1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
|
from __future__ import division
import unittest
import meep as mp
def make_dft_vecs(flx_reg=None, n2f_reg=None, frc_reg=None, fldc=None, flds=None, fldw=None, fld_cmp=None):
dft_vecs = {
'flux_regions': flx_reg,
'n2f_regions': n2f_reg,
'force_regions': frc_reg,
'fields_center': fldc,
'fields_size': flds,
'fields_where': fldw,
'fields_components': fld_cmp
}
return dft_vecs
class TestFragmentStats(unittest.TestCase):
def check_stats(self, fragment, a_eps, a_mu, nonlin, susc, cond):
self.assertEqual(fragment.num_anisotropic_eps_pixels, a_eps)
self.assertEqual(fragment.num_anisotropic_mu_pixels, a_mu)
self.assertEqual(fragment.num_nonlinear_pixels, nonlin)
self.assertEqual(fragment.num_susceptibility_pixels, susc)
self.assertEqual(fragment.num_nonzero_conductivity_pixels, cond)
def get_fragment_stats(self, block_size, cell_size, dims, box_center=mp.Vector3(), dft_vecs=None,
def_mat=mp.air, sym=[], geom=None, pml=[]):
mat = mp.Medium(
epsilon=12,
epsilon_offdiag=mp.Vector3(z=1),
mu_offdiag=mp.Vector3(x=20),
E_chi2_diag=mp.Vector3(1, 1),
H_chi3_diag=mp.Vector3(z=1),
E_susceptibilities=[mp.LorentzianSusceptibility(), mp.NoisyLorentzianSusceptibility()],
H_susceptibilities=[mp.DrudeSusceptibility()],
D_conductivity_diag=mp.Vector3(y=1),
B_conductivity_diag=mp.Vector3(x=1, z=1)
)
if geom is None:
geom = [mp.Block(size=block_size, center=box_center, material=mat)]
sim = mp.Simulation(cell_size=cell_size, resolution=10, geometry=geom, dimensions=dims,
default_material=def_mat, symmetries=sym, boundary_layers=pml)
if dft_vecs:
if dft_vecs['flux_regions']:
sim.add_flux(1, 0.5, 5, *dft_vecs['flux_regions'])
if dft_vecs['n2f_regions']:
sim.add_near2far(1, 0.5, 7, *dft_vecs['n2f_regions'])
if dft_vecs['force_regions']:
sim.add_force(1, 0.5, 9, *dft_vecs['force_regions'])
if dft_vecs['fields_components']:
sim.add_dft_fields(dft_vecs['fields_components'], 0, 1, 5, where=dft_vecs['fields_where'],
center=dft_vecs['fields_center'], size=dft_vecs['fields_size'])
gv = sim._create_grid_volume(False)
stats = sim._compute_fragment_stats(gv)
return stats
def _test_1d(self, sym, pml=[]):
# A z=30 cell, split into three fragments of size 10 each, with a block
# covering the middle fragment.
# flux covering first fragment, near2far covering second, force covering third
dft_vecs = make_dft_vecs(
[mp.FluxRegion(mp.Vector3(z=-10), size=mp.Vector3(z=10))],
[mp.Near2FarRegion(mp.Vector3(), size=mp.Vector3(z=10))],
[mp.ForceRegion(mp.Vector3(z=10), direction=mp.X, size=mp.Vector3(z=10))]
)
fs = self.get_fragment_stats(mp.Vector3(z=10), mp.Vector3(z=30), 1, dft_vecs=dft_vecs, sym=sym, pml=pml)
self.assertEqual(len(fs), 3)
# First and last fragments have no geometry, only default_material
for i in [0, 2]:
self.check_stats(fs[i], 0, 0, 0, 0, 0)
# Second fragment contains entire block
sym_factor = 2 if sym else 1
self.check_stats(fs[1],
a_eps=100 / sym_factor,
a_mu=100 / sym_factor,
nonlin=300 / sym_factor,
susc=300 / sym_factor,
cond=300 / sym_factor)
# Check DFT regions
self.assertEqual(fs[0].num_dft_pixels, 8224)
self.assertEqual(fs[1].num_dft_pixels, 11792)
self.assertEqual(fs[2].num_dft_pixels, 21824)
self.fs = fs
def test_1d(self):
self._test_1d([])
def test_1d_with_symmetry(self):
self._test_1d([mp.Mirror(mp.X)])
def test_1d_with_pml(self):
self._test_1d([], pml=[mp.PML(1)])
for i in range(3):
self.assertEqual(self.fs[i].num_2d_pml_pixels, 0)
self.assertEqual(self.fs[i].num_3d_pml_pixels, 0)
self.assertEqual(self.fs[0].num_1d_pml_pixels, 10)
self.assertEqual(self.fs[1].num_1d_pml_pixels, 0)
self.assertEqual(self.fs[2].num_1d_pml_pixels, 10)
def test_1d_with_overlap(self):
# A z=30 cell split into three fragments of size 10 each, with a block
# covering the middle fragment, and half of the two outer fragments.
mat = mp.Medium(H_susceptibilities=[mp.DrudeSusceptibility()])
fs = self.get_fragment_stats(mp.Vector3(z=20), mp.Vector3(z=30), 1, def_mat=mat)
self.assertEqual(len(fs), 3)
# Middle fragment is completely covered by the block
self.check_stats(fs[1], a_eps=100, a_mu=100, nonlin=300, susc=300, cond=300)
# Outer two fragments are half covered by the block, and half covered by default_material 'mat'
for i in [0, 2]:
self.check_stats(fs[i], a_eps=50, a_mu=50, nonlin=150, susc=200, cond=150)
def test_1d_with_partial_fragment(self):
# A cell with z=26, with a 16 unit block in the center, split into 3 fragments,
# with the first and last fragment of length 8, and 3/8 covered by the block,
# and the middle fragment completely covered.
# dft_flux with 2 volumes, 1 covering the first fragment and one covering
# half of the second fragment
dft_vecs = make_dft_vecs(flx_reg=[
mp.FluxRegion(mp.Vector3(z=-9), mp.Vector3(z=8)),
mp.FluxRegion(mp.Vector3(z=-2.5), mp.Vector3(z=5))
])
fs = self.get_fragment_stats(mp.Vector3(z=16), mp.Vector3(z=26), 1, dft_vecs=dft_vecs)
self.assertEqual(len(fs), 3)
# Check first and last box sizes
self.assertEqual(fs[0].box.low.z, -13)
self.assertEqual(fs[0].box.high.z, -5)
self.assertEqual(fs[2].box.low.z, 5)
self.assertEqual(fs[2].box.high.z, 13)
# Middle fragment is completely covered by block
self.check_stats(fs[1], a_eps=100, a_mu=100, nonlin=300, susc=300, cond=300)
# Outer fragments are 3/8 covered
for i in [0, 2]:
self.check_stats(fs[i], a_eps=30, a_mu=30, nonlin=90, susc=90, cond=90)
# Check dft stats
self.assertEqual(fs[0].num_dft_pixels, 6560)
self.assertEqual(fs[1].num_dft_pixels, 4160)
self.assertEqual(fs[2].num_dft_pixels, 0)
def test_1d_with_shifted_center(self):
# A cell with z=26, with a 16 unit block shifted so that the right side is flush,
# with the right side of the cell, split into 3 fragments, with the first and last
# fragments of length 8, the first uncovered and the last completely covered by the
# block, and the middle fragment 80% covered by the block.
fs = self.get_fragment_stats(mp.Vector3(z=16), mp.Vector3(z=26), 1, mp.Vector3(z=5))
self.assertEqual(len(fs), 3)
# Check first and last box sizes
self.assertEqual(fs[0].box.low.z, -13)
self.assertEqual(fs[0].box.high.z, -5)
self.assertEqual(fs[2].box.low.z, 5)
self.assertEqual(fs[2].box.high.z, 13)
# First fragment is uncovered
self.check_stats(fs[0], 0, 0, 0, 0, 0)
# Middel fragment is 80% covered
self.check_stats(fs[1], a_eps=80, a_mu=80, nonlin=240, susc=240, cond=240)
# Last fragment is completely covered, but only 8 units long
self.check_stats(fs[2], a_eps=80, a_mu=80, nonlin=240, susc=240, cond=240)
def test_1d_dft_fields(self):
# A z=30 cell, split into three fragments of size 10 each, with a block
# covering the middle fragment.
# dft_fields covering first fragment
dft_vecs = make_dft_vecs(fldc=mp.Vector3(z=-10), flds=mp.Vector3(z=10), fld_cmp=[mp.X, mp.Y])
fs = self.get_fragment_stats(mp.Vector3(z=10), mp.Vector3(z=30), 1, dft_vecs=dft_vecs)
self.assertEqual(len(fs), 3)
self.assertEqual(fs[0].num_dft_pixels, 4000)
self.assertEqual(fs[1].num_dft_pixels, 80)
self.assertEqual(fs[2].num_dft_pixels, 0)
# Same test with volume instead of center and size
dft_vecs = make_dft_vecs(fldw=mp.Volume(mp.Vector3(z=-10), mp.Vector3(z=10)), fld_cmp=[mp.X, mp.Y])
fs = self.get_fragment_stats(mp.Vector3(z=10), mp.Vector3(z=30), 1, dft_vecs=dft_vecs)
self.assertEqual(fs[0].num_dft_pixels, 4000)
self.assertEqual(fs[1].num_dft_pixels, 80)
self.assertEqual(fs[2].num_dft_pixels, 0)
def _test_2d(self, sym, pml=[]):
# A 30 x 30 cell, with a 10 x 10 block in the middle, split into 9 10 x 10 fragments.
# flux covering top-left fragment, near2far covering top-middle, force covering top-right
dft_vecs = make_dft_vecs(
[mp.FluxRegion(mp.Vector3(-10, 10), size=mp.Vector3(10, 10))],
[mp.Near2FarRegion(mp.Vector3(0, 10), size=mp.Vector3(10, 10))],
[mp.ForceRegion(mp.Vector3(10, 10), direction=mp.X, size=mp.Vector3(10, 10))]
)
fs = self.get_fragment_stats(mp.Vector3(10, 10), mp.Vector3(30, 30), 2,
dft_vecs=dft_vecs, sym=sym, pml=pml)
self.assertEqual(len(fs), 9)
# Check fragment boxes
self.assertEqual(fs[0].box.low.x, -15)
self.assertEqual(fs[0].box.low.y, -15)
self.assertEqual(fs[0].box.high.x, -5)
self.assertEqual(fs[0].box.high.y, -5)
self.assertEqual(fs[1].box.low.x, -15)
self.assertEqual(fs[1].box.low.y, -5)
self.assertEqual(fs[1].box.high.x, -5)
self.assertEqual(fs[1].box.high.y, 5)
self.assertEqual(fs[2].box.low.x, -15)
self.assertEqual(fs[2].box.low.y, 5)
self.assertEqual(fs[2].box.high.x, -5)
self.assertEqual(fs[2].box.high.y, 15)
# All fragments besides the middle one have no geometry, only default_material
for i in [0, 1, 2, 3, 5, 6, 7, 8]:
self.check_stats(fs[i], 0, 0, 0, 0, 0)
# Middle fragment contains entire block
idx = 4
sym_factor = 4 if sym else 1
self.check_stats(fs[idx],
a_eps=10000 / sym_factor,
a_mu=10000 / sym_factor,
nonlin=30000 / sym_factor,
susc=30000 / sym_factor,
cond=30000 / sym_factor)
# Check DFT regions
for i in [0, 3, 6]:
self.assertEqual(fs[i].num_dft_pixels, 0)
self.assertEqual(fs[1].num_dft_pixels, 8224)
self.assertEqual(fs[4].num_dft_pixels, 11792)
self.assertEqual(fs[7].num_dft_pixels, 21824)
self.assertEqual(fs[2].num_dft_pixels, 411200)
self.assertEqual(fs[5].num_dft_pixels, 589600)
self.assertEqual(fs[8].num_dft_pixels, 1091200)
self.fs = fs
def test_2d(self):
self._test_2d([])
def test_2d_with_symmetry(self):
self._test_2d([mp.Mirror(mp.X), mp.Mirror(mp.Y)])
def test_2d_with_pml_all_sides(self):
self._test_2d([], pml=[mp.PML(1, mp.Y), mp.PML(2, mp.X, mp.Low), mp.PML(3, mp.X, mp.High)])
# Center fragment has no PML pixels
self.assertEqual(self.fs[4].num_1d_pml_pixels, 0)
self.assertEqual(self.fs[4].num_2d_pml_pixels, 0)
self.assertEqual(self.fs[4].num_3d_pml_pixels, 0)
for i in range(len(self.fs)):
# No regions where 3 PMLs overlap
self.assertEqual(self.fs[i].num_3d_pml_pixels, 0)
for i in [1, 3, 5, 7]:
# No regions where 2 PMLs overlap
self.assertEqual(self.fs[i].num_2d_pml_pixels, 0)
for i in [0, 2]:
# Lower left and top left
self.assertEqual(self.fs[i].num_1d_pml_pixels, 2600)
self.assertEqual(self.fs[i].num_2d_pml_pixels, 200)
for i in [6, 8]:
# Lower right and top right
self.assertEqual(self.fs[i].num_1d_pml_pixels, 3400)
self.assertEqual(self.fs[i].num_2d_pml_pixels, 300)
for i in [3, 5]:
# bottom center, top center
self.assertEqual(self.fs[i].num_1d_pml_pixels, 1000)
# Right center
self.assertEqual(self.fs[7].num_1d_pml_pixels, 3000)
# Left center
self.assertEqual(self.fs[1].num_1d_pml_pixels, 2000)
def test_2d_with_absorbers(self):
fs = self.get_fragment_stats(mp.Vector3(10, 10), mp.Vector3(30, 30), 2,
geom=[], pml=[mp.Absorber(1)])
total_nonzero_cond_pixels = 0
for i in range(len(fs)):
self.assertEqual(fs[i].num_1d_pml_pixels, 0)
self.assertEqual(fs[i].num_2d_pml_pixels, 0)
self.assertEqual(fs[i].num_3d_pml_pixels, 0)
total_nonzero_cond_pixels += fs[i].num_nonzero_conductivity_pixels
self.assertEqual(total_nonzero_cond_pixels, 11600)
def test_2d_with_overlap(self):
# A 30 x 30 cell, with a 20 x 20 block in the middle, split into 9 10 x 10 fragments.
mat = mp.Medium(H_susceptibilities=[mp.DrudeSusceptibility()])
fs = self.get_fragment_stats(mp.Vector3(20, 20), mp.Vector3(30, 30), 2, def_mat=mat)
self.assertEqual(len(fs), 9)
# Middle fragment contains entire block
idx = 4
self.check_stats(fs[idx], a_eps=10000, a_mu=10000, nonlin=30000, susc=30000, cond=30000)
# Top-middle, bottom-middle, left-middle, and right-middle fragments are half
# covered by the block, and half covered by default_material 'mat'.
for i in [1, 3, 5, 7]:
self.check_stats(fs[i], a_eps=5000, a_mu=5000, nonlin=15000, susc=20000, cond=15000)
# The four corner fragments are quarter-filled by the block, and 3/4 filled by
# default_material 'mat'
for i in [0, 2, 6, 8]:
self.check_stats(fs[i], a_eps=2500, a_mu=2500, nonlin=7500, susc=15000, cond=7500)
def test_2d_with_partial_fragments_and_shifted_center(self):
# A 26 x 26 cell with a 18 x 18 Block in the lower right corner
fs = self.get_fragment_stats(mp.Vector3(18, 18), mp.Vector3(26, 26), 2, mp.Vector3(4, -4))
self.assertEqual(len(fs), 9)
# Middle fragment is 10 x 10 and covered by block
self.check_stats(fs[4], a_eps=10000, a_mu=10000, nonlin=30000, susc=30000, cond=30000)
for i in [0, 1, 2, 5, 8]:
# Air
self.check_stats(fs[i], 0, 0, 0, 0, 0)
# 10 x 8 fragment, covered by block
self.assertEqual(fs[3].box.low.x, -5)
self.assertEqual(fs[3].box.low.y, -13)
self.assertEqual(fs[3].box.high.x, 5)
self.assertEqual(fs[3].box.high.y, -5)
self.check_stats(fs[3], a_eps=8000, a_mu=8000, nonlin=24000, susc=24000, cond=24000)
# 8 x 10 fragment, covered by block
self.assertEqual(fs[7].box.low.x, 5)
self.assertEqual(fs[7].box.low.y, -5)
self.assertEqual(fs[7].box.high.x, 13)
self.assertEqual(fs[7].box.high.y, 5)
self.check_stats(fs[7], a_eps=8000, a_mu=8000, nonlin=24000, susc=24000, cond=24000)
# 8 x 8 fragment covered by block
self.assertEqual(fs[6].box.low.x, 5)
self.assertEqual(fs[6].box.low.y, -13)
self.assertEqual(fs[6].box.high.x, 13)
self.assertEqual(fs[6].box.high.y, -5)
self.check_stats(fs[6], a_eps=6400, a_mu=6400, nonlin=19200, susc=19200, cond=19200)
def test_2d_dft_fields(self):
# A 30 x 30 cell, with a 10 x 10 block in the middle, split into 9 10 x 10 fragments.
# dft_fields covering 20 by 20 area in center of cell. Test with volume, and center/size
cmpts = [mp.Ex, mp.Ey, mp.Ez]
dft_fields_size_center = make_dft_vecs(fldc=mp.Vector3(), flds=mp.Vector3(20, 20), fld_cmp=cmpts)
dft_fields_where = make_dft_vecs(fldw=mp.Volume(mp.Vector3(), mp.Vector3(20, 20)), fld_cmp=cmpts)
for dft_vec in [dft_fields_size_center, dft_fields_where]:
fs = self.get_fragment_stats(mp.Vector3(10, 10), mp.Vector3(30, 30), 2, dft_vecs=dft_vec)
# Middle fragment is fully covered
self.assertEqual(fs[4].num_dft_pixels, 300000)
# 4 corners are 1/4 covered
for i in [0, 2, 6, 8]:
self.assertEqual(fs[i].num_dft_pixels, 75000)
# The rest are half covered
for i in [1, 3, 5, 7]:
self.assertEqual(fs[i].num_dft_pixels, 150000)
def test_2d_pml_and_absorber(self):
blayers = [mp.PML(1, mp.Y, mp.High), mp.PML(2, mp.Y, mp.Low),
mp.Absorber(1, mp.X, mp.High), mp.Absorber(3, mp.X, mp.Low)]
fragments = self.get_fragment_stats(mp.Vector3(), mp.Vector3(30, 30), 2, pml=blayers, geom=[])
num_nonzero_cond = 0
num_pml_1d = 0
num_pml_2d = 0
num_pml_3d = 0
for f in fragments:
num_nonzero_cond += f.num_nonzero_conductivity_pixels
num_pml_1d += f.num_1d_pml_pixels
num_pml_2d += f.num_2d_pml_pixels
num_pml_3d += f.num_3d_pml_pixels
self.assertEqual(num_nonzero_cond, 12000)
self.assertEqual(num_pml_1d, 9000)
self.assertEqual(num_pml_2d, 0)
self.assertEqual(num_pml_3d, 0)
def _test_3d(self, sym, pml=[]):
# A 30 x 30 x 30 cell with a 10 x 10 x 10 block placed at the center, split
# into 27 10 x 10 x 10 fragments
# flux covering lower-front-left fragment, near2far covering lower-middle-left,
# force covering lower-back-left
dft_vecs = make_dft_vecs(
[mp.FluxRegion(mp.Vector3(-10, -10, -10), size=mp.Vector3(10, 10, 10))],
[mp.Near2FarRegion(mp.Vector3(-10, -10, 0), size=mp.Vector3(10, 10, 10))],
[mp.ForceRegion(mp.Vector3(-10, -10, 10), direction=mp.X, size=mp.Vector3(10, 10, 10))]
)
fs = self.get_fragment_stats(mp.Vector3(10, 10, 10), mp.Vector3(30, 30, 30), 3,
dft_vecs=dft_vecs, sym=sym, pml=pml)
self.assertEqual(len(fs), 27)
# All fragments besides the middle one have no geometry, only default_material
for i in range(27):
if i == 13:
continue
self.check_stats(fs[i], 0, 0, 0, 0, 0)
# Middle fragments contains entire block
idx = 13
sym_factor = 8 if sym else 1
self.check_stats(fs[idx],
a_eps=1000000 / sym_factor,
a_mu=1000000 / sym_factor,
nonlin=3000000 / sym_factor,
susc=3000000 / sym_factor,
cond=3000000 / sym_factor)
# Check DFT regions
self.assertEqual(fs[0].num_dft_pixels, 20560000)
self.assertEqual(fs[1].num_dft_pixels, 29480000)
self.assertEqual(fs[2].num_dft_pixels, 54560000)
self.fs = fs
def test_3d(self):
self._test_3d([])
def test_3d_with_symmetry(self):
self._test_3d([mp.Mirror(mp.X), mp.Mirror(mp.Y), mp.Mirror(mp.Z)])
def test_3d_with_pml(self):
self._test_3d([], pml=[mp.PML(1, mp.Y, mp.High), mp.PML(2, mp.Y, mp.Low), mp.PML(3, mp.X),
mp.PML(1, mp.Z, mp.High), mp.PML(2, mp.Z, mp.Low)])
# bottom left near
self.assertEqual(self.fs[0].num_1d_pml_pixels, 416000)
self.assertEqual(self.fs[0].num_2d_pml_pixels, 124000)
self.assertEqual(self.fs[0].num_3d_pml_pixels, 12000)
def test_3d_with_absorbers(self):
fs = self.get_fragment_stats(mp.Vector3(), mp.Vector3(30, 30, 30), 3,
geom=[], pml=[mp.Absorber(1)])
total_nonzero_cond_pixels = 0
for i in range(len(fs)):
self.assertEqual(fs[i].num_1d_pml_pixels, 0)
self.assertEqual(fs[i].num_2d_pml_pixels, 0)
self.assertEqual(fs[i].num_3d_pml_pixels, 0)
total_nonzero_cond_pixels += fs[i].num_nonzero_conductivity_pixels
self.assertEqual(total_nonzero_cond_pixels, 5048000)
def test_3d_with_overlap(self):
# A 30 x 30 x 30 cell with a 20 x 20 x 20 block placed at the center, split
# into 27 10 x 10 x 10 fragments
mat = mp.Medium(E_susceptibilities=[mp.DrudeSusceptibility()])
fs = self.get_fragment_stats(mp.Vector3(20, 20, 20), mp.Vector3(30, 30, 30), 3, def_mat=mat)
self.assertEqual(len(fs), 27)
# Middle fragment contains entire block
idx = 13
self.check_stats(fs[idx], a_eps=1000000, a_mu=1000000, nonlin=3000000, susc=3000000, cond=3000000)
# Six fragments adjacent to the middle fragment faces will be half covered by the block,
# and half covered by default_material 'mat'
for i in [4, 10, 12, 14, 16, 22]:
self.check_stats(fs[i], a_eps=500000, a_mu=500000, nonlin=1500000, susc=2000000, cond=1500000)
# The corners will be 1/8 covered by the block and 7/8 covered by default_material 'mat'
for i in [0, 2, 6, 8, 18, 20, 24, 26]:
self.check_stats(fs[i], a_eps=125000, a_mu=125000, nonlin=375000, susc=1250000, cond=375000)
# The rest will be 1/4 covered by the block and 3/4 covered by default_material 'mat'
for i in [1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25]:
self.check_stats(fs[i], a_eps=250000, a_mu=250000, nonlin=750000, susc=1500000, cond=750000)
def test_cyl(self):
# A 30 x 30 cell, with a 10 x 10 block in the middle, split into 9 10 x 10 fragments.
# flux covering top-left fragment, near2far covering top-middle, force covering top-right
dft_vecs = make_dft_vecs(
[mp.FluxRegion(mp.Vector3(-10, z=10), size=mp.Vector3(10, z=10))],
[mp.Near2FarRegion(mp.Vector3(0, z=10), size=mp.Vector3(10, z=10))],
[mp.ForceRegion(mp.Vector3(10, z=10), direction=mp.X, size=mp.Vector3(10, z=10))]
)
fs = self.get_fragment_stats(mp.Vector3(10, 0, 10), mp.Vector3(30, 0, 30),
mp.CYLINDRICAL, dft_vecs=dft_vecs)
self.assertEqual(len(fs), 9)
# Check fragment boxes
self.assertEqual(fs[0].box.low.x, -15)
self.assertEqual(fs[0].box.low.z, -15)
self.assertEqual(fs[0].box.high.x, -5)
self.assertEqual(fs[0].box.high.z, -5)
self.assertEqual(fs[1].box.low.x, -15)
self.assertEqual(fs[1].box.low.z, -5)
self.assertEqual(fs[1].box.high.x, -5)
self.assertEqual(fs[1].box.high.z, 5)
self.assertEqual(fs[2].box.low.x, -15)
self.assertEqual(fs[2].box.low.z, 5)
self.assertEqual(fs[2].box.high.x, -5)
self.assertEqual(fs[2].box.high.z, 15)
# All fragments besides the middle one have no geometry, only default_material
for i in [0, 1, 2, 3, 5, 6, 7, 8]:
self.check_stats(fs[i], 0, 0, 0, 0, 0)
# Middle fragment contains entire block
idx = 4
self.check_stats(fs[idx], a_eps=10000, a_mu=10000, nonlin=30000, susc=30000, cond=30000)
# Check DFT regions
for i in [0, 3, 6]:
self.assertEqual(fs[i].num_dft_pixels, 0)
self.assertEqual(fs[1].num_dft_pixels, 8224)
self.assertEqual(fs[4].num_dft_pixels, 11792)
self.assertEqual(fs[7].num_dft_pixels, 21824)
self.assertEqual(fs[2].num_dft_pixels, 411200)
self.assertEqual(fs[5].num_dft_pixels, 589600)
self.assertEqual(fs[8].num_dft_pixels, 1091200)
def test_no_geometry(self):
mat = mp.Medium(
epsilon=12,
epsilon_offdiag=mp.Vector3(x=1),
mu_offdiag=mp.Vector3(x=20),
E_chi2_diag=mp.Vector3(1, 1),
H_chi3_diag=mp.Vector3(x=1),
E_susceptibilities=[mp.LorentzianSusceptibility(), mp.NoisyLorentzianSusceptibility()],
H_susceptibilities=[mp.DrudeSusceptibility()],
D_conductivity_diag=mp.Vector3(y=1),
B_conductivity_diag=mp.Vector3(x=1, z=1)
)
fs = self.get_fragment_stats(mp.Vector3(), mp.Vector3(10, 10), 2, def_mat=mat, geom=[])
self.assertEqual(len(fs), 1)
self.check_stats(fs[0], a_eps=10000, a_mu=10000, nonlin=30000, susc=30000, cond=30000)
def test_1d_cell_smaller_than_minimum_fragment_size(self):
fs = self.get_fragment_stats(mp.Vector3(z=1), mp.Vector3(z=1), 1)
self.assertEqual(len(fs), 1)
stats = fs[0]
self.assertEqual(stats.box.low.z, -0.5)
self.assertEqual(stats.box.high.z, 0.5)
self.assertEqual(stats.num_pixels_in_box, 10)
def test_2d_cell_smaller_than_minimum_fragment_size(self):
fs = self.get_fragment_stats(mp.Vector3(1, 1), mp.Vector3(1, 1), 2)
self.assertEqual(len(fs), 1)
stats = fs[0]
self.assertEqual(stats.box.low.x, -0.5)
self.assertEqual(stats.box.low.y, -0.5)
self.assertEqual(stats.box.high.x, 0.5)
self.assertEqual(stats.box.high.y, 0.5)
self.assertEqual(stats.num_pixels_in_box, 100)
def test_3d_cell_smaller_than_minimum_fragment_size(self):
fs = self.get_fragment_stats(mp.Vector3(1, 1, 1), mp.Vector3(1, 1, 1), 3)
self.assertEqual(len(fs), 1)
stats = fs[0]
self.assertEqual(stats.box.low.x, -0.5)
self.assertEqual(stats.box.low.y, -0.5)
self.assertEqual(stats.box.low.z, -0.5)
self.assertEqual(stats.box.high.x, 0.5)
self.assertEqual(stats.box.high.y, 0.5)
self.assertEqual(stats.box.high.z, 0.5)
self.assertEqual(stats.num_pixels_in_box, 1000)
class TestPMLToVolList(unittest.TestCase):
def make_sim(self, cell, res, pml, dims):
sim = mp.Simulation(cell_size=cell, resolution=res, boundary_layers=pml, dimensions=dims)
sim._create_grid_volume(False)
return sim
def check1d(self, vol, expected_min, expected_max):
min_vec = vol.get_min_corner()
max_vec = vol.get_max_corner()
min_v3 = mp.Vector3(z=min_vec.z())
max_v3 = mp.Vector3(z=max_vec.z())
self.assertEqual(mp.Vector3(z=expected_min), min_v3)
self.assertEqual(mp.Vector3(z=expected_max), max_v3)
def check2d(self, vol, expected_min, expected_max):
min_vec = vol.get_min_corner()
max_vec = vol.get_max_corner()
min_v3 = mp.Vector3(min_vec.x(), min_vec.y())
max_v3 = mp.Vector3(max_vec.x(), max_vec.y())
self.assertEqual(expected_min, min_v3)
self.assertEqual(expected_max, max_v3)
def checkcyl(self, vol, expected_min, expected_max):
min_vec = vol.get_min_corner()
max_vec = vol.get_max_corner()
min_v3 = mp.Vector3(min_vec.r(), 0, min_vec.z())
max_v3 = mp.Vector3(max_vec.r(), 0, max_vec.z())
self.assertEqual(expected_min, min_v3)
self.assertEqual(expected_max, max_v3)
def check3d(self, vol, expected_min, expected_max):
min_vec = vol.get_min_corner()
max_vec = vol.get_max_corner()
min_v3 = mp.Vector3(min_vec.x(), min_vec.y(), min_vec.z())
max_v3 = mp.Vector3(max_vec.x(), max_vec.y(), max_vec.z())
self.assertEqual(expected_min, min_v3)
self.assertEqual(expected_max, max_v3)
def test_1d_all_sides(self):
sim = self.make_sim(mp.Vector3(z=10), 10, [mp.PML(1)], 1)
v1, v2, v3 = sim._boundary_layers_to_vol_list(sim.boundary_layers)
self.assertFalse(v2)
self.assertFalse(v3)
self.assertEqual(len(v1), 2)
self.check1d(v1[0], 4, 5)
self.check1d(v1[1], -5, -4)
def test_1d_high_side(self):
sim = self.make_sim(mp.Vector3(z=10), 10, [mp.PML(1, side=mp.High)], 1)
v1, v2, v3 = sim._boundary_layers_to_vol_list(sim.boundary_layers)
self.assertFalse(v2)
self.assertFalse(v3)
self.assertEqual(len(v1), 1)
self.check1d(v1[0], 4, 5)
def test_1d_two_sides_different_thickness(self):
sim = self.make_sim(mp.Vector3(z=10), 10, [mp.PML(1, side=mp.High), mp.PML(2, side=mp.Low)], 1)
v1, v2, v3 = sim._boundary_layers_to_vol_list(sim.boundary_layers)
self.assertFalse(v2)
self.assertFalse(v3)
self.assertEqual(len(v1), 2)
self.check1d(v1[0], 4, 5)
self.check1d(v1[1], -5, -3)
def test_2d_all_directions_all_sides(self):
sim = self.make_sim(mp.Vector3(10, 10), 10, [mp.PML(1)], 2)
v1, v2, v3 = sim._boundary_layers_to_vol_list(sim.boundary_layers)
self.assertFalse(v3)
self.assertEqual(len(v1), 4)
self.assertEqual(len(v2), 4)
# No overlap
self.check2d(v1[0], mp.Vector3(-4, 4), mp.Vector3(4, 5))
self.check2d(v1[1], mp.Vector3(-4, -5), mp.Vector3(4, -4))
self.check2d(v1[2], mp.Vector3(-5, -4), mp.Vector3(-4, 4))
self.check2d(v1[3], mp.Vector3(4, -4), mp.Vector3(5, 4))
# Two PMLs overlap
self.check2d(v2[0], mp.Vector3(-5, 4), mp.Vector3(-4, 5))
self.check2d(v2[1], mp.Vector3(4, 4), mp.Vector3(5, 5))
self.check2d(v2[2], mp.Vector3(-5, -5), mp.Vector3(-4, -4))
self.check2d(v2[3], mp.Vector3(4, -5), mp.Vector3(5, -4))
def test_2d_all_sides_different_thickness_in_X(self):
# Thickness 1 on top and bottom, 3 on right, 2 on left
pmls = [
mp.PML(thickness=1, direction=mp.Y),
mp.PML(thickness=3, direction=mp.X, side=mp.High),
mp.PML(thickness=2, direction=mp.X, side=mp.Low)
]
sim = self.make_sim(mp.Vector3(10, 10), 10, pmls, 2)
v1, v2, v3 = sim._boundary_layers_to_vol_list(sim.boundary_layers)
self.assertFalse(v3)
self.assertEqual(len(v1), 4)
self.assertEqual(len(v2), 4)
# No overlap
self.check2d(v1[0], mp.Vector3(-3, 4), mp.Vector3(2, 5))
self.check2d(v1[1], mp.Vector3(-3, -5), mp.Vector3(2, -4))
self.check2d(v1[2], mp.Vector3(-5, -4), mp.Vector3(-3, 4))
self.check2d(v1[3], mp.Vector3(2, -4), mp.Vector3(5, 4))
# Two PMLs overlap
self.check2d(v2[0], mp.Vector3(-5, 4), mp.Vector3(-3, 5))
self.check2d(v2[1], mp.Vector3(2, 4), mp.Vector3(5, 5))
self.check2d(v2[2], mp.Vector3(-5, -5), mp.Vector3(-3, -4))
self.check2d(v2[3], mp.Vector3(2, -5), mp.Vector3(5, -4))
def test_2d_three_sides_different_thickness(self):
# Thickness 3 on top, 2 on left, 1 on right
pmls = [
mp.PML(3, mp.Y, mp.High),
mp.PML(2, mp.X, mp.Low),
mp.PML(1, mp.X, mp.High),
]
sim = self.make_sim(mp.Vector3(10, 10), 10, pmls, 2)
v1, v2, v3 = sim._boundary_layers_to_vol_list(sim.boundary_layers)
self.assertFalse(v3)
self.assertEqual(len(v1), 3)
self.assertEqual(len(v2), 2)
# No overlap
self.check2d(v1[0], mp.Vector3(-3, 2), mp.Vector3(4, 5))
self.check2d(v1[1], mp.Vector3(-5, -5), mp.Vector3(-3, 2))
self.check2d(v1[2], mp.Vector3(4, -5), mp.Vector3(5, 2))
# Two PMLs overlap
self.check2d(v2[0], mp.Vector3(-5, 2), mp.Vector3(-3, 5))
self.check2d(v2[1], mp.Vector3(4, 2), mp.Vector3(5, 5))
def test_2d_two_sides(self):
sim = self.make_sim(mp.Vector3(10, 10), 10, [mp.PML(1, mp.X)], 2)
v1, v2, v3 = sim._boundary_layers_to_vol_list(sim.boundary_layers)
self.assertFalse(v2)
self.assertFalse(v3)
self.assertEqual(len(v1), 2)
self.check2d(v1[0], mp.Vector3(-5, -5), mp.Vector3(-4, 5))
self.check2d(v1[1], mp.Vector3(4, -5), mp.Vector3(5, 5))
def test_3d_all_directions_all_sides(self):
sim = self.make_sim(mp.Vector3(10, 10, 10), 10, [mp.PML(1)], 3)
v1, v2, v3 = sim._boundary_layers_to_vol_list(sim.boundary_layers)
self.assertEqual(len(v1), 6)
self.assertEqual(len(v2), 12)
self.assertEqual(len(v3), 8)
# No overlapping regions (cube faces)
# top
self.check3d(v1[0], mp.Vector3(-4, 4, -4), mp.Vector3(4, 5, 4))
# bottom
self.check3d(v1[1], mp.Vector3(-4, -5, -4), mp.Vector3(4, -4, 4))
# left
self.check3d(v1[2], mp.Vector3(-5, -4, -4), mp.Vector3(-4, 4, 4))
# right
self.check3d(v1[3], mp.Vector3(4, -4, -4), mp.Vector3(5, 4, 4))
# near
self.check3d(v1[4], mp.Vector3(-4, -4, -5), mp.Vector3(4, 4, -4))
# far
self.check3d(v1[5], mp.Vector3(-4, -4, 4), mp.Vector3(4, 4, 5))
# Two PMLs overlap (cube edges)
# top left
self.check3d(v2[0], mp.Vector3(-5, 4, -4), mp.Vector3(-4, 5, 4))
# top right
self.check3d(v2[1], mp.Vector3(4, 4, -4), mp.Vector3(5, 5, 4))
# top near
self.check3d(v2[2], mp.Vector3(-4, 4, -5), mp.Vector3(4, 5, -4))
# top far
self.check3d(v2[3], mp.Vector3(-4, 4, 4), mp.Vector3(4, 5, 5))
# bottom left
self.check3d(v2[4], mp.Vector3(-5, -5, -4), mp.Vector3(-4, -4, 4))
# bottom right
self.check3d(v2[5], mp.Vector3(4, -5, -4), mp.Vector3(5, -4, 4))
# bottom near
self.check3d(v2[6], mp.Vector3(-4, -5, -5), mp.Vector3(4, -4, -4))
# bottom far
self.check3d(v2[7], mp.Vector3(-4, -5, 4), mp.Vector3(4, -4, 5))
# near left
self.check3d(v2[8], mp.Vector3(-5, -4, -5), mp.Vector3(-4, 4, -4))
# near right
self.check3d(v2[9], mp.Vector3(4, -4, -5), mp.Vector3(5, 4, -4))
# far left
self.check3d(v2[10], mp.Vector3(-5, -4, 4), mp.Vector3(-4, 4, 5))
# far right
self.check3d(v2[11], mp.Vector3(4, -4, 4), mp.Vector3(5, 4, 5))
# Three PMLs overlap (cube corners)
# top left near
self.check3d(v3[0], mp.Vector3(-5, 4, -5), mp.Vector3(-4, 5, -4))
# top right near
self.check3d(v3[1], mp.Vector3(4, 4, -5), mp.Vector3(5, 5, -4))
# top left far
self.check3d(v3[2], mp.Vector3(-5, 4, 4), mp.Vector3(-4, 5, 5))
# top right far
self.check3d(v3[3], mp.Vector3(4, 4, 4), mp.Vector3(5, 5, 5))
# bottom left near
self.check3d(v3[4], mp.Vector3(-5, -5, -5), mp.Vector3(-4, -4, -4))
# bottom right near
self.check3d(v3[5], mp.Vector3(4, -5, -5), mp.Vector3(5, -4, -4))
# bottom left far
self.check3d(v3[6], mp.Vector3(-5, -5, 4), mp.Vector3(-4, -4, 5))
# bottom right far
self.check3d(v3[7], mp.Vector3(4, -5, 4), mp.Vector3(5, -4, 5))
def test_3d_X_direction_only(self):
sim = self.make_sim(mp.Vector3(10, 10, 10), 10, [mp.PML(1, mp.X)], 3)
v1, v2, v3 = sim._boundary_layers_to_vol_list(sim.boundary_layers)
self.assertEqual(len(v1), 2)
self.assertEqual(len(v2), 0)
self.assertEqual(len(v3), 0)
# left
self.check3d(v1[0], mp.Vector3(-5, -5, -5), mp.Vector3(-4, 5, 5))
# right
self.check3d(v1[1], mp.Vector3(4, -5, -5), mp.Vector3(5, 5, 5))
def test_cylindrical_all_directions_all_sides(self):
sim = self.make_sim(mp.Vector3(10, 0, 10), 10, [mp.PML(1)], mp.CYLINDRICAL)
v1, v2, v3 = sim._boundary_layers_to_vol_list(sim.boundary_layers)
self.assertFalse(v3)
self.assertEqual(len(v1), 4)
self.assertEqual(len(v2), 4)
# No overlap
self.checkcyl(v1[0], mp.Vector3(-4, 0, 4), mp.Vector3(4, 0, 5))
self.checkcyl(v1[1], mp.Vector3(-4, 0, -5), mp.Vector3(4, 0, -4))
self.checkcyl(v1[2], mp.Vector3(-5, 0, -4), mp.Vector3(-4, 0, 4))
self.checkcyl(v1[3], mp.Vector3(4, 0, -4), mp.Vector3(5, 0, 4))
# Two PMLs overlap
self.checkcyl(v2[0], mp.Vector3(-5, 0, 4), mp.Vector3(-4, 0, 5))
self.checkcyl(v2[1], mp.Vector3(4, 0, 4), mp.Vector3(5, 0, 5))
self.checkcyl(v2[2], mp.Vector3(-5, 0, -5), mp.Vector3(-4, 0, -4))
self.checkcyl(v2[3], mp.Vector3(4, 0, -5), mp.Vector3(5, 0, -4))
if __name__ == '__main__':
unittest.main()
|