1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
|
import meep as mp
import numpy as np
import math
import matplotlib.pyplot as plt
resolution = 25 # pixels/μm
dpml = 1.0 # PML thickness
dsub = 2.0 # substrate thickness
dpad = 2.0 # padding betweeen zone plate and PML
zh = 0.5 # zone-plate height
zN = 25 # number of zones (odd zones: π phase shift, even zones: none)
focal_length = 200 # focal length of zone plate
spot_length = 100 # far-field line length
ff_res = 10 # far-field resolution
pml_layers = [mp.PML(thickness=dpml)]
wvl_cen = 0.5
frq_cen = 1/wvl_cen
dfrq = 0.2*frq_cen
## radii of zones
## ref: eq. 7 of http://zoneplate.lbl.gov/theory
r = [math.sqrt(n*wvl_cen*(focal_length+n*wvl_cen/4)) for n in range(1,zN+1)]
sr = r[-1]+dpad+dpml
sz = dpml+dsub+zh+dpad+dpml
cell_size = mp.Vector3(sr,0,sz)
sources = [mp.Source(mp.GaussianSource(frq_cen,fwidth=dfrq,is_integrated=True),
component=mp.Er,
center=mp.Vector3(0.5*sr,0,-0.5*sz+dpml),
size=mp.Vector3(sr)),
mp.Source(mp.GaussianSource(frq_cen,fwidth=dfrq,is_integrated=True),
component=mp.Ep,
center=mp.Vector3(0.5*sr,0,-0.5*sz+dpml),
size=mp.Vector3(sr),
amplitude=-1j)]
glass = mp.Medium(index=1.5)
geometry = [mp.Block(material=glass,
size=mp.Vector3(sr,0,dpml+dsub),
center=mp.Vector3(0.5*sr,0,-0.5*sz+0.5*(dpml+dsub)))]
for n in range(zN-1,-1,-1):
geometry.append(mp.Block(material=glass if n % 2 == 0 else mp.vacuum,
size=mp.Vector3(r[n],0,zh),
center=mp.Vector3(0.5*r[n],0,-0.5*sz+dpml+dsub+0.5*zh)))
sim = mp.Simulation(cell_size=cell_size,
boundary_layers=pml_layers,
resolution=resolution,
sources=sources,
geometry=geometry,
dimensions=mp.CYLINDRICAL,
m=-1)
## near-field monitor
n2f_obj = sim.add_near2far(frq_cen, 0, 1,
mp.Near2FarRegion(center=mp.Vector3(0.5*(sr-dpml),0,0.5*sz-dpml),size=mp.Vector3(sr-dpml)),
mp.Near2FarRegion(center=mp.Vector3(sr-dpml,0,0.5*sz-0.5*(dsub+zh+dpad)),size=mp.Vector3(z=dsub+zh+dpad)))
sim.run(until_after_sources=100)
ff_r = sim.get_farfields(n2f_obj, ff_res, center=mp.Vector3(0.5*(sr-dpml),0,-0.5*sz+dpml+dsub+zh+focal_length),size=mp.Vector3(sr-dpml))
ff_z = sim.get_farfields(n2f_obj, ff_res, center=mp.Vector3(z=-0.5*sz+dpml+dsub+zh+focal_length),size=mp.Vector3(z=spot_length))
E2_r = np.absolute(ff_r['Ex'])**2+np.absolute(ff_r['Ey'])**2+np.absolute(ff_r['Ez'])**2
E2_z = np.absolute(ff_z['Ex'])**2+np.absolute(ff_z['Ey'])**2+np.absolute(ff_z['Ez'])**2
if mp.am_master():
plt.figure(dpi=200)
plt.subplot(1,2,1)
plt.semilogy(np.linspace(0,sr-dpml,len(E2_r)),E2_r,'bo-')
plt.xlim(-2,20)
plt.xticks([t for t in np.arange(0,25,5)])
plt.grid(True,axis="y",which="both",ls="-")
plt.xlabel(r'$r$ coordinate (μm)')
plt.ylabel(r'energy density of far fields, |E|$^2$')
plt.subplot(1,2,2)
plt.semilogy(np.linspace(focal_length-0.5*spot_length,focal_length+0.5*spot_length,len(E2_z)),E2_z,'bo-')
plt.grid(True,axis="y",which="both",ls="-")
plt.xlabel(r'$z$ coordinate (μm)')
plt.ylabel(r'energy density of far fields, |E|$^2$')
plt.suptitle(r"binary-phase zone plate with focal length $z$ = {} μm".format(focal_length))
plt.tight_layout()
plt.savefig("zone_plate_farfields.png")
|