File: ring_gds.py

package info (click to toggle)
meep 1.17.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 52,216 kB
  • sloc: cpp: 29,881; python: 17,210; javascript: 9,819; lisp: 1,225; makefile: 481; sh: 249; ansic: 133
file content (112 lines) | stat: -rw-r--r-- 3,567 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import numpy as np
import gdspy
from matplotlib import pyplot as plt
import importlib
import meep as mp

# core and cladding materials
Si   = mp.Medium(index=3.4)
SiO2 = mp.Medium(index=1.4)

# layer numbers for GDS file
RING_LAYER       = 0
SOURCE0_LAYER    = 1
SOURCE1_LAYER    = 2
MONITOR_LAYER    = 3
SIMULATION_LAYER = 4

resolution = 50         # pixels/μm
dpml       = 1          # thickness of PML
zmin       = 0          # minimum z value of simulation domain (0 for 2D)
zmax       = 0          # maximum z value of simulation domain (0 for 2D)

def create_ring_gds(radius,width):
    # Reload the library each time to prevent gds library name clashes
    importlib.reload(gdspy)

    ringCell = gdspy.Cell("ring_resonator_r{}_w{}".format(radius,width))

    # Draw the ring
    ringCell.add(gdspy.Round((0,0),
                             inner_radius=radius-width/2,
                             radius=radius+width/2,
                             layer=RING_LAYER))

    # Draw the first source
    ringCell.add(gdspy.Rectangle((radius-width,0),
                                 (radius+width,0),
                                 SOURCE0_LAYER))

    # Draw the second source
    ringCell.add(gdspy.Rectangle((-radius-width,0),
                                 (-radius+width,0),
                                 SOURCE1_LAYER))

    # Draw the monitor location
    ringCell.add(gdspy.Rectangle((radius-width/2,0),
                                 (radius+width/2,0),
                                 MONITOR_LAYER))

    # Draw the simulation domain
    pad = 2  # padding between waveguide and edge of PML
    ringCell.add(gdspy.Rectangle((-radius-width/2-pad,-radius-width/2-pad),
                                 (radius+width/2+pad,radius+width/2+pad),
                                 SIMULATION_LAYER))

    filename = "ring_r{}_w{}.gds".format(radius,width)
    gdspy.write_gds(filename, unit=1.0e-6, precision=1.0e-9)

    return filename

def find_modes(filename,wvl=1.55,bw=0.05):
    # Read in the ring structure
    geometry = mp.get_GDSII_prisms(Si,filename,RING_LAYER,-100,100)

    cell = mp.GDSII_vol(filename,SIMULATION_LAYER,zmin,zmax)

    src_vol0 = mp.GDSII_vol(filename,SOURCE0_LAYER,zmin,zmax)
    src_vol1 = mp.GDSII_vol(filename,SOURCE1_LAYER,zmin,zmax)

    mon_vol = mp.GDSII_vol(filename,MONITOR_LAYER,zmin,zmax)

    fcen = 1/wvl
    df = bw*fcen

    src = [mp.Source(mp.GaussianSource(fcen, fwidth=df),
                     component=mp.Hz,
                     volume=src_vol0),
           mp.Source(mp.GaussianSource(fcen, fwidth=df),
                     component=mp.Hz,
                     volume=src_vol1,
                     amplitude=-1)]

    sim = mp.Simulation(cell_size=cell.size,
                        geometry=geometry,
                        sources=src,
                        resolution=resolution,
                        boundary_layers=[mp.PML(dpml)],
                        default_material=SiO2)

    h = mp.Harminv(mp.Hz,mon_vol.center,fcen,df)

    sim.run(mp.after_sources(h),
            until_after_sources=100)

    plt.figure()
    sim.plot2D(fields=mp.Hz,
               eps_parameters={'contour':True})
    plt.savefig('ring_fields.png',bbox_inches='tight',dpi=150)

    wvl = np.array([1/m.freq for m in h.modes])
    Q = np.array([m.Q for m in h.modes])

    sim.reset_meep()

    return wvl, Q


if __name__ == '__main__':
    filename = create_ring_gds(2.0,0.5)
    wvls, Qs = find_modes(filename,1.55,0.05)
    for w, Q in zip(wvls,Qs):
        print("mode: {}, {}".format(w,Q))