1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
|
from __future__ import division
import math
import unittest
import meep as mp
class TestMultiLevelAtom(unittest.TestCase):
def test_multilevel_atom(self):
resolution = 40
ncav = 1.5
Lcav = 1
dpad = 1
dpml = 1
sz = Lcav + dpad + dpml
cell_size = mp.Vector3(z=sz)
dimensions = 1
pml_layers = [mp.PML(dpml, side=mp.High)]
omega_a = 40
freq_21 = omega_a / (2 * math.pi)
gamma_perp = 4
gamma_21 = (2 * gamma_perp) / (2 * math.pi)
theta = 1
sigma_21 = 2 * theta * theta * omega_a
rate_21 = 0.005
N0 = 28
Rp = 0.0051
t1 = mp.Transition(
1,
2,
pumping_rate=Rp,
frequency=freq_21,
gamma=gamma_21,
sigma_diag=mp.Vector3(sigma_21, sigma_21, sigma_21)
)
t2 = mp.Transition(2, 1, transition_rate=rate_21)
ml_atom = mp.MultilevelAtom(sigma=1, transitions=[t1, t2], initial_populations=[N0])
two_level = mp.Medium(index=ncav, E_susceptibilities=[ml_atom])
geometry = [mp.Block(center=mp.Vector3(z=(-0.5 * sz) + (0.5 * Lcav)),
size=mp.Vector3(mp.inf, mp.inf, Lcav), material=two_level)]
sim = mp.Simulation(cell_size=cell_size,
resolution=resolution,
boundary_layers=pml_layers,
geometry=geometry,
dimensions=dimensions)
def field_func(p):
return 1 if p.z == (-0.5 * sz) + (0.5 * Lcav) else 0
def check_field(sim):
fp = sim.get_field_point(mp.Ex, mp.Vector3(z=(-0.5 * sz) + Lcav + (0.5 * dpad))).real
self.assertAlmostEqual(fp, -2.7110969214986387)
sim.init_sim()
sim.fields.initialize_field(mp.Ex, field_func)
sim.run(mp.at_end(check_field), until=7000)
if __name__ == '__main__':
unittest.main()
|