1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
|
from __future__ import division
import math
import numpy as np
import meep as mp
from . import map_data
from . import MPBArray
class MPBData(object):
TWOPI = 6.2831853071795864769252867665590057683943388
def __init__(self,
lattice=None,
kpoint=None,
rectify=False,
x=0,
y=0,
z=0,
periods=0,
resolution=0,
phase_angle=0,
pick_nearest=False,
ve=None,
verbose=False):
self.lattice = lattice
self.kpoint = kpoint
self.rectify = rectify
if periods:
self.multiply_size = [periods, periods, periods]
else:
self.multiply_size = [
x if x else 1,
y if y else 1,
z if z else 1
]
self.resolution = resolution
self.phase_angle = phase_angle
self.pick_nearest = pick_nearest
self.ve = ve
if self.ve:
self.have_ve = True
self.rectify = True
else:
self.have_ve = False
self.ve = mp.Vector3(1, 0, 0)
self.verbose = verbose
self.scaleby = complex(1, 0)
self.phase = complex(math.cos(self.TWOPI * self.phase_angle / 360.0),
math.sin(self.TWOPI * self.phase_angle / 360.0))
self.scaleby *= self.phase
def handle_dataset(self, in_arr):
out_dims = [1, 1, 1]
rank = len(in_arr.shape)
num_ones = 3 - rank
in_dims = [x for x in in_arr.shape] + [1] * num_ones
if np.iscomplexobj(in_arr):
in_arr_re = np.real(in_arr)
in_arr_im = np.imag(in_arr)
else:
in_arr_re = in_arr
in_arr_im = None
if self.verbose:
fmt = "Input data is rank {}, size {}x{}x{}."
print(fmt.format(rank, in_dims[0], in_dims[1], in_dims[2]))
if self.resolution > 0:
out_dims[0] = math.floor(self.Rout.c1.norm() * self.resolution + 0.5)
out_dims[1] = math.floor(self.Rout.c2.norm() * self.resolution + 0.5)
out_dims[2] = math.floor(self.Rout.c3.norm() * self.resolution + 0.5)
else:
for i in range(3):
out_dims[i] = in_dims[i] * self.multiply_size[i]
for i in range(rank, 3):
out_dims[i] = 1
N = 1
for i in range(3):
out_dims[i] = int(max(out_dims[i], 1))
N *= out_dims[i]
if self.verbose:
print("Output data {}x{}x{}".format(out_dims[0], out_dims[1], out_dims[2]))
out_arr_re = np.zeros(int(N))
if isinstance(in_arr_im, np.ndarray):
out_arr_im = np.zeros(int(N))
else:
out_arr_im = np.array([])
flat_in_arr_re = in_arr_re.ravel()
flat_in_arr_im = in_arr_im.ravel() if isinstance(in_arr_im, np.ndarray) else np.array([])
if self.kpoint:
kvector = [self.kpoint.x, self.kpoint.y, self.kpoint.z]
else:
kvector = []
map_data(flat_in_arr_re, flat_in_arr_im, np.array(in_dims, dtype=np.intc),
out_arr_re, out_arr_im, np.array(out_dims, dtype=np.intc), self.coord_map,
kvector, self.pick_nearest, self.verbose, False)
if np.iscomplexobj(in_arr):
# multiply * scaleby for complex data
complex_out = np.vectorize(complex)(out_arr_re, out_arr_im)
complex_out *= self.scaleby
return np.reshape(complex_out, out_dims[:rank])
return np.reshape(out_arr_re, out_dims[:rank])
def handle_cvector_dataset(self, in_arr, multiply_bloch_phase):
in_x_re = np.real(in_arr[:, :, :, 0]).ravel()
in_x_im = np.imag(in_arr[:, :, :, 0]).ravel()
in_y_re = np.real(in_arr[:, :, :, 1]).ravel()
in_y_im = np.imag(in_arr[:, :, :, 1]).ravel()
in_z_re = np.real(in_arr[:, :, :, 2]).ravel()
in_z_im = np.imag(in_arr[:, :, :, 2]).ravel()
d_in = [[in_x_re, in_x_im], [in_y_re, in_y_im], [in_z_re, in_z_im]]
in_dims = [in_arr.shape[0], in_arr.shape[1], 1]
rank = 2
if self.verbose:
print("Found complex vector dataset...")
if self.verbose:
fmt = "Input data is rank {}, size {}x{}x{}."
print(fmt.format(rank, in_dims[0], in_dims[1], in_dims[2]))
# rotate vector field according to cart_map
if self.verbose:
fmt1 = "Rotating vectors by matrix [ {:.10g}, {:.10g}, {:.10g}"
fmt2 = " {:.10g}, {:.10g}, {:.10g}"
fmt3 = " {:.10g}, {:.10g}, {:.10g} ]"
print(fmt1.format(self.cart_map.c1.x, self.cart_map.c2.x, self.cart_map.c3.x))
print(fmt2.format(self.cart_map.c1.y, self.cart_map.c2.y, self.cart_map.c3.y))
print(fmt3.format(self.cart_map.c1.z, self.cart_map.c2.z, self.cart_map.c3.z))
N = in_dims[0] * in_dims[1]
for ri in range(2):
for i in range(N):
v = mp.Vector3(d_in[0][ri][i], d_in[1][ri][i], d_in[2][ri][i])
v = self.cart_map * v
d_in[0][ri][i] = v.x
d_in[1][ri][i] = v.y
d_in[2][ri][i] = v.z
out_dims = [1, 1, 1]
if self.resolution > 0:
out_dims[0] = self.Rout.c1.norm() * self.resolution + 0.5
out_dims[1] = self.Rout.c2.norm() * self.resolution + 0.5
out_dims[2] = self.Rout.c3.norm() * self.resolution + 0.5
else:
for i in range(3):
out_dims[i] = in_dims[i] * self.multiply_size[i]
out_dims[2] = 1
N = 1
for i in range(3):
out_dims[i] = int(max(out_dims[i], 1))
N *= out_dims[i]
if self.verbose:
fmt = "Output data {}x{}x{}."
print(fmt.format(out_dims[0], out_dims[1], out_dims[2]))
if self.kpoint:
kvector = [self.kpoint.x, self.kpoint.y, self.kpoint.z]
else:
kvector = []
converted = []
for dim in range(3):
out_arr_re = np.zeros(int(N))
out_arr_im = np.zeros(int(N))
map_data(d_in[dim][0].ravel(), d_in[dim][1].ravel(), np.array(in_dims, dtype=np.intc),
out_arr_re, out_arr_im, np.array(out_dims, dtype=np.intc), self.coord_map,
kvector, self.pick_nearest, self.verbose, multiply_bloch_phase)
# multiply * scaleby
complex_out = np.vectorize(complex)(out_arr_re, out_arr_im)
complex_out *= self.scaleby
converted.append(complex_out)
result = np.zeros(np.prod(out_dims) * 3, np.complex128)
result[0::3] = converted[0]
result[1::3] = converted[1]
result[2::3] = converted[2]
return np.reshape(result, (out_dims[0], out_dims[1], 3))
def init_output_lattice(self):
cart_map = mp.Matrix(
mp.Vector3(1, 0, 0),
mp.Vector3(0, 1, 0),
mp.Vector3(0, 0, 1)
)
Rin = mp.Matrix(
mp.Vector3(*self.lattice[0]),
mp.Vector3(*self.lattice[1]),
mp.Vector3(*self.lattice[2])
)
if self.verbose:
print("Read lattice vectors")
if self.kpoint:
fmt = "Read Bloch wavevector ({:.6g}, {:.6g}, {:.6g})"
print(fmt.format(self.kpoint.x, self.kpoint.y, self.kpoint.z))
fmt = "Input lattice = ({:.6g}, {:.6g}, {:.6g}), ({:.6g}, {:.6g}, {:.6g}), ({:.6g}, {:.6g}, {:.6g})"
print(fmt.format(Rin.c1.x, Rin.c1.y, Rin.c1.z,
Rin.c2.x, Rin.c2.y, Rin.c2.z,
Rin.c3.x, Rin.c3.y, Rin.c3.z))
Rout = mp.Matrix(Rin.c1, Rin.c2, Rin.c3)
if self.rectify:
# Orthogonalize the output lattice vectors. If have_ve is true,
# then the first new lattice vector should be in the direction
# of the ve unit vector; otherwise, the first new lattice vector
# is the first original lattice vector. Note that we do this in
# such a way as to preserve the volume of the unit cell, and so
# that our first vector (in the direction of ve) smoothly
# interpolates between the original lattice vectors.
if self.have_ve:
ve = self.ve.unit()
else:
ve = Rout.c1.unit()
# First, compute c1 in the direction of ve by smoothly
# interpolating the old c1/c2/c3 (formula is slightly tricky)
V = Rout.c1.cross(Rout.c2).dot(Rout.c3)
Rout.c2 = Rout.c2 - Rout.c1
Rout.c3 = Rout.c3 - Rout.c1
Rout.c1 = ve.scale(V / Rout.c2.cross(Rout.c3).dot(ve))
# Now, orthogonalize c2 and c3
Rout.c2 = Rout.c2 - ve.scale(ve.dot(Rout.c2))
Rout.c3 = Rout.c3 - ve.scale(ve.dot(Rout.c3))
Rout.c3 = Rout.c3 - Rout.c2.scale(Rout.c2.dot(Rout.c3) /
Rout.c2.dot(Rout.c2))
cart_map.c1 = Rout.c1.unit()
cart_map.c2 = Rout.c2.unit()
cart_map.c3 = Rout.c3.unit()
cart_map = cart_map.inverse()
Rout.c1 = Rout.c1.scale(self.multiply_size[0])
Rout.c2 = Rout.c2.scale(self.multiply_size[1])
Rout.c3 = Rout.c3.scale(self.multiply_size[2])
if self.verbose:
fmt = "Output lattice = ({:.6g}, {:.6g}, {:.6g}), ({:.6g}, {:.6g}, {:.6g}), ({:.6g}, {:.6g}, {:.6g})"
print(fmt.format(Rout.c1.x, Rout.c1.y, Rout.c1.z,
Rout.c2.x, Rout.c2.y, Rout.c2.z,
Rout.c3.x, Rout.c3.y, Rout.c3.z))
self.coord_map = Rin.inverse() * Rout
self.Rout = Rout
self.cart_map = cart_map
def convert(self, arr, kpoint=None):
if isinstance(arr, MPBArray):
self.lattice = arr.lattice
self.kpoint = arr.kpoint
if self.lattice is None:
err = ("Couldn't find 'lattice.' You must do one of the following:\n" +
" 1. Pass the ModeSolver lattice to the MPBData constructor\n" +
" i.e., MPBData(lattice=ms.get_lattice())\n" +
" 2. Create an MPBArray to pass to MPBData.convert()\n" +
" i.e., mpb_arr = MPBArray(arr, ms.get_lattice(), ... ); mpb_data.convert(mpb_arr))")
raise ValueError(err)
if kpoint:
self.kpoint = kpoint
self.init_output_lattice()
if len(arr.shape) == 4:
return self.handle_cvector_dataset(arr, not arr.bloch_phase)
else:
return self.handle_dataset(arr)
|