam0, sigma=Ag_visible_sig0),
mp.LorentzianSusceptibility(frequency=Ag_visible_frq1, gamma=Ag_visible_gam1, sigma=Ag_visible_sig1)]
Ag_visible = mp.Medium(epsilon=0.0067526, E_susceptibilities=Ag_visible_susc, valid_freq_range=metal_visible_range)
#------------------------------------------------------------------
## WARNING: unstable; field divergence may occur
# aluminum (Al)
# fit to E.D. Palik, Handbook of Optical Constants, Academic Press, 1985
Al_visible_frq0 = 1/(0.0625841659042985*um_scale)
Al_visible_gam0 = 1/(0.606007002962666*um_scale)
Al_visible_sig0 = 1
Al_visible_frq1 = 1/(0.528191199577075*um_scale)
Al_visible_gam1 = 1/(0.291862527666814*um_scale)
Al_visible_sig1 = -44.4456675577921
Al_visible_susc = [mp.DrudeSusceptibility(frequency=Al_visible_frq0, gamma=Al_visible_gam0, sigma=Al_visible_sig0),
mp.LorentzianSusceptibility(frequency=Al_visible_frq1, gamma=Al_visible_gam1, sigma=Al_visible_sig1)]
Al_visible = mp.Medium(epsilon=0.13313, E_susceptibilities=Al_visible_susc, valid_freq_range=metal_visible_range)
#------------------------------------------------------------------
# chroimium (Cr)
# fit to E.D. Palik, Handbook of Optical Constants, Academic Press, 1985
Cr_visible_frq0 = 1/(0.118410119507342*um_scale)
Cr_visible_gam0 = 1/(0.628596264869804*um_scale)
Cr_visible_sig0 = 1
Cr_visible_frq1 = 1/(0.565709598452496*um_scale)
Cr_visible_gam1 = 1/(0.731117670900812*um_scale)
Cr_visible_sig1 = 13.2912419951294
Cr_visible_susc = [mp.DrudeSusceptibility(frequency=Cr_visible_frq0, gamma=Cr_visible_gam0, sigma=Cr_visible_sig0),
mp.LorentzianSusceptibility(frequency=Cr_visible_frq1, gamma=Cr_visible_gam1, sigma=Cr_visible_sig1)]
Cr_visible = mp.Medium(epsilon=2.7767, E_susceptibilities=Cr_visible_susc, valid_freq_range=metal_visible_range)
#------------------------------------------------------------------
## WARNING: unstable; field divergence may occur
# titanium (Ti)
# fit to E.D. Palik, Handbook of Optical Constants, Academic Press, 1985
Ti_visible_frq0 = 1/(0.101331651921602*um_scale)
Ti_visible_gam0 = 1/(0.365743382258719*um_scale)
Ti_visible_sig0 = 1
Ti_visible_frq1 = 1/(4.56839173979216e-09*um_scale)
Ti_visible_gam1 = 1/(5.86441957443603e-10*um_scale)
Ti_visible_sig1 = 54742662.1963414
Ti_visible_susc = [mp.DrudeSusceptibility(frequency=Ti_visible_frq0, gamma=Ti_visible_gam0, sigma=Ti_visible_sig0),
mp.LorentzianSusceptibility(frequency=Ti_visible_frq1, gamma=Ti_visible_gam1, sigma=Ti_visible_sig1)]
Ti_visible = mp.Medium(epsilon=-5.4742e7, E_susceptibilities=Ti_visible_susc, valid_freq_range=metal_visible_range)
#------------------------------------------------------------------
# aluminum (Al) from Horiba Technical Note 09: Drude Dispersion Model
# ref: http://www.horiba.com/fileadmin/uploads/Scientific/Downloads/OpticalSchool_CN/TN/ellipsometer/Drude_Dispersion_Model.pdf
# wavelength range: 0.19 - 0.83 um
Al_drude_range = mp.FreqRange(min=um_scale/0.83, max=um_scale/0.19)
Al_drude_frq = 1/(0.0789607648707171*um_scale)
Al_drude_gam = 1/(1.78138208333333*um_scale)
Al_drude_sig = 1
Al_drude_susc = [mp.DrudeSusceptibility(frequency=Al_drude_frq, gamma=Al_drude_gam, sigma=Al_drude_sig)]
Al_drude = mp.Medium(epsilon=1.0, E_susceptibilities=Al_drude_susc, valid_freq_range=Al_drude_range)
#------------------------------------------------------------------
# cobalt (Co) from Horiba Technical Note 09: Drude Dispersion Model
# ref: http://www.horiba.com/fileadmin/uploads/Scientific/Downloads/OpticalSchool_CN/TN/ellipsometer/Drude_Dispersion_Model.pdf
# wavelength range: 0.26 - 1.65 um
Co_range = mp.FreqRange(min=um_scale/1.65, max=um_scale/0.26)
Co_frq = 1/(0.0789607648707171*um_scale)
Co_gam = 1/(0.213802712536644*um_scale)
Co_sig = 1
Co_susc = [mp.DrudeSusceptibility(frequency=Co_frq, gamma=Co_gam, sigma=Co_sig)]
Co = mp.Medium(epsilon=3.694, E_susceptibilities=Co_susc, valid_freq_range=Co_range)
#------------------------------------------------------------------
## WARNING: unstable; field divergence may occur
# molybdenum (Mo) from Horiba Technical Note 09: Drude Dispersion Model
# ref: http://www.horiba.com/fileadmin/uploads/Scientific/Downloads/OpticalSchool_CN/TN/ellipsometer/Drude_Dispersion_Model.pdf
# wavelength range: 0.25 - 0.83 um
Mo_range = mp.FreqRange(min=um_scale/0.83, max=um_scale/0.25)
Mo_frq = 1/(0.0620790071099539*um_scale)
Mo_gam = 1/(0.148359690080172*um_scale)
Mo_sig = 1
Mo_susc = [mp.DrudeSusceptibility(frequency=Mo_frq, gamma=Mo_gam, sigma=Mo_sig)]
Mo = mp.Medium(epsilon=-1.366, E_susceptibilities=Mo_susc, valid_freq_range=Mo_range)
#------------------------------------------------------------------
# nickel chrome (NiCr) from Horiba Technical Note 09: Drude Dispersion Model
# ref: http://www.horiba.com/fileadmin/uploads/Scientific/Downloads/OpticalSchool_CN/TN/ellipsometer/Drude_Dispersion_Model.pdf
# wavelength range: 0.25 - 0.83 um
NiCr_range = mp.FreqRange(min=um_scale/0.83, max=um_scale/0.25)
NiCr_frq = 1/(0.0868845080588648*um_scale)
NiCr_gam = 1/(0.308418390547264*um_scale)
NiCr_sig = 1
NiCr_susc = [ mp.DrudeSusceptibility(frequency=NiCr_frq, gamma=NiCr_gam, sigma=NiCr_sig) ]
NiCr = mp.Medium(epsilon=1.0, E_susceptibilities=NiCr_susc, valid_freq_range=NiCr_range)
#------------------------------------------------------------------
# nickel iron (NiFe) from Horiba Technical Note 09: Drude Dispersion Model
# ref: http://www.horiba.com/fileadmin/uploads/Scientific/Downloads/OpticalSchool_CN/TN/ellipsometer/Drude_Dispersion_Model.pdf
# wavelength range: 0.25 - 0.83 um
NiFe_range = mp.FreqRange(min=um_scale/0.83, max=um_scale/0.25)
NiFe_frq = 1/(0.0838297450980392*um_scale)
NiFe_gam = 1/(0.259381156903766*um_scale)
NiFe_sig = 1
NiFe_susc = [mp.DrudeSusceptibility(frequency=NiFe_frq, gamma=NiFe_gam, sigma=NiFe_sig)]
NiFe = mp.Medium(epsilon=1.0, E_susceptibilities=NiFe_susc, valid_freq_range=NiFe_range)
#------------------------------------------------------------------
# titanium (Ti) from Horiba Technical Note 09: Drude Dispersion Model
# ref: http://www.horiba.com/fileadmin/uploads/Scientific/Downloads/OpticalSchool_CN/TN/ellipsometer/Drude_Dispersion_Model.pdf
# wavelength range: 0.21 - 1.24 um
Ti_drude_range = mp.FreqRange(min=um_scale/1.24, max=um_scale/0.21)
Ti_drude_frq = 1/(0.113746966055046*um_scale)
Ti_drude_gam = 1/(0.490056098814229*um_scale)
Ti_drude_sig = 1
Ti_drude_susc = [mp.DrudeSusceptibility(frequency=Ti_drude_frq, gamma=Ti_drude_gam, sigma=Ti_drude_sig)]
Ti_drude = mp.Medium(epsilon=1.0, E_susceptibilities=Ti_drude_susc, valid_freq_range=Ti_drude_range)
#------------------------------------------------------------------
# silicon nitride (SiN), non-stoichiometric, from Horiba Technical Note 08: Lorentz Dispersion Model
# ref: http://www.horiba.com/fileadmin/uploads/Scientific/Downloads/OpticalSchool_CN/TN/ellipsometer/Lorentz_Dispersion_Model.pdf
# wavelength range: 0.21 - 2.07 um
SiN_range = mp.FreqRange(min=um_scale/2.07, max=um_scale/0.21)
SiN_frq1 = 1/(0.190891752117013*um_scale)
SiN_gam1 = 1/(3.11518072864322*um_scale)
SiN_sig1 = 1.2650
SiN_susc = [mp.LorentzianSusceptibility(frequency=SiN_frq1, gamma=SiN_gam1, sigma=SiN_sig1)]
SiN = mp.Medium(epsilon=2.320, E_susceptibilities=SiN_susc, valid_freq_range=SiN_range)
#------------------------------------------------------------------
# silicon nitride (Si3N4), stoichiometric, from Horiba Technical Note 08: Lorentz Dispersion Model
# ref: http://www.horiba.com/fileadmin/uploads/Scientific/Downloads/OpticalSchool_CN/TN/ellipsometer/Lorentz_Dispersion_Model.pdf
# wavelength range: 0.23 - 0.83 um
Si3N4_range = mp.FreqRange(min=um_scale/0.83, max=um_scale/0.23)
Si3N4_frq1 = 1/(0.389153148148148*um_scale)
Si3N4_gam1 = 1/(0.693811936205932*um_scale)
Si3N4_sig1 = 4.377
Si3N4_susc = [mp.LorentzianSusceptibility(frequency=Si3N4_frq1, gamma=Si3N4_gam1, sigma=Si3N4_sig1)]
Si3N4 = mp.Medium(epsilon=1.0, E_susceptibilities=Si3N4_susc, valid_freq_range=Si3N4_range)
#------------------------------------------------------------------
# silicon dioxide (SiO2) from Horiba Technical Note 08: Lorentz Dispersion Model
# ref: http://www.horiba.com/fileadmin/uploads/Scientific/Downloads/OpticalSchool_CN/TN/ellipsometer/Lorentz_Dispersion_Model.pdf
# wavelength range: 0.25 - 1.77 um
SiO2_range = mp.FreqRange(min=um_scale/1.77, max=um_scale/0.25)
SiO2_frq1 = 1/(0.103320160833333*um_scale)
SiO2_gam1 = 1/(12.3984193000000*um_scale)
SiO2_sig1 = 1.12
SiO2_susc = [mp.LorentzianSusceptibility(frequency=SiO2_frq1, gamma=SiO2_gam1, sigma=SiO2_sig1)]
SiO2 = mp.Medium(epsilon=1.0, E_susceptibilities=SiO2_susc, valid_freq_range=SiO2_range)
#------------------------------------------------------------------
# indium phosphide (InP) from Handbook of Optics, 2nd edition, Vol. 2, McGraw-Hill, 1994
# ref: https://refractiveindex.info/?shelf=main&book=InP&page=Pettit
# wavelength range: 0.95 - 10 um
InP_range = mp.FreqRange(min=um_scale/10, max=um_scale/0.95)
InP_frq1 = 1/(0.6263*um_scale)
InP_gam1 = 0
InP_sig1 = 2.316
InP_frq2 = 1/(32.935*um_scale)
InP_gam2 = 0
InP_sig2 = 2.765
InP_susc = [mp.LorentzianSusceptibility(frequency=InP_frq1, gamma=InP_gam1, sigma=InP_sig1),
mp.LorentzianSusceptibility(frequency=InP_frq2, gamma=InP_gam2, sigma=InP_sig2)]
InP = mp.Medium(epsilon=7.255, E_susceptibilities=InP_susc, valid_freq_range=InP_range)
#------------------------------------------------------------------
# germanium (Ge) from N. P. Barnes and M. S. Piltch, J. Optical Society America, Vol. 69, pp. 178-180, 1979
# ref: https://refractiveindex.info/?shelf=main&book=Ge&page=Icenogle
# wavelength range: 2.5 - 12 um
Ge_range = mp.FreqRange(min=um_scale/12, max=um_scale/2.5)
Ge_frq1 = 1/(0.6641159*um_scale)
Ge_gam1 = 0
Ge_sig1 = 6.7288
Ge_frq2 = 1/(62.210127*um_scale)
Ge_gam2 = 0
Ge_sig2 = 0.21307
Ge_susc = [mp.LorentzianSusceptibility(frequency=Ge_frq1, gamma=Ge_gam1, sigma=Ge_sig1),
mp.LorentzianSusceptibility(frequency=Ge_frq2, gamma=Ge_gam2, sigma=Ge_sig2)]
Ge = mp.Medium(epsilon=9.28156, E_susceptibilities=Ge_susc, valid_freq_range=Ge_range)
#------------------------------------------------------------------
# silicon (Si) from C. D. Salzberg and J. J. Villa, , J. Optical Society America, Vol. 47, pp. 244-246, 1957
# ref: https://refractiveindex.info/?shelf=main&book=Si&page=Salzberg
# wavelength range: 1.36 - 11 um
Si_range = mp.FreqRange(min=um_scale/11, max=um_scale/1.36)
Si_frq1 = 1/(0.301516485*um_scale)
Si_gam1 = 0
Si_sig1 = 10.6684293
Si_frq2 = 1/(1.13475115*um_scale)
Si_gam2 = 0
Si_sig2 = 0.0030434748
Si_frq3 = 1/(1104*um_scale)
Si_gam3 = 0
Si_sig3 = 1.54133408
Si_susc = [mp.LorentzianSusceptibility(frequency=Si_frq1, gamma=Si_gam1, sigma=Si_sig1),
mp.LorentzianSusceptibility(frequency=Si_frq2, gamma=Si_gam2, sigma=Si_sig2),
mp.LorentzianSusceptibility(frequency=Si_frq3, gamma=Si_gam3, sigma=Si_sig3)]
Si = mp.Medium(epsilon=1.0, E_susceptibilities=Si_susc, valid_freq_range=Si_range)
#------------------------------------------------------------------
# poly(methyl methacrylate) (PMMA) from N. Sultanova et al., Acta Physica Polonica A, Vol. 116, pp. 585-7, 2009
# ref: https://refractiveindex.info/?shelf=organic&book=poly%28methyl_methacrylate%29&page=Sultanova
# wavelength range: 0.437 - 1.052 um
PMMA_range = mp.FreqRange(min=um_scale/1.052, max=um_scale/0.437)
PMMA_frq1 = 1/(0.106362587407415*um_scale)
PMMA_gam1 = 0
PMMA_sig1 = 1.1819
PMMA_susc = [mp.LorentzianSusceptibility(frequency=PMMA_frq1, gamma=PMMA_gam1, sigma=PMMA_sig1)]
PMMA = mp.Medium(epsilon=1.0, E_susceptibilities=PMMA_susc, valid_freq_range=PMMA_range)
#------------------------------------------------------------------
# polycarbonate (PC) from N. Sultanova et al., Acta Physica Polonica A, Vol. 116, pp. 585-7, 2009
# ref: https://refractiveindex.info/?shelf=organic&book=polycarbonate&page=Sultanova
# wavelength range: 0.437 - 1.052 um
PC_range = mp.FreqRange(min=um_scale/1.052, max=um_scale/0.437)
PC_frq1 = 1/(0.145958898324152*um_scale)
PC_gam1 = 0
PC_sig1 = 1.4182
PC_susc = [mp.LorentzianSusceptibility(frequency=PC_frq1, gamma=PC_gam1, sigma=PC_sig1)]
PC = mp.Medium(epsilon=1.0, E_susceptibilities=PC_susc, valid_freq_range=PC_range)
#------------------------------------------------------------------
# polystyrene (PS) from N. Sultanova et al., Acta Physica Polonica A, Vol. 116, pp. 585-7, 2009
# ref: https://refractiveindex.info/?shelf=organic&book=polystyren&page=Sultanova
# wavelength range: 0.437 - 1.052 um
PS_range = mp.FreqRange(min=um_scale/1.052, max=um_scale/0.437)
PS_frq1 = 1/(0.142182980697410*um_scale)
PS_gam1 = 0
PS_sig1 = 1.4435
PS_susc = [mp.LorentzianSusceptibility(frequency=PS_frq1, gamma=PS_gam1, sigma=PS_sig1)]
PS = mp.Medium(epsilon=1.0, E_susceptibilities=PS_susc, valid_freq_range=PS_range)
#------------------------------------------------------------------
# cellulose (CLS) from N. Sultanova et al., Acta Physica Polonica A, Vol. 116, pp. 585-7, 2009
# ref: https://refractiveindex.info/?shelf=organic&book=cellulose&page=Sultanova
# wavelength range: 0.437 - 1.052 um
CLS_range = mp.FreqRange(min=um_scale/1.052, max=um_scale/0.437)
CLS_frq1 = 1/(0.105294824184287*um_scale)
CLS_gam1 = 0
CLS_sig1 = 1.124
CLS_susc = [mp.LorentzianSusceptibility(frequency=CLS_frq1, gamma=CLS_gam1, sigma=CLS_sig1)]
CLS = mp.Medium(epsilon=1.0, E_susceptibilities=CLS_susc, valid_freq_range=CLS_range)
#------------------------------------------------------------------
# barium borate (BaB2O4), beta phase, from G. Tamosauskas et al., Optical Materials Express, Vol. 8, pp. 1410-18, 2018
# ref: https://refractiveindex.info/?shelf=main&book=BaB2O4&page=Tamosauskas-o
# ref: https://refractiveindex.info/?shelf=main&book=BaB2O4&page=Tamosauskas-e
# wavelength range: 0.188 - 5.2 um
## NOTE: ordinary (o) axes in X and Y, extraordinary (e) axis in Z
BaB2O4_range = mp.FreqRange(min=um_scale/5.2, max=um_scale/0.188)
BaB2O4_frq1 = 1/(0.06265780079128216*um_scale)
BaB2O4_gam1 = 0
BaB2O4_sig1 = 0.90291
BaB2O4_frq2 = 1/(0.13706202975295528*um_scale)
BaB2O4_gam2 = 0
BaB2O4_sig2 = 0.83155
BaB2O4_frq3 = 1/(7.746612162745725*um_scale)
BaB2O4_gam3 = 0
BaB2O4_sig3 = 0.76536
BaB2O4_susc_o = [mp.LorentzianSusceptibility(frequency=BaB2O4_frq1, gamma=BaB2O4_gam1, sigma_diag=BaB2O4_sig1*mp.Vector3(1,1,0)),
mp.LorentzianSusceptibility(frequency=BaB2O4_frq2, gamma=BaB2O4_gam2, sigma_diag=BaB2O4_sig2*mp.Vector3(1,1,0)),
mp.LorentzianSusceptibility(frequency=BaB2O4_frq3, gamma=BaB2O4_gam3, sigma_diag=BaB2O4_sig3*mp.Vector3(1,1,0))]
BaB2O4_frq1 = 1/(0.0845103543951864*um_scale)
BaB2O4_gam1 = 0
BaB2O4_sig1 = 1.151075
BaB2O4_frq2 = 1/(0.15029970059850417*um_scale)
BaB2O4_gam2 = 0
BaB2O4_sig2 = 0.21803
BaB2O4_frq3 = 1/(16.217274740226856*um_scale)
BaB2O4_gam3 = 0
BaB2O4_sig3 = 0.656
BaB2O4_susc_e = [mp.LorentzianSusceptibility(frequency=BaB2O4_frq1, gamma=BaB2O4_gam1, sigma_diag=BaB2O4_sig1*mp.Vector3(0,0,1)),
mp.LorentzianSusceptibility(frequency=BaB2O4_frq2, gamma=BaB2O4_gam2, sigma_diag=BaB2O4_sig2*mp.Vector3(0,0,1)),
mp.LorentzianSusceptibility(frequency=BaB2O4_frq3, gamma=BaB2O4_gam3, sigma_diag=BaB2O4_sig3*mp.Vector3(0,0,1))]
BaB2O4 = mp.Medium(epsilon=1.0, E_susceptibilities=BaB2O4_susc_o+BaB2O4_susc_e, valid_freq_range=BaB2O4_range)
#------------------------------------------------------------------
# lithium niobate (LiNbO3) from D.E. Zelmon et al., J. Optical Society of America B, Vol. 14, pp. 3319-22, 1997
# ref: https://refractiveindex.info/?shelf=main&book=LiNbO3&page=Zelmon-o
# ref: https://refractiveindex.info/?shelf=main&book=LiNbO3&page=Zelmon-e
# wavelength range: 0.4 - 5.0 um
## NOTE: ordinary (o) axes in X and Y, extraordinary (e) axis in Z
LiNbO3_range = mp.FreqRange(min=um_scale/5.0, max=um_scale/0.4)
LiNbO3_frq1 = 1/(0.13281566172707193*um_scale)
LiNbO3_gam1 = 0
LiNbO3_sig1 = 2.6734
LiNbO3_frq2 = 1/(0.24318717071424636*um_scale)
LiNbO3_gam2 = 0
LiNbO3_sig2 = 1.2290
LiNbO3_frq3 = 1/(21.78531615561271*um_scale)
LiNbO3_gam3 = 0
LiNbO3_sig3 = 12.614
LiNbO3_susc_o = [mp.LorentzianSusceptibility(frequency=LiNbO3_frq1, gamma=LiNbO3_gam1, sigma_diag=LiNbO3_sig1*mp.Vector3(1,1,0)),
mp.LorentzianSusceptibility(frequency=LiNbO3_frq2, gamma=LiNbO3_gam2, sigma_diag=LiNbO3_sig2*mp.Vector3(1,1,0)),
mp.LorentzianSusceptibility(frequency=LiNbO3_frq3, gamma=LiNbO3_gam3, sigma_diag=LiNbO3_sig3*mp.Vector3(1,1,0))]
LiNbO3_frq1 = 1/(0.14307340773183533*um_scale)
LiNbO3_gam1 = 0
LiNbO3_sig1 = 2.9804
LiNbO3_frq2 = 1/(0.2580697580112788*um_scale)
LiNbO3_gam2 = 0
LiNbO3_sig2 = 0.5981
LiNbO3_frq3 = 1/(20.39803912144498*um_scale)
LiNbO3_gam3 = 0
LiNbO3_sig3 = 8.9543
LiNbO3_susc_e = [mp.LorentzianSusceptibility(frequency=LiNbO3_frq1, gamma=LiNbO3_gam1, sigma_diag=LiNbO3_sig1*mp.Vector3(0,0,1)),
mp.LorentzianSusceptibility(frequency=LiNbO3_frq2, gamma=LiNbO3_gam2, sigma_diag=LiNbO3_sig2*mp.Vector3(0,0,1)),
mp.LorentzianSusceptibility(frequency=LiNbO3_frq3, gamma=LiNbO3_gam3, sigma_diag=LiNbO3_sig3*mp.Vector3(0,0,1))]
LiNbO3 = mp.Medium(epsilon=1.0, E_susceptibilities=LiNbO3_susc_o+LiNbO3_susc_e, valid_freq_range=LiNbO3_range)
#------------------------------------------------------------------
# calcium tungstate (CaWO4) from W.L. Bond, J. Applied Physics, Vol. 36, pp. 1674-77, 1965
# ref: https://refractiveindex.info/?shelf=main&book=CaWO4&page=Bond-o
# ref: https://refractiveindex.info/?shelf=main&book=CaWO4&page=Bond-e
# wavelength range: 0.45 - 4.0 um
## NOTE: ordinary (o) axes in X and Y, extraordinary (e) axis in Z
CaWO4_range = mp.FreqRange(min=um_scale/4.0, max=um_scale/0.45)
CaWO4_frq1 = 1/(0.1347*um_scale)
CaWO4_gam1 = 0
CaWO4_sig1 = 2.5493
CaWO4_frq2 = 1/(10.815*um_scale)
CaWO4_gam2 = 0
CaWO4_sig2 = 0.9200
CaWO4_susc_o = [mp.LorentzianSusceptibility(frequency=CaWO4_frq1, gamma=CaWO4_gam1, sigma_diag=CaWO4_sig1*mp.Vector3(1,1,0)),
mp.LorentzianSusceptibility(frequency=CaWO4_frq2, gamma=CaWO4_gam2, sigma_diag=CaWO4_sig2*mp.Vector3(1,1,0))]
CaWO4_frq1 = 1/(0.1379*um_scale)
CaWO4_gam1 = 0
CaWO4_sig1 = 2.6041
CaWO4_frq2 = 1/(21.371*um_scale)
CaWO4_gam2 = 0
CaWO4_sig2 = 4.1237
CaWO4_susc_e = [mp.LorentzianSusceptibility(frequency=CaWO4_frq1, gamma=CaWO4_gam1, sigma_diag=CaWO4_sig1*mp.Vector3(0,0,1)),
mp.LorentzianSusceptibility(frequency=CaWO4_frq2, gamma=CaWO4_gam2, sigma_diag=CaWO4_sig2*mp.Vector3(0,0,1))]
CaWO4 = mp.Medium(epsilon=1.0, E_susceptibilities=CaWO4_susc_o+CaWO4_susc_e, valid_freq_range=CaWO4_range)
#------------------------------------------------------------------
# calcium carbonate (CaCO3) from G. Ghosh, Optics Communication, Vol. 163, pp. 95-102, 1999
# ref: https://refractiveindex.info/?shelf=main&book=CaCO3&page=Ghosh-o
# ref: https://refractiveindex.info/?shelf=main&book=CaCO3&page=Ghosh-e
# wavelength range: 0.204 - 2.172 um
## NOTE: ordinary (o) axes in X and Y, extraordinary (e) axis in Z
CaCO3_range = mp.FreqRange(min=um_scale/2.172, max=um_scale/0.204)
CaCO3_frq1 = 1/(0.13940057496294625*um_scale)
CaCO3_gam1 = 0
CaCO3_sig1 = 0.96464345
CaCO3_frq2 = 1/(10.954451150103322*um_scale)
CaCO3_gam2 = 0
CaCO3_sig2 = 1.82831454
CaCO3_susc_o = [mp.LorentzianSusceptibility(frequency=CaCO3_frq1, gamma=CaCO3_gam1, sigma_diag=CaCO3_sig1*mp.Vector3(1,1,0)),
mp.LorentzianSusceptibility(frequency=CaCO3_frq2, gamma=CaCO3_gam2, sigma_diag=CaCO3_sig2*mp.Vector3(1,1,0))]
CaCO3_frq1 = 1/(0.1032906302623815*um_scale)
CaCO3_gam1 = 0
CaCO3_sig1 = 0.82427830
CaCO3_frq2 = 1/(10.954451150103322*um_scale)
CaCO3_gam2 = 0
CaCO3_sig2 = 0.14429128
CaCO3_susc_e = [mp.LorentzianSusceptibility(frequency=CaCO3_frq1, gamma=CaCO3_gam1, sigma_diag=CaCO3_sig1*mp.Vector3(0,0,1)),
mp.LorentzianSusceptibility(frequency=CaCO3_frq2, gamma=CaCO3_gam2, sigma_diag=CaCO3_sig2*mp.Vector3(0,0,1))]
CaCO3 = mp.Medium(epsilon_diag=mp.Vector3(1.73358749,1.73358749,1.35859695), E_susceptibilities=CaCO3_susc_o+CaCO3_susc_e, valid_freq_range=CaCO3_range)
#------------------------------------------------------------------
# silicon dioxide (SiO2) from G. Ghosh, Optics Communication, Vol. 163, pp. 95-102, 1999
# ref: https://refractiveindex.info/?shelf=main&book=SiO2&page=Ghosh-o
# ref: https://refractiveindex.info/?shelf=main&book=SiO2&page=Ghosh-e
# wavelength range: 0.198 - 2.0531 um
## NOTE: ordinary (o) axes in X and Y, extraordinary (e) axis in Z
SiO2_range = mp.FreqRange(min=um_scale/2.0531, max=um_scale/0.198)
SiO2_frq1 = 1/(0.10029257051247614*um_scale)
SiO2_gam1 = 0
SiO2_sig1 = 1.07044083
SiO2_frq2 = 1/(10*um_scale)
SiO2_gam2 = 0
SiO2_sig2 = 1.10202242
SiO2_susc_o = [mp.LorentzianSusceptibility(frequency=SiO2_frq1, gamma=SiO2_gam1, sigma_diag=SiO2_sig1*mp.Vector3(1,1,0)),
mp.LorentzianSusceptibility(frequency=SiO2_frq2, gamma=SiO2_gam2, sigma_diag=SiO2_sig2*mp.Vector3(1,1,0))]
SiO2_frq1 = 1/(0.10104546699382412*um_scale)
SiO2_gam1 = 0
SiO2_sig1 = 1.09509924
SiO2_frq2 = 1/(10*um_scale)
SiO2_gam2 = 0
SiO2_sig2 = 1.15662475
SiO2_susc_e = [mp.LorentzianSusceptibility(frequency=SiO2_frq1, gamma=SiO2_gam1, sigma_diag=SiO2_sig1*mp.Vector3(0,0,1)),
mp.LorentzianSusceptibility(frequency=SiO2_frq2, gamma=SiO2_gam2, sigma_diag=SiO2_sig2*mp.Vector3(0,0,1))]
SiO2_aniso = mp.Medium(epsilon_diag=mp.Vector3(1.28604141,1.28604141,1.28851804), E_susceptibilities=SiO2_susc_o+SiO2_susc_e, valid_freq_range=SiO2_range)
#------------------------------------------------------------------
# gallium nitride (GaN), alpha phase (wurtzite), from A.S. Barker Jr. and M. Ilegems, Physical Review B, Vol. 7, pp. 743-50, 1973
# ref: https://refractiveindex.info/?shelf=main&book=GaN&page=Barker-o
# ref: https://refractiveindex.info/?shelf=main&book=GaN&page=Barker-e
# wavelength range: 0.35 - 10 um
## NOTE: ordinary (o) axes in X and Y, extraordinary (e) axis in Z
GaN_range = mp.FreqRange(min=um_scale/10.0, max=um_scale/0.35)
GaN_frq1 = 1/(0.256*um_scale)
GaN_gam1 = 0
GaN_sig1 = 1.75
GaN_frq2 = 1/(17.86*um_scale)
GaN_gam2 = 0
GaN_sig2 = 4.1
GaN_susc_o = [mp.LorentzianSusceptibility(frequency=GaN_frq1, gamma=GaN_gam1, sigma_diag=GaN_sig1*mp.Vector3(1,1,0)),
mp.LorentzianSusceptibility(frequency=GaN_frq2, gamma=GaN_gam2, sigma_diag=GaN_sig2*mp.Vector3(1,1,0))]
GaN_frq1 = 1/(18.76*um_scale)
GaN_gam1 = 0
GaN_sig1 = 5.08
GaN_susc_e = [mp.LorentzianSusceptibility(frequency=GaN_frq1, gamma=GaN_gam1, sigma_diag=GaN_sig1*mp.Vector3(0,0,1))]
GaN = mp.Medium(epsilon_diag=mp.Vector3(3.6,3.6,5.35), E_susceptibilities=GaN_susc_o+GaN_susc_e, valid_freq_range=GaN_range)
#------------------------------------------------------------------
# aluminum nitride (AlN) from J. Pastrnak and L. Roskovcova, Physica Status Solidi, Vol. 14, K5-8, 1966
# ref: https://refractiveindex.info/?shelf=main&book=AlN&page=Pastrnak-o
# ref: https://refractiveindex.info/?shelf=main&book=AlN&page=Pastrnak-e
# wavelength range: 0.22 - 5 um
## NOTE: ordinary (o) axes in X and Y, extraordinary (e) axis in Z
AlN_range = mp.FreqRange(min=um_scale/5.0, max=um_scale/0.22)
AlN_frq1 = 1/(0.1715*um_scale)
AlN_gam1 = 0
AlN_sig1 = 1.3786
AlN_frq2 = 1/(15.03*um_scale)
AlN_gam2 = 0
AlN_sig2 = 3.861
AlN_susc_o = [mp.LorentzianSusceptibility(frequency=AlN_frq1, gamma=AlN_gam1, sigma_diag=AlN_sig1*mp.Vector3(1,1,0)),
mp.LorentzianSusceptibility(frequency=AlN_frq2, gamma=AlN_gam2, sigma_diag=AlN_sig2*mp.Vector3(1,1,0))]
AlN_frq1 = 1/(0.1746*um_scale)
AlN_gam1 = 0
AlN_sig1 = 1.6173
AlN_frq2 = 1/(15.03*um_scale)
AlN_gam2 = 0
AlN_sig2 = 4.139
AlN_susc_e = [mp.LorentzianSusceptibility(frequency=AlN_frq1, gamma=AlN_gam1, sigma_diag=AlN_sig1*mp.Vector3(0,0,1)),
mp.LorentzianSusceptibility(frequency=AlN_frq2, gamma=AlN_gam2, sigma_diag=AlN_sig2*mp.Vector3(0,0,1))]
AlN_aniso = mp.Medium(epsilon_diag=mp.Vector3(3.1399,3.1399,3.0729), E_susceptibilities=AlN_susc_o+AlN_susc_e, valid_freq_range=AlN_range)
#------------------------------------------------------------------
# alumina/sapphire (Al2O3) from I.H. Malitson and M.J. Dodge, J. Optical Society of America, Vol. 62, pp. 1405, 1972
# ref: https://refractiveindex.info/?shelf=main&book=Al2O3&page=Malitson-o
# ref: https://refractiveindex.info/?shelf=main&book=Al2O3&page=Malitson-e
# wavelength range: 0.2 - 5 um
## NOTE: ordinary (o) axes in X and Y, extraordinary (e) axis in Z
Al2O3_range = mp.FreqRange(min=um_scale/5.0, max=um_scale/0.2)
Al2O3_frq1 = 1/(0.0726631*um_scale)
Al2O3_gam1 = 0
Al2O3_sig1 = 1.4313493
Al2O3_frq2 = 1/(0.1193242*um_scale)
Al2O3_gam2 = 0
Al2O3_sig2 = 0.65054713
Al2O3_frq3 = 1/(18.02825*um_scale)
Al2O3_gam3 = 0
Al2O3_sig3 = 5.3414021
Al2O3_susc_o = [mp.LorentzianSusceptibility(frequency=Al2O3_frq1, gamma=Al2O3_gam1, sigma_diag=Al2O3_sig1*mp.Vector3(1,1,0)),
mp.LorentzianSusceptibility(frequency=Al2O3_frq2, gamma=Al2O3_gam2, sigma_diag=Al2O3_sig2*mp.Vector3(1,1,0)),
mp.LorentzianSusceptibility(frequency=Al2O3_frq3, gamma=Al2O3_gam3, sigma_diag=Al2O3_sig3*mp.Vector3(1,1,0))]
Al2O3_frq1 = 1/(0.0740288*um_scale)
Al2O3_gam1 = 0
Al2O3_sig1 = 1.5039759
Al2O3_frq2 = 1/(0.1216529*um_scale)
Al2O3_gam2 = 0
Al2O3_sig2 = 0.55069141
Al2O3_frq3 = 1/(20.072248*um_scale)
Al2O3_gam3 = 0
Al2O3_sig3 = 6.5927379
Al2O3_susc_e = [mp.LorentzianSusceptibility(frequency=Al2O3_frq1, gamma=Al2O3_gam1, sigma_diag=Al2O3_sig1*mp.Vector3(0,0,1)),
mp.LorentzianSusceptibility(frequency=Al2O3_frq2, gamma=Al2O3_gam2, sigma_diag=Al2O3_sig2*mp.Vector3(0,0,1)),
mp.LorentzianSusceptibility(frequency=Al2O3_frq3, gamma=Al2O3_gam3, sigma_diag=Al2O3_sig3*mp.Vector3(0,0,1))]
Al2O3_aniso = mp.Medium(epsilon=1, E_susceptibilities=Al2O3_susc_o+Al2O3_susc_e, valid_freq_range=Al2O3_range)
#------------------------------------------------------------------
# yttrium oxide (Y2O3) from Y. Nigara, Japanese J. of Applied Physics, Vol. 7, pp. 404-8, 1968
# ref: https://refractiveindex.info/?shelf=main&book=Y2O3&page=Nigara
# wavelength range: 0.25 - 9.6 um
Y2O3_range = mp.FreqRange(min=um_scale/9.6, max=um_scale/0.25)
Y2O3_frq1 = 1/(0.1387*um_scale)
Y2O3_gam1 = 0
Y2O3_sig1 = 2.578
Y2O3_frq2 = 1/(22.936*um_scale)
Y2O3_gam2 = 0
Y2O3_sig2 = 3.935
Y2O3_susc = [mp.LorentzianSusceptibility(frequency=Y2O3_frq1, gamma=Y2O3_gam1, sigma=Y2O3_sig1),
mp.LorentzianSusceptibility(frequency=Y2O3_frq2, gamma=Y2O3_gam2, sigma=Y2O3_sig2)]
Y2O3 = mp.Medium(epsilon=1.0, E_susceptibilities=Y2O3_susc, valid_freq_range=Y2O3_range)
#------------------------------------------------------------------
# undoped yttrium aluminum garnet (YAG) from D.E. Zelmon et al., Applied Optics, Vol. 37, 4933-5, 1998
# ref: https://refractiveindex.info/?shelf=main&book=Y3Al5O12&page=Zelmon
# wavelength range: 0.4 - 5.0 um
YAG_range = mp.FreqRange(min=um_scale/5.0, max=um_scale/0.4)
YAG_frq1 = 1/(0.1088577052853862*um_scale)
YAG_gam1 = 0
YAG_sig1 = 2.28200
YAG_frq2 = 1/(16.814695953242804*um_scale)
YAG_gam2 = 0
YAG_sig2 = 3.27644
YAG_susc = [mp.LorentzianSusceptibility(frequency=YAG_frq1, gamma=YAG_gam1, sigma=YAG_sig1),
mp.LorentzianSusceptibility(frequency=YAG_frq2, gamma=YAG_gam2, sigma=YAG_sig2)]
YAG = mp.Medium(epsilon=1.0, E_susceptibilities=YAG_susc, valid_freq_range=YAG_range)
#------------------------------------------------------------------
# cadmium telluride (CdTe) from D.T.F. Marple, J. Applied Physics, Vol. 35, pp. 539-42, 1964
# ref: https://refractiveindex.info/?shelf=main&book=CdTe&page=Marple
# wavelength range: 0.86 - 2.5 um
CdTe_range = mp.FreqRange(min=um_scale/2.5, max=um_scale/0.86)
CdTe_frq1 = 1/(0.6049793384901669*um_scale)
CdTe_gam1 = 0
CdTe_sig1 = 1.53
CdTe_susc = [mp.LorentzianSusceptibility(frequency=CdTe_frq1, gamma=CdTe_gam1, sigma=CdTe_sig1)]
CdTe = mp.Medium(epsilon=5.68, E_susceptibilities=CdTe_susc, valid_freq_range=CdTe_range)
|