File: dft.cpp

package info (click to toggle)
meep 1.2.1-2
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 4,420 kB
  • ctags: 6,821
  • sloc: cpp: 62,027; sh: 11,405; lisp: 238; makefile: 194
file content (482 lines) | stat: -rw-r--r-- 15,003 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
/* Copyright (C) 2005-2014 Massachusetts Institute of Technology.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include "meep.hpp"
#include "meep_internals.hpp"

namespace meep {

struct dft_chunk_data { // for passing to field::loop_in_chunks as void*
  double omega_min, domega;
  int Nomega;
  component c;
  complex<double> weight, extra_weight;
  bool include_dV_and_interp_weights;
  bool sqrt_dV_and_interp_weights;
  dft_chunk *dft_chunks;
};

dft_chunk::dft_chunk(fields_chunk *fc_,
		     ivec is_, ivec ie_,
		     vec s0_, vec s1_, vec e0_, vec e1_,
		     double dV0_, double dV1_,
		     complex<double> extra_weight_,
		     complex<double> scale_,
		     component c_,
		     bool use_centered_grid,
		     const void *data_) {
  dft_chunk_data *data = (dft_chunk_data *) data_;
  if (!fc_->f[c_][0])
    abort("invalid fields_chunk/component combination in dft_chunk");
  
  fc = fc_;
  is = is_;
  ie = ie_;
  s0 = s0_;
  s1 = s1_;
  e0 = e0_;
  e1 = e1_;
  if (data->include_dV_and_interp_weights) {
    dV0 = dV0_;
    dV1 = dV1_;
  }
  else {
    /* this is for e.g. computing E x H, where we don't want to 
       multiply by the interpolation weights or the grid_volume twice. */
    dV0 = 1;
    dV1 = 0;
    LOOP_OVER_DIRECTIONS(fc->gv.dim, d) {
      s0.set_direction(d, 1.0);
      s1.set_direction(d, 1.0);
      e0.set_direction(d, 1.0);
      e1.set_direction(d, 1.0);
    }
  }
  /* an alternative way to avoid multipling by interpolation weights twice:
     multiply by square root of the weights */
  sqrt_dV_and_interp_weights = data->sqrt_dV_and_interp_weights;
  scale = scale_ * data->weight;
  extra_weight = extra_weight_;
  c = c_;

  if (use_centered_grid)
    fc->gv.yee2cent_offsets(c, avg1, avg2);
  else
    avg1 = avg2 = 0;

  omega_min = data->omega_min;
  domega = data->domega;
  Nomega = data->Nomega;
  dft_phase = new complex<realnum>[Nomega];
  
  N = 1;
  LOOP_OVER_DIRECTIONS(is.dim, d)
    N *= (ie.in_direction(d) - is.in_direction(d)) / 2 + 1;
  dft = new complex<realnum>[N * Nomega];
  for (int i = 0; i < N * Nomega; ++i)
    dft[i] = 0.0;
  
  next_in_chunk = fc->dft_chunks;
  fc->dft_chunks = this;
  next_in_dft = data->dft_chunks;
}

dft_chunk::~dft_chunk() {
  delete[] dft;
  delete[] dft_phase;

  // delete from fields_chunk list
  dft_chunk *cur = fc->dft_chunks;
  if (cur == this)
    fc->dft_chunks = next_in_chunk;
  else {
    while (cur && cur->next_in_chunk && cur->next_in_chunk != this)
      cur = cur->next_in_chunk;
    if (cur && cur->next_in_chunk == this)
      cur->next_in_chunk = next_in_chunk;
  }
}

void dft_flux::remove()
{
  while (E) {
    dft_chunk *nxt = E->next_in_dft;
    delete E;
    E = nxt;
  }
  while (H) {
    dft_chunk *nxt = H->next_in_dft;
    delete H;
    H = nxt;
  }
}

static void add_dft_chunkloop(fields_chunk *fc, int ichunk, component cgrid,
			      ivec is, ivec ie,
			      vec s0, vec s1, vec e0, vec e1,
			      double dV0, double dV1,
			      ivec shift, complex<double> shift_phase,
			      const symmetry &S, int sn,
			      void *chunkloop_data)
{
  dft_chunk_data *data = (dft_chunk_data *) chunkloop_data;
  (void) shift; (void) ichunk; // unused

  component c = S.transform(data->c, -sn);
  if (c >= NUM_FIELD_COMPONENTS || !fc->f[c][0])
       return; // this chunk doesn't have component c

  data->dft_chunks = new dft_chunk(fc,is,ie,s0,s1,e0,e1,dV0,dV1,
				   data->extra_weight,
				   shift_phase * S.phase_shift(c, sn),
				   c, cgrid == Centered,
				   chunkloop_data);
}

dft_chunk *fields::add_dft(component c, const volume &where,
			   double freq_min, double freq_max, int Nfreq,
			   bool include_dV_and_interp_weights,
			   complex<double> weight, dft_chunk *chunk_next,
			   bool sqrt_dV_and_interp_weights,
			   complex<double> extra_weight,
			   bool use_centered_grid) {
  if (coordinate_mismatch(gv.dim, c))
    return NULL;

  dft_chunk_data data;  
  data.c = c;
  if (Nfreq <= 1) freq_min = freq_max = (freq_min + freq_max) * 0.5;
  data.omega_min = freq_min * 2*pi;
  data.domega = Nfreq <= 1 ? 0.0 : 
    (freq_max * 2*pi - data.omega_min) / (Nfreq - 1);
  data.Nomega = Nfreq;
  data.include_dV_and_interp_weights = include_dV_and_interp_weights;
  data.sqrt_dV_and_interp_weights = sqrt_dV_and_interp_weights;
  data.dft_chunks = chunk_next;
  data.weight = weight * (dt/sqrt(2*pi));
  data.extra_weight = extra_weight;
  loop_in_chunks(add_dft_chunkloop, (void *) &data, where,
		 use_centered_grid ? Centered : c);

  return data.dft_chunks;
}

dft_chunk *fields::add_dft(const volume_list *where,
			   double freq_min, double freq_max, int Nfreq,
			   bool include_dV_and_interp_weights) {
  dft_chunk *chunks = 0;
  while (where) {
    if (is_derived(where->c)) abort("derived_component invalid for dft");
    chunks = add_dft(component(where->c), where->v,
		     freq_min, freq_max, Nfreq, include_dV_and_interp_weights,
		     where->weight, chunks);
    where = where->next;
  }
  return chunks;
}

dft_chunk *fields::add_dft_pt(component c, const vec &where,
			   double freq_min, double freq_max, int Nfreq) {
  return add_dft(c, where, freq_min, freq_max, Nfreq, false);
}

void fields::update_dfts() {
  am_now_working_on(FourierTransforming);
  for (int i = 0; i < num_chunks; i++)
    if (chunks[i]->is_mine())
      chunks[i]->update_dfts(time(), time() - 0.5 * dt);
  finished_working();
}

void fields_chunk::update_dfts(double timeE, double timeH) {
  for (dft_chunk *cur = dft_chunks; cur; cur = cur->next_in_chunk) {
    cur->update_dft(is_magnetic(cur->c) ? timeH : timeE);
  }
}

void dft_chunk::update_dft(double time) {
  if (!fc->f[c][0]) return;

  for (int i = 0; i < Nomega; ++i)
    dft_phase[i] = polar(1.0, (omega_min + i*domega)*time) * scale;

  int numcmp = fc->f[c][1] ? 2 : 1;

  int idx_dft = 0;
  LOOP_OVER_IVECS(fc->gv, is, ie, idx) {
    double w = IVEC_LOOP_WEIGHT(s0, s1, e0, e1, dV0 + dV1 * loop_i2);
    if (sqrt_dV_and_interp_weights) w = sqrt(w);
    double f[2]; // real/imag field value at epsilon point
    if (avg2)
      for (int cmp=0; cmp < numcmp; ++cmp)
	f[cmp] = (w * 0.25) * 
	  (fc->f[c][cmp][idx] + fc->f[c][cmp][idx+avg1]
	   + fc->f[c][cmp][idx+avg2] + fc->f[c][cmp][idx+(avg1+avg2)]);
    else if (avg1)
      for (int cmp=0; cmp < numcmp; ++cmp)
	f[cmp] = (w * 0.5) * (fc->f[c][cmp][idx] + fc->f[c][cmp][idx+avg1]);
    else
      for (int cmp=0; cmp < numcmp; ++cmp)
	f[cmp] = w * fc->f[c][cmp][idx];
    
    if (numcmp == 2) {
      complex<realnum> fc(f[0], f[1]);
      for (int i = 0; i < Nomega; ++i)
	dft[Nomega * idx_dft + i] += dft_phase[i] * fc;
    }
    else {
      realnum fr = f[0];
      for (int i = 0; i < Nomega; ++i)
	dft[Nomega * idx_dft + i] += dft_phase[i] * fr;
    }
    idx_dft++;
  }
}

void dft_chunk::scale_dft(complex<double> scale) {
  for (int i = 0; i < N * Nomega; ++i)
    dft[i] *= scale;
  if (next_in_dft)
    next_in_dft->scale_dft(scale);
}

void dft_chunk::operator-=(const dft_chunk &chunk) {
  if (c != chunk.c || N * Nomega != chunk.N * chunk.Nomega) abort("Mismatched chunks in dft_chunk::operator-=");

  for (int i = 0; i < N * Nomega; ++i)
    dft[i] -= chunk.dft[i];

  if (next_in_dft) {
    if (!chunk.next_in_dft) abort("Mismatched chunk lists in dft_chunk::operator-=");
    *next_in_dft -= *chunk.next_in_dft;
  }
}

static int dft_chunks_Ntotal(dft_chunk *dft_chunks, int *my_start) {
  int n = 0;
  for (dft_chunk *cur = dft_chunks; cur; cur = cur->next_in_dft)
    n += cur->N * cur->Nomega * 2;
  *my_start = partial_sum_to_all(n) - n; // sum(n) for processes before this
  return sum_to_all(n);
}

// Note: the file must have been created in parallel mode, typically via fields::open_h5file.
void save_dft_hdf5(dft_chunk *dft_chunks, const char *name, h5file *file,
		   const char *dprefix) {
  int istart;
  int n = dft_chunks_Ntotal(dft_chunks, &istart);

  char dataname[1024];
  snprintf(dataname, 1024, "%s%s" "%s_dft", 
	   dprefix ? dprefix : "", dprefix && dprefix[0] ? "_" : "", name);
  file->create_data(dataname, 1, &n);

  for (dft_chunk *cur = dft_chunks; cur; cur = cur->next_in_dft) {
    int Nchunk = cur->N * cur->Nomega * 2;
    file->write_chunk(1, &istart, &Nchunk, (realnum *) cur->dft);
    istart += Nchunk;
  }
  file->done_writing_chunks();
}

void save_dft_hdf5(dft_chunk *dft_chunks, component c, h5file *file,
		   const char *dprefix) {
  save_dft_hdf5(dft_chunks, component_name(c), file, dprefix);
}

void load_dft_hdf5(dft_chunk *dft_chunks, const char *name, h5file *file,
		   const char *dprefix) {
  int istart;
  int n = dft_chunks_Ntotal(dft_chunks, &istart);

  char dataname[1024];
  snprintf(dataname, 1024, "%s%s" "%s_dft", 
	   dprefix ? dprefix : "", dprefix && dprefix[0] ? "_" : "", name);
  int file_rank, file_dims;
  file->read_size(dataname, &file_rank, &file_dims, 1);
  if (file_rank != 1 || file_dims != n)
    abort("incorrect dataset size (%d vs. %d) in load_dft_hdf5 %s:%s", file_dims, n, file->file_name(), dataname);
  
  for (dft_chunk *cur = dft_chunks; cur; cur = cur->next_in_dft) {
    int Nchunk = cur->N * cur->Nomega * 2;
    file->read_chunk(1, &istart, &Nchunk, (realnum *) cur->dft);
    istart += Nchunk;
  }
}

void load_dft_hdf5(dft_chunk *dft_chunks, component c, h5file *file,
		   const char *dprefix) {
  load_dft_hdf5(dft_chunks, component_name(c), file, dprefix);
}

dft_flux::dft_flux(const component cE_, const component cH_,
		   dft_chunk *E_, dft_chunk *H_, 
		   double fmin, double fmax, int Nf)
{
  if (Nf <= 1) fmin = fmax = (fmin + fmax) * 0.5;
  freq_min = fmin;
  Nfreq = Nf;
  dfreq = Nf <= 1 ? 0.0 : (fmax - fmin) / (Nf - 1);
  E = E_; H = H_;
  cE = cE_; cH = cH_;
}

dft_flux::dft_flux(const dft_flux &f) {
  freq_min = f.freq_min; Nfreq = f.Nfreq; dfreq = f.dfreq;
  E = f.E; H = f.H;
  cE = f.cE; cH = f.cH;
}

double *dft_flux::flux() {
  double *F = new double[Nfreq];
  for (int i = 0; i < Nfreq; ++i) F[i] = 0;
  for (dft_chunk *curE = E, *curH = H; curE && curH;
       curE = curE->next_in_dft, curH = curH->next_in_dft)
    for (int k = 0; k < curE->N; ++k)
      for (int i = 0; i < Nfreq; ++i)
	F[i] += real(curE->dft[k*Nfreq + i]
		     * conj(curH->dft[k*Nfreq + i]));
  double *Fsum = new double[Nfreq];
  sum_to_all(F, Fsum, Nfreq);
  delete[] F;
  return Fsum;
}

void dft_flux::save_hdf5(h5file *file, const char *dprefix) {
  save_dft_hdf5(E, cE, file, dprefix);
  file->prevent_deadlock(); // hackery
  save_dft_hdf5(H, cH, file, dprefix);
}

void dft_flux::load_hdf5(h5file *file, const char *dprefix) {
  load_dft_hdf5(E, cE, file, dprefix);
  file->prevent_deadlock(); // hackery
  load_dft_hdf5(H, cH, file, dprefix);
}

void dft_flux::save_hdf5(fields &f, const char *fname, const char *dprefix,
			 const char *prefix) {
  h5file *ff = f.open_h5file(fname, h5file::WRITE, prefix);
  save_hdf5(ff, dprefix);
  delete ff;
}

void dft_flux::load_hdf5(fields &f, const char *fname, const char *dprefix,
			 const char *prefix) {
  h5file *ff = f.open_h5file(fname, h5file::READONLY, prefix);
  load_hdf5(ff, dprefix);
  delete ff;
}

void dft_flux::scale_dfts(complex<double> scale) {
  if (E) E->scale_dft(scale);
  if (H) H->scale_dft(scale);
}

dft_flux fields::add_dft_flux(const volume_list *where_,
			      double freq_min, double freq_max, int Nfreq) {
  dft_chunk *E = 0, *H = 0;
  component cE[2] = {Ex,Ey}, cH[2] = {Hy,Hx};

  volume_list *where = S.reduce(where_);
  volume_list *where_save = where;
  while (where) {
    derived_component c = derived_component(where->c);
    if (coordinate_mismatch(gv.dim, component_direction(c)))
      abort("coordinate-type mismatch in add_dft_flux");
    
    switch (c) {
    case Sx: cE[0] = Ey, cE[1] = Ez, cH[0] = Hz, cH[1] = Hy; break;
    case Sy: cE[0] = Ez, cE[1] = Ex, cH[0] = Hx, cH[1] = Hz; break;
    case Sr: cE[0] = Ep, cE[1] = Ez, cH[0] = Hz, cH[1] = Hp; break;
    case Sp: cE[0] = Ez, cE[1] = Er, cH[0] = Hr, cH[1] = Hz; break;
    case Sz:
      if (gv.dim == Dcyl)
	cE[0] = Er, cE[1] = Ep, cH[0] = Hp, cH[1] = Hr;
      else
	cE[0] = Ex, cE[1] = Ey, cH[0] = Hy, cH[1] = Hx; 
      break;
    default: abort("invalid flux component!");
    }
    
    for (int i = 0; i < 2; ++i) {
      E = add_dft(cE[i], where->v, freq_min, freq_max, Nfreq,
		  true, where->weight * double(1 - 2*i), E);
      H = add_dft(cH[i], where->v, freq_min, freq_max, Nfreq,
		  false, 1.0, H);
    }
    
    where = where->next;
  }
  delete where_save;

  return dft_flux(cE[0], cH[0], E, H, freq_min, freq_max, Nfreq);
}

direction fields::normal_direction(const volume &where) const {
  direction d = where.normal_direction();
  if (d == NO_DIRECTION) {
    /* hack so that we still infer the normal direction correctly for
       volumes with empty dimensions */
    volume where_pad(where);
    LOOP_OVER_DIRECTIONS(where.dim, d1)
      if (nosize_direction(d1) && where.in_direction(d1) == 0.0)
	where_pad.set_direction_max(d1, where.in_direction_min(d1) + 0.1);
    d = where_pad.normal_direction();  
    if (d == NO_DIRECTION)
      abort("Could not determine normal direction for given grid_volume.");
  }
  return d;
}

dft_flux fields::add_dft_flux(direction d, const volume &where,
			      double freq_min, double freq_max, int Nfreq) {
  if (d == NO_DIRECTION)
    d = normal_direction(where);
  volume_list vl(where, direction_component(Sx, d));
  return add_dft_flux(&vl, freq_min, freq_max, Nfreq);
}

dft_flux fields::add_dft_flux_box(const volume &where,
				  double freq_min, double freq_max, int Nfreq){
  volume_list *faces = 0;
  LOOP_OVER_DIRECTIONS(where.dim, d)
    if (where.in_direction(d) > 0) {
      volume face(where);
      derived_component c = direction_component(Sx, d);
      face.set_direction_min(d, where.in_direction_max(d));
      faces = new volume_list(face, c, +1, faces);
      face.set_direction_min(d, where.in_direction_min(d));
      face.set_direction_max(d, where.in_direction_min(d));
      faces = new volume_list(face, c, -1, faces);
    }

  dft_flux flux = add_dft_flux(faces, freq_min, freq_max, Nfreq);
  delete faces;
  return flux;
}

dft_flux fields::add_dft_flux_plane(const volume &where,
			      double freq_min, double freq_max, int Nfreq) {
  return add_dft_flux(NO_DIRECTION, where, freq_min, freq_max, Nfreq);
}

} // namespace meep