File: fragment_stats.py

package info (click to toggle)
meep-openmpi 1.7.0-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 25,828 kB
  • sloc: cpp: 27,370; python: 10,574; lisp: 1,213; makefile: 437; sh: 28
file content (859 lines) | stat: -rw-r--r-- 36,245 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
from __future__ import division

import unittest
import meep as mp


def make_dft_vecs(flx_reg=None, n2f_reg=None, frc_reg=None, fldc=None, flds=None, fldw=None, fld_cmp=None):
    dft_vecs = {
        'flux_regions': flx_reg,
        'n2f_regions': n2f_reg,
        'force_regions': frc_reg,
        'fields_center': fldc,
        'fields_size': flds,
        'fields_where': fldw,
        'fields_components': fld_cmp
    }
    return dft_vecs


class TestFragmentStats(unittest.TestCase):

    def check_stats(self, fragment, a_eps, a_mu, nonlin, susc, cond):
        self.assertEqual(fragment.num_anisotropic_eps_pixels, a_eps)
        self.assertEqual(fragment.num_anisotropic_mu_pixels, a_mu)
        self.assertEqual(fragment.num_nonlinear_pixels, nonlin)
        self.assertEqual(fragment.num_susceptibility_pixels, susc)
        self.assertEqual(fragment.num_nonzero_conductivity_pixels, cond)

    def get_fragment_stats(self, block_size, cell_size, dims, box_center=mp.Vector3(), dft_vecs=None,
                           def_mat=mp.air, sym=[], geom=None, pml=[]):
        mat = mp.Medium(
            epsilon=12,
            epsilon_offdiag=mp.Vector3(z=1),
            mu_offdiag=mp.Vector3(x=20),
            E_chi2_diag=mp.Vector3(1, 1),
            H_chi3_diag=mp.Vector3(z=1),
            E_susceptibilities=[mp.LorentzianSusceptibility(), mp.NoisyLorentzianSusceptibility()],
            H_susceptibilities=[mp.DrudeSusceptibility()],
            D_conductivity_diag=mp.Vector3(y=1),
            B_conductivity_diag=mp.Vector3(x=1, z=1)
        )

        if geom is None:
            geom = [mp.Block(size=block_size, center=box_center, material=mat)]
        sim = mp.Simulation(cell_size=cell_size, resolution=10, geometry=geom, dimensions=dims,
                            default_material=def_mat, symmetries=sym, boundary_layers=pml)

        if dft_vecs:
            if dft_vecs['flux_regions']:
                sim.add_flux(1, 0.5, 5, *dft_vecs['flux_regions'])
            if dft_vecs['n2f_regions']:
                sim.add_near2far(1, 0.5, 7, *dft_vecs['n2f_regions'])
            if dft_vecs['force_regions']:
                sim.add_force(1, 0.5, 9, *dft_vecs['force_regions'])
            if dft_vecs['fields_components']:
                sim.add_dft_fields(dft_vecs['fields_components'], 0, 1, 5, where=dft_vecs['fields_where'],
                                   center=dft_vecs['fields_center'], size=dft_vecs['fields_size'])

        gv = sim._create_grid_volume(False)
        stats = sim._compute_fragment_stats(gv)

        return stats

    def _test_1d(self, sym, pml=[]):
        # A z=30 cell, split into three fragments of size 10 each, with a block
        # covering the middle fragment.

        # flux covering first fragment, near2far covering second, force covering third
        dft_vecs = make_dft_vecs(
            [mp.FluxRegion(mp.Vector3(z=-10), size=mp.Vector3(z=10))],
            [mp.Near2FarRegion(mp.Vector3(), size=mp.Vector3(z=10))],
            [mp.ForceRegion(mp.Vector3(z=10), direction=mp.X, size=mp.Vector3(z=10))]
        )

        fs = self.get_fragment_stats(mp.Vector3(z=10), mp.Vector3(z=30), 1, dft_vecs=dft_vecs, sym=sym, pml=pml)

        self.assertEqual(len(fs), 3)

        # First and last fragments have no geometry, only default_material
        for i in [0, 2]:
            self.check_stats(fs[i], 0, 0, 0, 0, 0)

        # Second fragment contains entire block
        sym_factor = 2 if sym else 1
        self.check_stats(fs[1],
                         a_eps=100 / sym_factor,
                         a_mu=100 / sym_factor,
                         nonlin=300 / sym_factor,
                         susc=300 / sym_factor,
                         cond=300 / sym_factor)

        # Check DFT regions
        self.assertEqual(fs[0].num_dft_pixels, 8224)
        self.assertEqual(fs[1].num_dft_pixels, 11792)
        self.assertEqual(fs[2].num_dft_pixels, 21824)

        self.fs = fs

    def test_1d(self):
        self._test_1d([])

    def test_1d_with_symmetry(self):
        self._test_1d([mp.Mirror(mp.X)])

    def test_1d_with_pml(self):
        self._test_1d([], pml=[mp.PML(1)])

        for i in range(3):
            self.assertEqual(self.fs[i].num_2d_pml_pixels, 0)
            self.assertEqual(self.fs[i].num_3d_pml_pixels, 0)

        self.assertEqual(self.fs[0].num_1d_pml_pixels, 10)
        self.assertEqual(self.fs[1].num_1d_pml_pixels, 0)
        self.assertEqual(self.fs[2].num_1d_pml_pixels, 10)

    def test_1d_with_overlap(self):
        # A z=30 cell split into three fragments of size 10 each, with a block
        # covering the middle fragment, and half of the two outer fragments.

        mat = mp.Medium(H_susceptibilities=[mp.DrudeSusceptibility()])
        fs = self.get_fragment_stats(mp.Vector3(z=20), mp.Vector3(z=30), 1, def_mat=mat)

        self.assertEqual(len(fs), 3)

        # Middle fragment is completely covered by the block
        self.check_stats(fs[1], a_eps=100, a_mu=100, nonlin=300, susc=300, cond=300)

        # Outer two fragments are half covered by the block, and half covered by default_material 'mat'
        for i in [0, 2]:
            self.check_stats(fs[i], a_eps=50, a_mu=50, nonlin=150, susc=200, cond=150)

    def test_1d_with_partial_fragment(self):
        # A cell with z=26, with a 16 unit block in the center, split into 3 fragments,
        # with the first and last fragment of length 8, and 3/8 covered by the block,
        # and the middle fragment completely covered.

        # dft_flux with 2 volumes, 1 covering the first fragment and one covering
        # half of the second fragment
        dft_vecs = make_dft_vecs(flx_reg=[
            mp.FluxRegion(mp.Vector3(z=-9), mp.Vector3(z=8)),
            mp.FluxRegion(mp.Vector3(z=-2.5), mp.Vector3(z=5))
        ])
        fs = self.get_fragment_stats(mp.Vector3(z=16), mp.Vector3(z=26), 1, dft_vecs=dft_vecs)

        self.assertEqual(len(fs), 3)
        # Check first and last box sizes
        self.assertEqual(fs[0].box.low.z, -13)
        self.assertEqual(fs[0].box.high.z, -5)
        self.assertEqual(fs[2].box.low.z, 5)
        self.assertEqual(fs[2].box.high.z, 13)

        # Middle fragment is completely covered by block
        self.check_stats(fs[1], a_eps=100, a_mu=100, nonlin=300, susc=300, cond=300)
        # Outer fragments are 3/8 covered
        for i in [0, 2]:
            self.check_stats(fs[i], a_eps=30, a_mu=30, nonlin=90, susc=90, cond=90)

        # Check dft stats
        self.assertEqual(fs[0].num_dft_pixels, 6560)
        self.assertEqual(fs[1].num_dft_pixels, 4160)
        self.assertEqual(fs[2].num_dft_pixels, 0)

    def test_1d_with_shifted_center(self):
        # A cell with z=26, with a 16 unit block shifted so that the right side is flush,
        # with the right side of the cell, split into 3 fragments, with the first and last
        # fragments of length 8, the first uncovered and the last completely covered by the
        # block, and the middle fragment 80% covered by the block.
        fs = self.get_fragment_stats(mp.Vector3(z=16), mp.Vector3(z=26), 1, mp.Vector3(z=5))

        self.assertEqual(len(fs), 3)
        # Check first and last box sizes
        self.assertEqual(fs[0].box.low.z, -13)
        self.assertEqual(fs[0].box.high.z, -5)
        self.assertEqual(fs[2].box.low.z, 5)
        self.assertEqual(fs[2].box.high.z, 13)

        # First fragment is uncovered
        self.check_stats(fs[0], 0, 0, 0, 0, 0)

        # Middel fragment is 80% covered
        self.check_stats(fs[1], a_eps=80, a_mu=80, nonlin=240, susc=240, cond=240)

        # Last fragment is completely covered, but only 8 units long
        self.check_stats(fs[2], a_eps=80, a_mu=80, nonlin=240, susc=240, cond=240)

    def test_1d_dft_fields(self):
        # A z=30 cell, split into three fragments of size 10 each, with a block
        # covering the middle fragment.

        # dft_fields covering first fragment
        dft_vecs = make_dft_vecs(fldc=mp.Vector3(z=-10), flds=mp.Vector3(z=10), fld_cmp=[mp.X, mp.Y])
        fs = self.get_fragment_stats(mp.Vector3(z=10), mp.Vector3(z=30), 1, dft_vecs=dft_vecs)

        self.assertEqual(len(fs), 3)

        self.assertEqual(fs[0].num_dft_pixels, 4000)
        self.assertEqual(fs[1].num_dft_pixels, 80)
        self.assertEqual(fs[2].num_dft_pixels, 0)

        # Same test with volume instead of center and size
        dft_vecs = make_dft_vecs(fldw=mp.Volume(mp.Vector3(z=-10), mp.Vector3(z=10)), fld_cmp=[mp.X, mp.Y])
        fs = self.get_fragment_stats(mp.Vector3(z=10), mp.Vector3(z=30), 1, dft_vecs=dft_vecs)

        self.assertEqual(fs[0].num_dft_pixels, 4000)
        self.assertEqual(fs[1].num_dft_pixels, 80)
        self.assertEqual(fs[2].num_dft_pixels, 0)

    def _test_2d(self, sym, pml=[]):
        # A 30 x 30 cell, with a 10 x 10 block in the middle, split into 9 10 x 10 fragments.

        # flux covering top-left fragment, near2far covering top-middle, force covering top-right
        dft_vecs = make_dft_vecs(
            [mp.FluxRegion(mp.Vector3(-10, 10), size=mp.Vector3(10, 10))],
            [mp.Near2FarRegion(mp.Vector3(0, 10), size=mp.Vector3(10, 10))],
            [mp.ForceRegion(mp.Vector3(10, 10), direction=mp.X, size=mp.Vector3(10, 10))]
        )
        fs = self.get_fragment_stats(mp.Vector3(10, 10), mp.Vector3(30, 30), 2,
                                     dft_vecs=dft_vecs, sym=sym, pml=pml)

        self.assertEqual(len(fs), 9)

        # Check fragment boxes
        self.assertEqual(fs[0].box.low.x, -15)
        self.assertEqual(fs[0].box.low.y, -15)
        self.assertEqual(fs[0].box.high.x, -5)
        self.assertEqual(fs[0].box.high.y, -5)

        self.assertEqual(fs[1].box.low.x, -15)
        self.assertEqual(fs[1].box.low.y, -5)
        self.assertEqual(fs[1].box.high.x, -5)
        self.assertEqual(fs[1].box.high.y, 5)

        self.assertEqual(fs[2].box.low.x, -15)
        self.assertEqual(fs[2].box.low.y, 5)
        self.assertEqual(fs[2].box.high.x, -5)
        self.assertEqual(fs[2].box.high.y, 15)

        # All fragments besides the middle one have no geometry, only default_material
        for i in [0, 1, 2, 3, 5, 6, 7, 8]:
            self.check_stats(fs[i], 0, 0, 0, 0, 0)

        # Middle fragment contains entire block
        idx = 4
        sym_factor = 4 if sym else 1
        self.check_stats(fs[idx],
                         a_eps=10000 / sym_factor,
                         a_mu=10000 / sym_factor,
                         nonlin=30000 / sym_factor,
                         susc=30000 / sym_factor,
                         cond=30000 / sym_factor)

        # Check DFT regions
        for i in [0, 3, 6]:
            self.assertEqual(fs[i].num_dft_pixels, 0)

        self.assertEqual(fs[1].num_dft_pixels, 8224)
        self.assertEqual(fs[4].num_dft_pixels, 11792)
        self.assertEqual(fs[7].num_dft_pixels, 21824)

        self.assertEqual(fs[2].num_dft_pixels, 411200)
        self.assertEqual(fs[5].num_dft_pixels, 589600)
        self.assertEqual(fs[8].num_dft_pixels, 1091200)

        self.fs = fs

    def test_2d(self):
        self._test_2d([])

    def test_2d_with_symmetry(self):
        self._test_2d([mp.Mirror(mp.X), mp.Mirror(mp.Y)])

    def test_2d_with_pml_all_sides(self):
        self._test_2d([], pml=[mp.PML(1, mp.Y), mp.PML(2, mp.X, mp.Low), mp.PML(3, mp.X, mp.High)])

        # Center fragment has no PML pixels
        self.assertEqual(self.fs[4].num_1d_pml_pixels, 0)
        self.assertEqual(self.fs[4].num_2d_pml_pixels, 0)
        self.assertEqual(self.fs[4].num_3d_pml_pixels, 0)

        for i in range(len(self.fs)):
            # No regions where 3 PMLs overlap
            self.assertEqual(self.fs[i].num_3d_pml_pixels, 0)

        for i in [1, 3, 5, 7]:
            # No regions where 2 PMLs overlap
            self.assertEqual(self.fs[i].num_2d_pml_pixels, 0)

        for i in [0, 2]:
            # Lower left and top left
            self.assertEqual(self.fs[i].num_1d_pml_pixels, 2600)
            self.assertEqual(self.fs[i].num_2d_pml_pixels, 200)

        for i in [6, 8]:
            # Lower right and top right
            self.assertEqual(self.fs[i].num_1d_pml_pixels, 3400)
            self.assertEqual(self.fs[i].num_2d_pml_pixels, 300)

        for i in [3, 5]:
            # bottom center, top center
            self.assertEqual(self.fs[i].num_1d_pml_pixels, 1000)

        # Right center
        self.assertEqual(self.fs[7].num_1d_pml_pixels, 3000)
        # Left center
        self.assertEqual(self.fs[1].num_1d_pml_pixels, 2000)

    def test_2d_with_absorbers(self):
        fs = self.get_fragment_stats(mp.Vector3(10, 10), mp.Vector3(30, 30), 2,
                                     geom=[], pml=[mp.Absorber(1)])

        total_nonzero_cond_pixels = 0
        for i in range(len(fs)):
            self.assertEqual(fs[i].num_1d_pml_pixels, 0)
            self.assertEqual(fs[i].num_2d_pml_pixels, 0)
            self.assertEqual(fs[i].num_3d_pml_pixels, 0)
            total_nonzero_cond_pixels += fs[i].num_nonzero_conductivity_pixels

        self.assertEqual(total_nonzero_cond_pixels, 11600)

    def test_2d_with_overlap(self):
        # A 30 x 30 cell, with a 20 x 20 block in the middle, split into 9 10 x 10 fragments.

        mat = mp.Medium(H_susceptibilities=[mp.DrudeSusceptibility()])
        fs = self.get_fragment_stats(mp.Vector3(20, 20), mp.Vector3(30, 30), 2, def_mat=mat)

        self.assertEqual(len(fs), 9)

        # Middle fragment contains entire block
        idx = 4
        self.check_stats(fs[idx], a_eps=10000, a_mu=10000, nonlin=30000, susc=30000, cond=30000)

        # Top-middle, bottom-middle, left-middle, and right-middle fragments are half
        # covered by the block, and half covered by default_material 'mat'.
        for i in [1, 3, 5, 7]:
            self.check_stats(fs[i], a_eps=5000, a_mu=5000, nonlin=15000, susc=20000, cond=15000)

        # The four corner fragments are quarter-filled by the block, and 3/4 filled by
        # default_material 'mat'
        for i in [0, 2, 6, 8]:
            self.check_stats(fs[i], a_eps=2500, a_mu=2500, nonlin=7500, susc=15000, cond=7500)

    def test_2d_with_partial_fragments_and_shifted_center(self):
        # A 26 x 26 cell with a 18 x 18 Block in the lower right corner

        fs = self.get_fragment_stats(mp.Vector3(18, 18), mp.Vector3(26, 26), 2, mp.Vector3(4, -4))

        self.assertEqual(len(fs), 9)

        # Middle fragment is 10 x 10 and covered by block
        self.check_stats(fs[4], a_eps=10000, a_mu=10000, nonlin=30000, susc=30000, cond=30000)

        for i in [0, 1, 2, 5, 8]:
            # Air
            self.check_stats(fs[i], 0, 0, 0, 0, 0)

        # 10 x 8 fragment, covered by block
        self.assertEqual(fs[3].box.low.x, -5)
        self.assertEqual(fs[3].box.low.y, -13)
        self.assertEqual(fs[3].box.high.x, 5)
        self.assertEqual(fs[3].box.high.y, -5)
        self.check_stats(fs[3], a_eps=8000, a_mu=8000, nonlin=24000, susc=24000, cond=24000)

        # 8 x 10 fragment, covered by block
        self.assertEqual(fs[7].box.low.x, 5)
        self.assertEqual(fs[7].box.low.y, -5)
        self.assertEqual(fs[7].box.high.x, 13)
        self.assertEqual(fs[7].box.high.y, 5)
        self.check_stats(fs[7], a_eps=8000, a_mu=8000, nonlin=24000, susc=24000, cond=24000)

        # 8 x 8 fragment covered by block
        self.assertEqual(fs[6].box.low.x, 5)
        self.assertEqual(fs[6].box.low.y, -13)
        self.assertEqual(fs[6].box.high.x, 13)
        self.assertEqual(fs[6].box.high.y, -5)
        self.check_stats(fs[6], a_eps=6400, a_mu=6400, nonlin=19200, susc=19200, cond=19200)

    def test_2d_dft_fields(self):
        # A 30 x 30 cell, with a 10 x 10 block in the middle, split into 9 10 x 10 fragments.

        # dft_fields covering 20 by 20 area in center of cell. Test with volume, and center/size
        cmpts = [mp.Ex, mp.Ey, mp.Ez]
        dft_fields_size_center = make_dft_vecs(fldc=mp.Vector3(), flds=mp.Vector3(20, 20), fld_cmp=cmpts)
        dft_fields_where = make_dft_vecs(fldw=mp.Volume(mp.Vector3(), mp.Vector3(20, 20)), fld_cmp=cmpts)

        for dft_vec in [dft_fields_size_center, dft_fields_where]:
            fs = self.get_fragment_stats(mp.Vector3(10, 10), mp.Vector3(30, 30), 2, dft_vecs=dft_vec)

            # Middle fragment is fully covered
            self.assertEqual(fs[4].num_dft_pixels, 300000)

            # 4 corners are 1/4 covered
            for i in [0, 2, 6, 8]:
                self.assertEqual(fs[i].num_dft_pixels, 75000)

            # The rest are half covered
            for i in [1, 3, 5, 7]:
                self.assertEqual(fs[i].num_dft_pixels, 150000)

    def test_2d_pml_and_absorber(self):
        blayers = [mp.PML(1, mp.Y, mp.High), mp.PML(2, mp.Y, mp.Low),
                   mp.Absorber(1, mp.X, mp.High), mp.Absorber(3, mp.X, mp.Low)]
        fragments = self.get_fragment_stats(mp.Vector3(), mp.Vector3(30, 30), 2, pml=blayers, geom=[])

        num_nonzero_cond = 0
        num_pml_1d = 0
        num_pml_2d = 0
        num_pml_3d = 0

        for f in fragments:
            num_nonzero_cond += f.num_nonzero_conductivity_pixels
            num_pml_1d += f.num_1d_pml_pixels
            num_pml_2d += f.num_2d_pml_pixels
            num_pml_3d += f.num_3d_pml_pixels

        self.assertEqual(num_nonzero_cond, 12000)
        self.assertEqual(num_pml_1d, 9000)
        self.assertEqual(num_pml_2d, 0)
        self.assertEqual(num_pml_3d, 0)

    def _test_3d(self, sym, pml=[]):
        # A 30 x 30 x 30 cell with a 10 x 10 x 10 block placed at the center, split
        # into 27 10 x 10 x 10 fragments

        # flux covering lower-front-left fragment, near2far covering lower-middle-left,
        # force covering lower-back-left
        dft_vecs = make_dft_vecs(
            [mp.FluxRegion(mp.Vector3(-10, -10, -10), size=mp.Vector3(10, 10, 10))],
            [mp.Near2FarRegion(mp.Vector3(-10, -10, 0), size=mp.Vector3(10, 10, 10))],
            [mp.ForceRegion(mp.Vector3(-10, -10, 10), direction=mp.X, size=mp.Vector3(10, 10, 10))]
        )
        fs = self.get_fragment_stats(mp.Vector3(10, 10, 10), mp.Vector3(30, 30, 30), 3,
                                     dft_vecs=dft_vecs, sym=sym, pml=pml)

        self.assertEqual(len(fs), 27)

        # All fragments besides the middle one have no geometry, only default_material
        for i in range(27):
            if i == 13:
                continue
            self.check_stats(fs[i], 0, 0, 0, 0, 0)

        # Middle fragments contains entire block
        idx = 13
        sym_factor = 8 if sym else 1
        self.check_stats(fs[idx],
                         a_eps=1000000 / sym_factor,
                         a_mu=1000000 / sym_factor,
                         nonlin=3000000 / sym_factor,
                         susc=3000000 / sym_factor,
                         cond=3000000 / sym_factor)

        # Check DFT regions
        self.assertEqual(fs[0].num_dft_pixels, 20560000)
        self.assertEqual(fs[1].num_dft_pixels, 29480000)
        self.assertEqual(fs[2].num_dft_pixels, 54560000)

        self.fs = fs

    def test_3d(self):
        self._test_3d([])

    def test_3d_with_symmetry(self):
        self._test_3d([mp.Mirror(mp.X), mp.Mirror(mp.Y), mp.Mirror(mp.Z)])

    def test_3d_with_pml(self):
        self._test_3d([], pml=[mp.PML(1, mp.Y, mp.High), mp.PML(2, mp.Y, mp.Low), mp.PML(3, mp.X),
                               mp.PML(1, mp.Z, mp.High), mp.PML(2, mp.Z, mp.Low)])

        # bottom left near
        self.assertEqual(self.fs[0].num_1d_pml_pixels, 416000)
        self.assertEqual(self.fs[0].num_2d_pml_pixels, 124000)
        self.assertEqual(self.fs[0].num_3d_pml_pixels, 12000)

    def test_3d_with_absorbers(self):
        fs = self.get_fragment_stats(mp.Vector3(), mp.Vector3(30, 30, 30), 3,
                                     geom=[], pml=[mp.Absorber(1)])

        total_nonzero_cond_pixels = 0
        for i in range(len(fs)):
            self.assertEqual(fs[i].num_1d_pml_pixels, 0)
            self.assertEqual(fs[i].num_2d_pml_pixels, 0)
            self.assertEqual(fs[i].num_3d_pml_pixels, 0)
            total_nonzero_cond_pixels += fs[i].num_nonzero_conductivity_pixels

        self.assertEqual(total_nonzero_cond_pixels, 5048000)

    def test_3d_with_overlap(self):
        # A 30 x 30 x 30 cell with a 20 x 20 x 20 block placed at the center, split
        # into 27 10 x 10 x 10 fragments

        mat = mp.Medium(E_susceptibilities=[mp.DrudeSusceptibility()])
        fs = self.get_fragment_stats(mp.Vector3(20, 20, 20), mp.Vector3(30, 30, 30), 3, def_mat=mat)

        self.assertEqual(len(fs), 27)

        # Middle fragment contains entire block
        idx = 13
        self.check_stats(fs[idx], a_eps=1000000, a_mu=1000000, nonlin=3000000, susc=3000000, cond=3000000)

        # Six fragments adjacent to the middle fragment faces will be half covered by the block,
        # and half covered by default_material 'mat'
        for i in [4, 10, 12, 14, 16, 22]:
            self.check_stats(fs[i], a_eps=500000, a_mu=500000, nonlin=1500000, susc=2000000, cond=1500000)

        # The corners will be 1/8 covered by the block and 7/8 covered by default_material 'mat'
        for i in [0, 2, 6, 8, 18, 20, 24, 26]:
            self.check_stats(fs[i], a_eps=125000, a_mu=125000, nonlin=375000, susc=1250000, cond=375000)

        # The rest will be 1/4 covered by the block and 3/4 covered by default_material 'mat'
        for i in [1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25]:
            self.check_stats(fs[i], a_eps=250000, a_mu=250000, nonlin=750000, susc=1500000, cond=750000)

    def test_cyl(self):
        # A 30 x 30 cell, with a 10 x 10 block in the middle, split into 9 10 x 10 fragments.

        # flux covering top-left fragment, near2far covering top-middle, force covering top-right
        dft_vecs = make_dft_vecs(
            [mp.FluxRegion(mp.Vector3(-10, z=10), size=mp.Vector3(10, z=10))],
            [mp.Near2FarRegion(mp.Vector3(0, z=10), size=mp.Vector3(10, z=10))],
            [mp.ForceRegion(mp.Vector3(10, z=10), direction=mp.X, size=mp.Vector3(10, z=10))]
        )
        fs = self.get_fragment_stats(mp.Vector3(10, 0, 10), mp.Vector3(30, 0, 30),
                                     mp.CYLINDRICAL, dft_vecs=dft_vecs)

        self.assertEqual(len(fs), 9)

        # Check fragment boxes
        self.assertEqual(fs[0].box.low.x, -15)
        self.assertEqual(fs[0].box.low.z, -15)
        self.assertEqual(fs[0].box.high.x, -5)
        self.assertEqual(fs[0].box.high.z, -5)

        self.assertEqual(fs[1].box.low.x, -15)
        self.assertEqual(fs[1].box.low.z, -5)
        self.assertEqual(fs[1].box.high.x, -5)
        self.assertEqual(fs[1].box.high.z, 5)

        self.assertEqual(fs[2].box.low.x, -15)
        self.assertEqual(fs[2].box.low.z, 5)
        self.assertEqual(fs[2].box.high.x, -5)
        self.assertEqual(fs[2].box.high.z, 15)

        # All fragments besides the middle one have no geometry, only default_material
        for i in [0, 1, 2, 3, 5, 6, 7, 8]:
            self.check_stats(fs[i], 0, 0, 0, 0, 0)

        # Middle fragment contains entire block
        idx = 4
        self.check_stats(fs[idx], a_eps=10000, a_mu=10000, nonlin=30000, susc=30000, cond=30000)

        # Check DFT regions
        for i in [0, 3, 6]:
            self.assertEqual(fs[i].num_dft_pixels, 0)

        self.assertEqual(fs[1].num_dft_pixels, 8224)
        self.assertEqual(fs[4].num_dft_pixels, 11792)
        self.assertEqual(fs[7].num_dft_pixels, 21824)

        self.assertEqual(fs[2].num_dft_pixels, 411200)
        self.assertEqual(fs[5].num_dft_pixels, 589600)
        self.assertEqual(fs[8].num_dft_pixels, 1091200)

    def test_no_geometry(self):
        mat = mp.Medium(
            epsilon=12,
            epsilon_offdiag=mp.Vector3(x=1),
            mu_offdiag=mp.Vector3(x=20),
            E_chi2_diag=mp.Vector3(1, 1),
            H_chi3_diag=mp.Vector3(x=1),
            E_susceptibilities=[mp.LorentzianSusceptibility(), mp.NoisyLorentzianSusceptibility()],
            H_susceptibilities=[mp.DrudeSusceptibility()],
            D_conductivity_diag=mp.Vector3(y=1),
            B_conductivity_diag=mp.Vector3(x=1, z=1)
        )
        fs = self.get_fragment_stats(mp.Vector3(), mp.Vector3(10, 10), 2, def_mat=mat, geom=[])

        self.assertEqual(len(fs), 1)
        self.check_stats(fs[0], a_eps=10000, a_mu=10000, nonlin=30000, susc=30000, cond=30000)

    def test_1d_cell_smaller_than_minimum_fragment_size(self):
        fs = self.get_fragment_stats(mp.Vector3(z=1), mp.Vector3(z=1), 1)
        self.assertEqual(len(fs), 1)
        stats = fs[0]
        self.assertEqual(stats.box.low.z, -0.5)
        self.assertEqual(stats.box.high.z, 0.5)
        self.assertEqual(stats.num_pixels_in_box, 10)

    def test_2d_cell_smaller_than_minimum_fragment_size(self):
        fs = self.get_fragment_stats(mp.Vector3(1, 1), mp.Vector3(1, 1), 2)
        self.assertEqual(len(fs), 1)
        stats = fs[0]
        self.assertEqual(stats.box.low.x, -0.5)
        self.assertEqual(stats.box.low.y, -0.5)
        self.assertEqual(stats.box.high.x, 0.5)
        self.assertEqual(stats.box.high.y, 0.5)
        self.assertEqual(stats.num_pixels_in_box, 100)

    def test_3d_cell_smaller_than_minimum_fragment_size(self):
        fs = self.get_fragment_stats(mp.Vector3(1, 1, 1), mp.Vector3(1, 1, 1), 3)
        self.assertEqual(len(fs), 1)
        stats = fs[0]
        self.assertEqual(stats.box.low.x, -0.5)
        self.assertEqual(stats.box.low.y, -0.5)
        self.assertEqual(stats.box.low.z, -0.5)
        self.assertEqual(stats.box.high.x, 0.5)
        self.assertEqual(stats.box.high.y, 0.5)
        self.assertEqual(stats.box.high.z, 0.5)
        self.assertEqual(stats.num_pixels_in_box, 1000)


class TestPMLToVolList(unittest.TestCase):

    def make_sim(self, cell, res, pml, dims):
        sim = mp.Simulation(cell_size=cell, resolution=res, boundary_layers=pml, dimensions=dims)
        sim._create_grid_volume(False)
        return sim

    def check1d(self, vol, expected_min, expected_max):
        min_vec = vol.get_min_corner()
        max_vec = vol.get_max_corner()
        min_v3 = mp.Vector3(z=min_vec.z())
        max_v3 = mp.Vector3(z=max_vec.z())
        self.assertEqual(mp.Vector3(z=expected_min), min_v3)
        self.assertEqual(mp.Vector3(z=expected_max), max_v3)

    def check2d(self, vol, expected_min, expected_max):
        min_vec = vol.get_min_corner()
        max_vec = vol.get_max_corner()
        min_v3 = mp.Vector3(min_vec.x(), min_vec.y())
        max_v3 = mp.Vector3(max_vec.x(), max_vec.y())
        self.assertEqual(expected_min, min_v3)
        self.assertEqual(expected_max, max_v3)

    def checkcyl(self, vol, expected_min, expected_max):
        min_vec = vol.get_min_corner()
        max_vec = vol.get_max_corner()
        min_v3 = mp.Vector3(min_vec.r(), 0, min_vec.z())
        max_v3 = mp.Vector3(max_vec.r(), 0, max_vec.z())
        self.assertEqual(expected_min, min_v3)
        self.assertEqual(expected_max, max_v3)

    def check3d(self, vol, expected_min, expected_max):
        min_vec = vol.get_min_corner()
        max_vec = vol.get_max_corner()
        min_v3 = mp.Vector3(min_vec.x(), min_vec.y(), min_vec.z())
        max_v3 = mp.Vector3(max_vec.x(), max_vec.y(), max_vec.z())
        self.assertEqual(expected_min, min_v3)
        self.assertEqual(expected_max, max_v3)

    def test_1d_all_sides(self):
        sim = self.make_sim(mp.Vector3(z=10), 10, [mp.PML(1)], 1)
        v1, v2, v3 = sim._boundary_layers_to_vol_list(sim.boundary_layers)

        self.assertFalse(v2)
        self.assertFalse(v3)
        self.assertEqual(len(v1), 2)
        self.check1d(v1[0], 4, 5)
        self.check1d(v1[1], -5, -4)

    def test_1d_high_side(self):
        sim = self.make_sim(mp.Vector3(z=10), 10, [mp.PML(1, side=mp.High)], 1)
        v1, v2, v3 = sim._boundary_layers_to_vol_list(sim.boundary_layers)

        self.assertFalse(v2)
        self.assertFalse(v3)
        self.assertEqual(len(v1), 1)
        self.check1d(v1[0], 4, 5)

    def test_1d_two_sides_different_thickness(self):
        sim = self.make_sim(mp.Vector3(z=10), 10, [mp.PML(1, side=mp.High), mp.PML(2, side=mp.Low)], 1)
        v1, v2, v3 = sim._boundary_layers_to_vol_list(sim.boundary_layers)

        self.assertFalse(v2)
        self.assertFalse(v3)
        self.assertEqual(len(v1), 2)
        self.check1d(v1[0], 4, 5)
        self.check1d(v1[1], -5, -3)

    def test_2d_all_directions_all_sides(self):
        sim = self.make_sim(mp.Vector3(10, 10), 10, [mp.PML(1)], 2)
        v1, v2, v3 = sim._boundary_layers_to_vol_list(sim.boundary_layers)

        self.assertFalse(v3)
        self.assertEqual(len(v1), 4)
        self.assertEqual(len(v2), 4)

        # No overlap
        self.check2d(v1[0], mp.Vector3(-4, 4), mp.Vector3(4, 5))
        self.check2d(v1[1], mp.Vector3(-4, -5), mp.Vector3(4, -4))
        self.check2d(v1[2], mp.Vector3(-5, -4), mp.Vector3(-4, 4))
        self.check2d(v1[3], mp.Vector3(4, -4), mp.Vector3(5, 4))

        # Two PMLs overlap
        self.check2d(v2[0], mp.Vector3(-5, 4), mp.Vector3(-4, 5))
        self.check2d(v2[1], mp.Vector3(4, 4), mp.Vector3(5, 5))
        self.check2d(v2[2], mp.Vector3(-5, -5), mp.Vector3(-4, -4))
        self.check2d(v2[3], mp.Vector3(4, -5), mp.Vector3(5, -4))

    def test_2d_all_sides_different_thickness_in_X(self):
        # Thickness 1 on top and bottom, 3 on right, 2 on left
        pmls = [
            mp.PML(thickness=1, direction=mp.Y),
            mp.PML(thickness=3, direction=mp.X, side=mp.High),
            mp.PML(thickness=2, direction=mp.X, side=mp.Low)
        ]
        sim = self.make_sim(mp.Vector3(10, 10), 10, pmls, 2)
        v1, v2, v3 = sim._boundary_layers_to_vol_list(sim.boundary_layers)

        self.assertFalse(v3)
        self.assertEqual(len(v1), 4)
        self.assertEqual(len(v2), 4)

        # No overlap
        self.check2d(v1[0], mp.Vector3(-3, 4), mp.Vector3(2, 5))
        self.check2d(v1[1], mp.Vector3(-3, -5), mp.Vector3(2, -4))
        self.check2d(v1[2], mp.Vector3(-5, -4), mp.Vector3(-3, 4))
        self.check2d(v1[3], mp.Vector3(2, -4), mp.Vector3(5, 4))

        # Two PMLs overlap
        self.check2d(v2[0], mp.Vector3(-5, 4), mp.Vector3(-3, 5))
        self.check2d(v2[1], mp.Vector3(2, 4), mp.Vector3(5, 5))
        self.check2d(v2[2], mp.Vector3(-5, -5), mp.Vector3(-3, -4))
        self.check2d(v2[3], mp.Vector3(2, -5), mp.Vector3(5, -4))

    def test_2d_three_sides_different_thickness(self):
        # Thickness 3 on top, 2 on left, 1 on right
        pmls = [
            mp.PML(3, mp.Y, mp.High),
            mp.PML(2, mp.X, mp.Low),
            mp.PML(1, mp.X, mp.High),
        ]
        sim = self.make_sim(mp.Vector3(10, 10), 10, pmls, 2)
        v1, v2, v3 = sim._boundary_layers_to_vol_list(sim.boundary_layers)

        self.assertFalse(v3)
        self.assertEqual(len(v1), 3)
        self.assertEqual(len(v2), 2)

        # No overlap
        self.check2d(v1[0], mp.Vector3(-3, 2), mp.Vector3(4, 5))
        self.check2d(v1[1], mp.Vector3(-5, -5), mp.Vector3(-3, 2))
        self.check2d(v1[2], mp.Vector3(4, -5), mp.Vector3(5, 2))

        # Two PMLs overlap
        self.check2d(v2[0], mp.Vector3(-5, 2), mp.Vector3(-3, 5))
        self.check2d(v2[1], mp.Vector3(4, 2), mp.Vector3(5, 5))

    def test_2d_two_sides(self):
        sim = self.make_sim(mp.Vector3(10, 10), 10, [mp.PML(1, mp.X)], 2)
        v1, v2, v3 = sim._boundary_layers_to_vol_list(sim.boundary_layers)

        self.assertFalse(v2)
        self.assertFalse(v3)
        self.assertEqual(len(v1), 2)
        self.check2d(v1[0], mp.Vector3(-5, -5), mp.Vector3(-4, 5))
        self.check2d(v1[1], mp.Vector3(4, -5), mp.Vector3(5, 5))

    def test_3d_all_directions_all_sides(self):
        sim = self.make_sim(mp.Vector3(10, 10, 10), 10, [mp.PML(1)], 3)
        v1, v2, v3 = sim._boundary_layers_to_vol_list(sim.boundary_layers)

        self.assertEqual(len(v1), 6)
        self.assertEqual(len(v2), 12)
        self.assertEqual(len(v3), 8)

        # No overlapping regions (cube faces)
        # top
        self.check3d(v1[0], mp.Vector3(-4, 4, -4), mp.Vector3(4, 5, 4))
        # bottom
        self.check3d(v1[1], mp.Vector3(-4, -5, -4), mp.Vector3(4, -4, 4))
        # left
        self.check3d(v1[2], mp.Vector3(-5, -4, -4), mp.Vector3(-4, 4, 4))
        # right
        self.check3d(v1[3], mp.Vector3(4, -4, -4), mp.Vector3(5, 4, 4))
        # near
        self.check3d(v1[4], mp.Vector3(-4, -4, -5), mp.Vector3(4, 4, -4))
        # far
        self.check3d(v1[5], mp.Vector3(-4, -4, 4), mp.Vector3(4, 4, 5))

        # Two PMLs overlap (cube edges)
        # top left
        self.check3d(v2[0], mp.Vector3(-5, 4, -4), mp.Vector3(-4, 5, 4))
        # top right
        self.check3d(v2[1], mp.Vector3(4, 4, -4), mp.Vector3(5, 5, 4))
        # top near
        self.check3d(v2[2], mp.Vector3(-4, 4, -5), mp.Vector3(4, 5, -4))
        # top far
        self.check3d(v2[3], mp.Vector3(-4, 4, 4), mp.Vector3(4, 5, 5))
        # bottom left
        self.check3d(v2[4], mp.Vector3(-5, -5, -4), mp.Vector3(-4, -4, 4))
        # bottom right
        self.check3d(v2[5], mp.Vector3(4, -5, -4), mp.Vector3(5, -4, 4))
        # bottom near
        self.check3d(v2[6], mp.Vector3(-4, -5, -5), mp.Vector3(4, -4, -4))
        # bottom far
        self.check3d(v2[7], mp.Vector3(-4, -5, 4), mp.Vector3(4, -4, 5))
        # near left
        self.check3d(v2[8], mp.Vector3(-5, -4, -5), mp.Vector3(-4, 4, -4))
        # near right
        self.check3d(v2[9], mp.Vector3(4, -4, -5), mp.Vector3(5, 4, -4))
        # far left
        self.check3d(v2[10], mp.Vector3(-5, -4, 4), mp.Vector3(-4, 4, 5))
        # far right
        self.check3d(v2[11], mp.Vector3(4, -4, 4), mp.Vector3(5, 4, 5))

        # Three PMLs overlap (cube corners)
        # top left near
        self.check3d(v3[0], mp.Vector3(-5, 4, -5), mp.Vector3(-4, 5, -4))
        # top right near
        self.check3d(v3[1], mp.Vector3(4, 4, -5), mp.Vector3(5, 5, -4))
        # top left far
        self.check3d(v3[2], mp.Vector3(-5, 4, 4), mp.Vector3(-4, 5, 5))
        # top right far
        self.check3d(v3[3], mp.Vector3(4, 4, 4), mp.Vector3(5, 5, 5))
        # bottom left near
        self.check3d(v3[4], mp.Vector3(-5, -5, -5), mp.Vector3(-4, -4, -4))
        # bottom right near
        self.check3d(v3[5], mp.Vector3(4, -5, -5), mp.Vector3(5, -4, -4))
        # bottom left far
        self.check3d(v3[6], mp.Vector3(-5, -5, 4), mp.Vector3(-4, -4, 5))
        # bottom right far
        self.check3d(v3[7], mp.Vector3(4, -5, 4), mp.Vector3(5, -4, 5))

    def test_3d_X_direction_only(self):
        sim = self.make_sim(mp.Vector3(10, 10, 10), 10, [mp.PML(1, mp.X)], 3)
        v1, v2, v3 = sim._boundary_layers_to_vol_list(sim.boundary_layers)

        self.assertEqual(len(v1), 2)
        self.assertEqual(len(v2), 0)
        self.assertEqual(len(v3), 0)

        # left
        self.check3d(v1[0], mp.Vector3(-5, -5, -5), mp.Vector3(-4, 5, 5))
        # right
        self.check3d(v1[1], mp.Vector3(4, -5, -5), mp.Vector3(5, 5, 5))

    def test_cylindrical_all_directions_all_sides(self):
        sim = self.make_sim(mp.Vector3(10, 0, 10), 10, [mp.PML(1)], mp.CYLINDRICAL)
        v1, v2, v3 = sim._boundary_layers_to_vol_list(sim.boundary_layers)

        self.assertFalse(v3)
        self.assertEqual(len(v1), 4)
        self.assertEqual(len(v2), 4)

        # No overlap
        self.checkcyl(v1[0], mp.Vector3(-4, 0, 4), mp.Vector3(4, 0, 5))
        self.checkcyl(v1[1], mp.Vector3(-4, 0, -5), mp.Vector3(4, 0, -4))
        self.checkcyl(v1[2], mp.Vector3(-5, 0, -4), mp.Vector3(-4, 0, 4))
        self.checkcyl(v1[3], mp.Vector3(4, 0, -4), mp.Vector3(5, 0, 4))

        # Two PMLs overlap
        self.checkcyl(v2[0], mp.Vector3(-5, 0, 4), mp.Vector3(-4, 0, 5))
        self.checkcyl(v2[1], mp.Vector3(4, 0, 4), mp.Vector3(5, 0, 5))
        self.checkcyl(v2[2], mp.Vector3(-5, 0, -5), mp.Vector3(-4, 0, -4))
        self.checkcyl(v2[3], mp.Vector3(4, 0, -5), mp.Vector3(5, 0, -4))


if __name__ == '__main__':
    unittest.main()