File: anisotropic_averaging.cpp

package info (click to toggle)
meep 1.2.1-2
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 4,420 kB
  • ctags: 6,821
  • sloc: cpp: 62,027; sh: 11,405; lisp: 238; makefile: 194
file content (333 lines) | stat: -rw-r--r-- 10,872 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
#include <math.h>

#include "meep_internals.hpp"

/* This file contains routines to compute the "average" or "effective"
   dielectric constant for a pixel, using an anisotropic averaging
   procedure described in an upcoming paper (similar to the one in
   MPB). */

namespace meep {

////////////////////////////////////////////////////////////////////////////

#include "sphere-quad.h"

static vec sphere_pt(const vec &cent, double R, int n, double &weight) {
     switch (cent.dim) {
	 case D1:
	 {
	      weight = sphere_quad[0][n][3];
	      vec pt(sphere_quad[0][n][2]);
	      return cent + pt * R;
	 }
	 case D2:
	 {
	      weight = sphere_quad[1][n][3];
	      vec pt(sphere_quad[1][n][0], sphere_quad[1][n][1]);
	      return cent + pt * R;
	 }
	 case D3:
	 {
	      weight = sphere_quad[2][n][3];
	      vec pt(sphere_quad[2][n][0], sphere_quad[2][n][1],
		     sphere_quad[2][n][2]);
	      return cent + pt * R;
	 }
	 case Dcyl:
	 {
	      weight = sphere_quad[1][n][3];
	      return cent 
		+ veccyl(sphere_quad[1][n][0], sphere_quad[1][n][1]) * R;
	 }
         default:
	   abort("unknown dimensions in sphere_pt\n");
     }
}

////////////////////////////////////////////////////////////////////////////

vec material_function::normal_vector(field_type ft, const volume &v)
{
  vec gradient(zero_vec(v.dim));
  vec p(v.center());
  double R = v.diameter();  
  for (int i = 0; i < num_sphere_quad[number_of_directions(v.dim)-1]; ++i) {
    double weight;
    vec pt = sphere_pt(p, R, i, weight);
    gradient += (pt - p) * (weight * chi1p1(ft,pt));
  }
  return gradient;
}

/* default: simple numerical integration of surfaces/cubes, relative
   tolerance 'tol'.   This is superseded by the routines in the libctl
   interface, which either use a semi-analytical average or can
   use a proper adaptive cubature. */
void material_function::eff_chi1inv_row(component c, double chi1inv_row[3],
					const volume &v,
					double tol, int maxeval) {
  field_type ft = type(c);
  if (!maxeval) {
  trivial:
    chi1inv_row[0] = chi1inv_row[1] = chi1inv_row[2] = 0.0;
    chi1inv_row[component_direction(c) % 3] = 1/chi1p1(ft,v.center());
    return;
  }

  vec gradient(normal_vector(ft, v));
  if (abs(gradient) < 1e-8) goto trivial;

  double meps=1, minveps=1;
  vec d = v.get_max_corner() - v.get_min_corner();
  int ms = 10; 
  double old_meps=0, old_minveps=0;
  int iter = 0;
  switch(v.dim) {
  case D3:
    while ((fabs(meps - old_meps) > tol*fabs(old_meps)) && (fabs(minveps - old_minveps) > tol*fabs(old_minveps))) {
      old_meps=meps; old_minveps=minveps;
      meps = minveps = 0;
      for (int k=0; k < ms; k++)
	for (int j=0; j < ms; j++)
	  for (int i=0; i < ms; i++) {
	    double ep = chi1p1(ft,v.get_min_corner() + vec(i*d.x()/ms, j*d.y()/ms, k*d.z()/ms));
	    if (ep < 0) goto trivial;
	    meps += ep; minveps += 1/ep;
	  }
      meps /= ms*ms*ms;
      minveps /= ms*ms*ms;
      ms *= 2;
      if (maxeval && (iter += ms*ms*ms) >= maxeval) goto done;
    }
    break;
  case D2:
    while ((fabs(meps-old_meps) > tol*old_meps) && (fabs(minveps-old_minveps) > tol*old_minveps)) {
      old_meps=meps; old_minveps=minveps;
      meps = minveps = 0;
      for (int j=0; j < ms; j++)
	for (int i=0; i < ms; i++) {
	  double ep = chi1p1(ft,v.get_min_corner() + vec(i*d.x()/ms, j*d.y()/ms));
	  if (ep < 0) goto trivial;
	  meps += ep; minveps += 1/ep;
	}
      meps /= ms*ms;
      minveps /= ms*ms;
      ms *= 2; 
      if (maxeval && (iter += ms*ms) >= maxeval) goto done;
    }
    break;
  case Dcyl:
    while ((fabs(meps-old_meps) > tol*old_meps) && (fabs(minveps-old_minveps) > tol*old_minveps)) {
      old_meps=meps; old_minveps=minveps;
      meps = minveps = 0;
      double sumvol = 0;
      for (int j=0; j < ms; j++)
	for (int i=0; i < ms; i++) {
	  double r = v.get_min_corner().r() + i*d.r()/ms;
	  double ep = chi1p1(ft,v.get_min_corner() + veccyl(i*d.r()/ms, j*d.z()/ms));
	  if (ep < 0) goto trivial;
	  sumvol += r;
	  meps += ep * r; minveps += r/ep;
	}
      meps /= sumvol;
      minveps /= sumvol;
      ms *= 2; 
      if (maxeval && (iter += ms*ms) >= maxeval) goto done;
    }
    break;
  case D1:
    while ((fabs(meps-old_meps) > tol*old_meps) && (fabs(minveps-old_minveps) > tol*old_minveps)) {
      old_meps=meps; old_minveps=minveps;
      meps = minveps = 0;
      for (int i=0; i < ms; i++) {
	double ep = chi1p1(ft,v.get_min_corner() + vec(i*d.z()/ms));
	if (ep < 0) {
	  meps = chi1p1(ft,v.center());
	  minveps = 1/meps;
	  goto done;
	}
	meps += ep; minveps += 1/ep;
      }
      meps /= ms;
      minveps /= ms;
      ms *= 2; 
      if (maxeval && (iter += ms*ms) >= maxeval) goto done;
    }
    break;
  }

 done:
  {
    double n[3] = {0,0,0};
    double nabsinv = 1.0/abs(gradient);
    LOOP_OVER_DIRECTIONS(gradient.dim, k)
      n[k%3] = gradient.in_direction(k) * nabsinv;
    
    /* get rownum'th row of effective tensor
       P * minveps + (I-P) * 1/meps = P * (minveps-1/meps) + I * 1/meps
       where I is the identity and P is the projection matrix
       P_{ij} = n[i] * n[j]. */
    int rownum = component_direction(c) % 3;
    for (int i=0; i<3; ++i) 
      chi1inv_row[i] = n[rownum] * n[i] * (minveps - 1/meps);
    chi1inv_row[rownum] += 1/meps;
  }
}

void structure_chunk::set_chi1inv(component c,
				  material_function &medium,
				  bool use_anisotropic_averaging,
				  double tol, int maxeval) {
  if (!is_mine() || !gv.has_field(c)) return;
  field_type ft = type(c);
  if (ft != E_stuff && ft != H_stuff) abort("only E or H can have chi");
  medium.set_volume(gv.pad().surroundings());

  if (!use_anisotropic_averaging) maxeval = 0;

  const double smoothing_diameter = 1.0; // FIXME: make user-changable?
      
  // may take a long time in 3d, so prepare to print status messages
  int npixels = 0, ipixel = 0;
  int loop_npixels = 0;
  LOOP_OVER_VOL(gv, c, i) {
    loop_npixels = loop_n1 * loop_n2 * loop_n3;
    goto breakout; // hack to use loop-size computation from LOOP_OVER_VOL
  }
 breakout: npixels += loop_npixels;
  double last_output_time = wall_time();

  FOR_FT_COMPONENTS(ft,c2) if (gv.has_field(c2)) {
    direction d = component_direction(c2);
    if (!chi1inv[c][d]) chi1inv[c][d] = new realnum[gv.ntot()];
    if (!chi1inv[c][d]) abort("Memory allocation error.\n");
  }
  direction dc = component_direction(c);
  direction d0 = X, d1 = Y, d2 = Z;
  if (gv.dim == Dcyl) { d0 = R; d1 = P; }
  int idiag = component_index(c);
  bool trivial[3] = {true,true,true};
  double trivial_val[3] = {0,0,0};
  trivial_val[idiag] = 1.0;
  ivec shift1(unit_ivec(gv.dim,component_direction(c))
	      * (ft == E_stuff ? 1 : -1));
  LOOP_OVER_VOL(gv, c, i) {
    double chi1invrow[3], chi1invrow_offdiag[3];
    IVEC_LOOP_ILOC(gv, here);
    medium.eff_chi1inv_row(c, chi1invrow,
			   gv.dV(here,smoothing_diameter), tol,maxeval);
    medium.eff_chi1inv_row(c, chi1invrow_offdiag,
			   gv.dV(here-shift1,smoothing_diameter), tol,maxeval);
    if (chi1inv[c][d0]) {
      chi1inv[c][d0][i] = (d0 == dc) ? chi1invrow[0] : chi1invrow_offdiag[0];
      trivial[0] = trivial[0] && (chi1inv[c][d0][i] == trivial_val[0]);
    }
    if (chi1inv[c][d1]) {
      chi1inv[c][d1][i] = (d1 == dc) ? chi1invrow[1] : chi1invrow_offdiag[1];
      trivial[1] = trivial[1] && (chi1inv[c][d1][i] == trivial_val[1]);
    }
    if (chi1inv[c][d2]) {
      chi1inv[c][d2][i] = (d2 == dc) ? chi1invrow[2] : chi1invrow_offdiag[2];
      trivial[2] = trivial[2] && (chi1inv[c][d2][i] == trivial_val[2]);
    }
    
    if (!quiet && (ipixel+1) % 1000 == 0
	&& wall_time() > last_output_time + MIN_OUTPUT_TIME) {
      master_printf("subpixel-averaging is %g%% done, %g s remaining\n", 
		    ipixel * 100.0 / npixels,
		    (npixels - ipixel) *
		    (wall_time() - last_output_time) / ipixel);
      last_output_time = wall_time();
    }
    ++ipixel;
  }
  direction ds[3]; ds[0] = d0; ds[1] = d1; ds[2] = d2;
  for (int i = 0; i < 3; ++i) {
    trivial_chi1inv[c][ds[i]] = trivial[i];
    if (i != idiag && trivial[i]) { // deallocate trivial offdiag
      delete[] chi1inv[c][ds[i]]; 
      chi1inv[c][ds[i]] = 0; 
    }
  }
  // only deallocate trivial diag if entire tensor is trivial
  if (trivial[0] && trivial[1] && trivial[2]) {
    delete[] chi1inv[c][dc];
    chi1inv[c][dc] = 0;
  }
  medium.unset_volume();
}

void structure_chunk::add_susceptibility(material_function &sigma, 
					 field_type ft,
					 const susceptibility &sus)
{
  if (ft != E_stuff && ft != H_stuff)
    abort("susceptibilities must be for E or H fields");

  sigma.set_volume(gv.pad().surroundings());

  susceptibility *newsus = sus.clone();
  newsus->next = NULL;
  newsus->ntot = gv.ntot();
  // get rid of previously allocated sigma, normally not the case here:
  FOR_COMPONENTS(c) FOR_DIRECTIONS(d) if (newsus->sigma[c][d]) {
    delete[] newsus->sigma[c][d];
    newsus->sigma[c][d] = NULL;
    newsus->trivial_sigma[c][d] = true;
  }
  
  // if we own this chunk, set up the sigma array(s):
  if (is_mine()) FOR_FT_COMPONENTS(ft,c) if (gv.has_field(c)) {
    FOR_FT_COMPONENTS(ft,c2) if (gv.has_field(c2)) {
      direction d = component_direction(c2);
      if (!newsus->sigma[c][d]) newsus->sigma[c][d] = new realnum[gv.ntot()];
      if (!newsus->sigma[c][d]) abort("Memory allocation error.\n");
    }
    bool trivial[3] = {true, true, true};
    direction dc = component_direction(c);
    direction d0 = X, d1 = Y, d2 = Z;
    if (gv.dim == Dcyl) { d0 = R; d1 = P; }
    int idiag = component_index(c);
    realnum *s0 = newsus->sigma[c][d0];
    realnum *s1 = newsus->sigma[c][d1];
    realnum *s2 = newsus->sigma[c][d2];
    vec shift1(gv[unit_ivec(gv.dim,component_direction(c))
		  * (ft == E_stuff ? 1 : -1)]);
    LOOP_OVER_VOL(gv, c, i) {
      double sigrow[3], sigrow_offdiag[3];
      IVEC_LOOP_LOC(gv, here);
      sigma.sigma_row(c, sigrow, here);
      sigma.sigma_row(c, sigrow_offdiag, here - shift1);
      sigrow[(idiag+1) % 3] = sigrow_offdiag[(idiag+1) % 3];
      sigrow[(idiag+2) % 3] = sigrow_offdiag[(idiag+2) % 3];
      if (s0 && (s0[i] = sigrow[0]) != 0.) trivial[0] = false;
      if (s1 && (s1[i] = sigrow[1]) != 0.) trivial[1] = false;
      if (s2 && (s2[i] = sigrow[2]) != 0.) trivial[2] = false;
    }

    direction ds[3]; ds[0] = d0; ds[1] = d1; ds[2] = d2;
    for (int i = 0; i < 3; ++i) {
      newsus->trivial_sigma[c][ds[i]] = trivial[i];
      if (i != idiag && trivial[i]) { // deallocate trivial offdiag
	delete[] newsus->sigma[c][ds[i]]; 
	newsus->sigma[c][ds[i]] = 0; 
      }
    }
    // only deallocate trivial diag if entire tensor is trivial
    if (trivial[0] && trivial[1] && trivial[2]) {
      delete[] newsus->sigma[c][dc]; 
      newsus->sigma[c][dc] = 0; 
    }
  }

  // finally, add to the beginning of the chiP list:
  newsus->next = chiP[ft];
  chiP[ft] = newsus;  

  sigma.unset_volume();
}



} // namespace meep