File: mympi.cpp

package info (click to toggle)
meep 1.2.1-2
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 4,420 kB
  • ctags: 6,821
  • sloc: cpp: 62,027; sh: 11,405; lisp: 238; makefile: 194
file content (637 lines) | stat: -rw-r--r-- 15,005 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
/* Copyright (C) 2005-2014 Massachusetts Institute of Technology
%
%  This program is free software; you can redistribute it and/or modify
%  it under the terms of the GNU General Public License as published by
%  the Free Software Foundation; either version 2, or (at your option)
%  any later version.
%
%  This program is distributed in the hope that it will be useful,
%  but WITHOUT ANY WARRANTY; without even the implied warranty of
%  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
%  GNU General Public License for more details.
%
%  You should have received a copy of the GNU General Public License
%  along with this program; if not, write to the Free Software Foundation,
%  Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/

#include <stdarg.h>
#include <string.h>
#include <stdlib.h>

#include "meep.hpp"
#include "config.h"

#ifdef HAVE_MPI
#  ifdef NEED_UNDEF_SEEK_FOR_MPI
// undef'ing SEEK_* is needed for MPICH, possibly other MPI versions
#    undef SEEK_SET
#    undef SEEK_END
#    undef SEEK_CUR
#  endif
#  include <mpi.h>
#endif

#ifdef IGNORE_SIGFPE
#  include <signal.h>
#endif

#if defined(DEBUG) && defined(HAVE_FEENABLEEXCEPT)
#  ifndef _GNU_SOURCE
#    define _GNU_SOURCE 1
#  endif
#  include <fenv.h>
#  if !HAVE_DECL_FEENABLEEXCEPT
extern "C" int feenableexcept (int EXCEPTS);
#  endif
#endif

#if TIME_WITH_SYS_TIME
# include <sys/time.h>
# include <time.h>
#else
# if HAVE_SYS_TIME_H
#  include <sys/time.h>
# else
#  include <time.h>
# endif
#endif
#ifdef HAVE_BSDGETTIMEOFDAY
#  ifndef HAVE_GETTIMEOFDAY
#    define gettimeofday BSDgettimeofday
#    define HAVE_GETTIMEOFDAY 1
#  endif
#endif

#define UNUSED(x) (void) x // silence compiler warnings

#define MPI_REALNUM (sizeof(realnum) == sizeof(double) ? MPI_DOUBLE:MPI_FLOAT)

namespace meep {

#ifdef HAVE_MPI
  static MPI_Comm mycomm = MPI_COMM_WORLD;
#endif

bool quiet = false; // defined in meep.h

initialize::initialize(int &argc, char** &argv) {
#ifdef HAVE_MPI
  MPI_Init(&argc, &argv);
  int major, minor;
  MPI_Get_version(&major, &minor);
  if (!quiet) master_printf("Using MPI version %d.%d, %d processes\n", 
			    major, minor, count_processors());
#else
  UNUSED(argc);
  UNUSED(argv);
#endif
#if defined(DEBUG_FP) && defined(HAVE_FEENABLEEXCEPT)
  feenableexcept(FE_INVALID | FE_OVERFLOW); //crash if NaN created, or overflow
#endif
#ifdef IGNORE_SIGFPE
  signal(SIGFPE, SIG_IGN);
#endif
  t_start = wall_time();
}

initialize::~initialize() {
  if (!quiet) master_printf("\nElapsed run time = %g s\n", elapsed_time());
#ifdef HAVE_MPI
  end_divide_parallel();
  MPI_Finalize();
#endif
}

double wall_time(void) {
#ifdef HAVE_MPI
  return MPI_Wtime();
#elif HAVE_GETTIMEOFDAY
  struct timeval tv;
  gettimeofday(&tv, 0);
  return(tv.tv_sec + tv.tv_usec * 1e-6);
#else
  return (clock() * 1.0 / CLOCKS_PER_SECOND);
#endif
}

void abort(const char *fmt, ...) {
  va_list ap;
  va_start(ap, fmt);
  fprintf(stderr, "meep: ");
  vfprintf(stderr, fmt, ap);
  va_end(ap);
  if (fmt[strlen(fmt) - 1] != '\n') fputc('\n', stderr); // force newline
#ifdef HAVE_MPI
  MPI_Abort(MPI_COMM_WORLD, 1);
#endif
  exit(1);
}

void send(int from, int to, double *data, int size) {
#ifdef HAVE_MPI
  if (from == to) return;
  if (size == 0) return;
  const int me = my_rank();
  if (from == me) MPI_Send(data, size, MPI_DOUBLE, to, 1, mycomm);
  MPI_Status stat;
  if (to == me) MPI_Recv(data, size, MPI_DOUBLE, from, 1, mycomm, &stat);
#else
  UNUSED(from);
  UNUSED(to);
  UNUSED(data);
  UNUSED(size);
#endif
}

#if MEEP_SINGLE
void broadcast(int from, realnum *data, int size) {
#ifdef HAVE_MPI
  if (size == 0) return;
  MPI_Bcast(data, size, MPI_FLOAT, from, mycomm);
#else
  UNUSED(from);
  UNUSED(data);
  UNUSED(size);
#endif
}
#endif

void broadcast(int from, double *data, int size) {
#ifdef HAVE_MPI
  if (size == 0) return;
  MPI_Bcast(data, size, MPI_DOUBLE, from, mycomm);
#else
  UNUSED(from);
  UNUSED(data);
  UNUSED(size);
#endif
}

void broadcast(int from, char *data, int size) {
#ifdef HAVE_MPI
  if (size == 0) return;
  MPI_Bcast(data, size, MPI_CHAR, from, mycomm);
#else
  UNUSED(from);
  UNUSED(data);
  UNUSED(size);
#endif
}

void broadcast(int from, complex<double> *data, int size) {
#ifdef HAVE_MPI
  if (size == 0) return;
  MPI_Bcast(data, 2*size, MPI_DOUBLE, from, mycomm);
#else
  UNUSED(from);
  UNUSED(data);
  UNUSED(size);
#endif
}

void broadcast(int from, int *data, int size) {
#ifdef HAVE_MPI
  if (size == 0) return;
  MPI_Bcast(data, size, MPI_INT, from, mycomm);
#else
  UNUSED(from);
  UNUSED(data);
  UNUSED(size);
#endif
}

complex<double> broadcast(int from, complex<double> data) {
#ifdef HAVE_MPI
  MPI_Bcast(&data, 2, MPI_DOUBLE, from, mycomm);
#else
  UNUSED(from);
#endif
  return data;
}

double broadcast(int from, double data) {
#ifdef HAVE_MPI
  MPI_Bcast(&data, 1, MPI_DOUBLE, from, mycomm);
#else
  UNUSED(from);
#endif
  return data;
}

int broadcast(int from, int data) {
#ifdef HAVE_MPI
  MPI_Bcast(&data, 1, MPI_INT, from, mycomm);
#else
  UNUSED(from);
#endif
  return data;
}

bool broadcast(int from, bool b) {
  return broadcast(from, (int) b);
}

double max_to_master(double in) {
  double out = in;
#ifdef HAVE_MPI
  MPI_Reduce(&in,&out,1,MPI_DOUBLE,MPI_MAX,0,mycomm);
#endif
  return out;
}

double max_to_all(double in) {
  double out = in;
#ifdef HAVE_MPI
  MPI_Allreduce(&in,&out,1,MPI_DOUBLE,MPI_MAX,mycomm);
#endif
  return out;
}

int max_to_all(int in) {
  int out = in;
#ifdef HAVE_MPI
  MPI_Allreduce(&in,&out,1,MPI_INT,MPI_MAX,mycomm);
#endif
  return out;
}

ivec max_to_all(const ivec &pt) {
  int in[5], out[5];
  for (int i=0; i<5; ++i) in[i] = out[i] = pt.in_direction(direction(i));
#ifdef HAVE_MPI
  MPI_Allreduce(&in,&out,5,MPI_INT,MPI_MAX,mycomm);
#endif
  ivec ptout(pt.dim);
  for (int i=0; i<5; ++i) ptout.set_direction(direction(i), out[i]);
  return ptout;
}

double sum_to_master(double in) {
  double out = in;
#ifdef HAVE_MPI
  MPI_Reduce(&in,&out,1,MPI_DOUBLE,MPI_SUM,0,mycomm);
#endif
  return out;
}

double sum_to_all(double in) {
  double out = in;
#ifdef HAVE_MPI
  MPI_Allreduce(&in,&out,1,MPI_DOUBLE,MPI_SUM,mycomm);
#endif
  return out;
}

void sum_to_all(const double *in, double *out, int size) {
#ifdef HAVE_MPI
  MPI_Allreduce((void*) in, out, size, MPI_DOUBLE,MPI_SUM,mycomm);
#else
  memcpy(out, in, sizeof(double) * size);
#endif
}

void sum_to_all(const float *in, double *out, int size) {
  double *in2 = new double[size];
  for (int i = 0; i < size; ++i) in2[i] = in[i];
  sum_to_all(in2, out, size);
  delete[] in2;
}

void sum_to_all(const complex<double> *in, complex<double> *out, int size) {
  sum_to_all((const double*) in, (double*) out, 2*size);
}

void sum_to_all(const complex<float> *in, complex<double> *out, int size) {
  sum_to_all((const float*) in, (double*) out, 2*size);
}

long double sum_to_all(long double in) {
  long double out = in;
#ifdef HAVE_MPI
  if (MPI_LONG_DOUBLE == MPI_DATATYPE_NULL)
    out = sum_to_all(double(in));
  else
    MPI_Allreduce(&in,&out,1,MPI_LONG_DOUBLE,MPI_SUM,mycomm);
#endif
  return out;
}

int sum_to_all(int in) {
  int out = in;
#ifdef HAVE_MPI
  MPI_Allreduce(&in,&out,1,MPI_INT,MPI_SUM,mycomm);
#endif
  return out;
}

int partial_sum_to_all(int in) {
  int out = in;
#ifdef HAVE_MPI
  MPI_Scan(&in,&out,1,MPI_INT,MPI_SUM,mycomm);
#endif
  return out;
}

complex<double> sum_to_all(complex<double> in) {
  complex<double> out = in;
#ifdef HAVE_MPI
  MPI_Allreduce(&in,&out,2,MPI_DOUBLE,MPI_SUM,mycomm);
#endif
  return out;
}

complex<long double> sum_to_all(complex<long double> in) {
  complex<long double> out = in;
#ifdef HAVE_MPI
  if (MPI_LONG_DOUBLE == MPI_DATATYPE_NULL) {
    complex<double> dout;
    dout = sum_to_all(complex<double>(double(in.real()), double(in.imag())));
    out = complex<long double>(dout.real(), dout.imag());
  }
  else
    MPI_Allreduce(&in,&out,2,MPI_LONG_DOUBLE,MPI_SUM,mycomm);
#endif
  return out;
}

bool or_to_all(bool in) {
  int in2 = in, out;
#ifdef HAVE_MPI
  MPI_Allreduce(&in2,&out,1,MPI_INT,MPI_LOR,mycomm);
#else
  out = in2;
#endif
  return (bool) out;
}

void or_to_all(const int *in, int *out, int size) {
#ifdef HAVE_MPI
  MPI_Allreduce((void*) in, out, size, MPI_INT,MPI_LOR,mycomm);
#else
  memcpy(out, in, sizeof(int) * size);
#endif
}

bool and_to_all(bool in) {
  int in2 = in, out;
#ifdef HAVE_MPI
  MPI_Allreduce(&in2,&out,1,MPI_INT,MPI_LAND,mycomm);
#else
  out = in2;
#endif
  return (bool) out;
}

void and_to_all(const int *in, int *out, int size) {
#ifdef HAVE_MPI
  MPI_Allreduce((void*) in, out, size, MPI_INT,MPI_LAND,mycomm);
#else
  memcpy(out, in, sizeof(int) * size);
#endif
}

void all_wait() {
#ifdef HAVE_MPI
  MPI_Barrier(mycomm);
#endif
}

int my_rank() {
#ifdef HAVE_MPI
  int rank;
  MPI_Comm_rank(mycomm, &rank);
  return rank;
#else
  return 0;
#endif
}

int count_processors() {
#ifdef HAVE_MPI
  int n;
  MPI_Comm_size(mycomm, &n);
  return n;
#else
  return 1;
#endif
}

void fields::boundary_communications(field_type ft) {
  // Communicate the data around!
#if 0 // This is the blocking version, which should always be safe!
  for (int noti=0;noti<num_chunks;noti++)
    for (int j=0;j<num_chunks;j++) {
      const int i = (noti+j)%num_chunks;
      const int pair = j+i*num_chunks;
      DOCMP {
        send(chunks[j]->n_proc(), chunks[i]->n_proc(),
             comm_blocks[ft][pair], comm_size_tot(ft,pair));
      }
    }
#endif
#ifdef HAVE_MPI
  const int maxreq = num_chunks*num_chunks;
  MPI_Request *reqs = new MPI_Request[maxreq];
  MPI_Status *stats = new MPI_Status[maxreq];
  int reqnum = 0;
  int *tagto = new int[count_processors()];
  for (int i=0;i<count_processors();i++) tagto[i] = 0;
  for (int noti=0;noti<num_chunks;noti++)
    for (int j=0;j<num_chunks;j++) {
      const int i = (noti+j)%num_chunks;
      const int pair = j+i*num_chunks;
      const int comm_size = comm_size_tot(ft,pair);
      if (comm_size > 0) {
	if (chunks[j]->is_mine() && !chunks[i]->is_mine())
	  MPI_Isend(comm_blocks[ft][pair], comm_size,
		    MPI_REALNUM, chunks[i]->n_proc(),
		    tagto[chunks[i]->n_proc()]++,
		    mycomm, &reqs[reqnum++]);
	if (chunks[i]->is_mine() && !chunks[j]->is_mine())
	  MPI_Irecv(comm_blocks[ft][pair], comm_size,
		    MPI_REALNUM, chunks[j]->n_proc(),
		    tagto[chunks[j]->n_proc()]++,
		    mycomm, &reqs[reqnum++]);
      }
    }
  delete[] tagto;
  if (reqnum > maxreq) abort("Too many requests!!!\n");
  if (reqnum > 0) MPI_Waitall(reqnum, reqs, stats);
  delete[] reqs;
  delete[] stats;
#else
  (void) ft; // unused
#endif
}

// IO Routines...

bool am_really_master() {
  return (my_global_rank() == 0);
}

void master_printf(const char *fmt, ...) {
  va_list ap;
  va_start(ap, fmt);
  if (am_really_master()) { vprintf(fmt, ap); fflush(stdout); }
  va_end(ap);
}

static FILE *debf = NULL;

void debug_printf(const char *fmt, ...) {
  va_list ap;
  va_start(ap, fmt);
  if (debf == NULL) {
    char temp[50];
    snprintf(temp, 50, "debug_out_%d", my_rank());
    debf = fopen(temp,"w");
    if (!debf) abort("Unable to open debug output %s\n", temp);
  }
  vfprintf(debf, fmt, ap);
  fflush(debf);
  va_end(ap);
}

void master_fprintf(FILE *f, const char *fmt, ...) {
  va_list ap;
  va_start(ap, fmt);
  if (am_master()) { vfprintf(f, fmt, ap); fflush(f); }
  va_end(ap);
}
FILE *master_fopen(const char *name, const char *mode) {
  FILE *f = am_master() ? fopen(name, mode) : 0;

  /* other processes need to know if fopen returned zero, in order
     to abort if fopen failed.  If fopen was successfully, just return
     a random non-zero pointer (which is never used except to compare to zero)
     on non-master processes */
  if (broadcast(0, bool(f != 0)) && !am_master())
    f = (FILE *) name;
  return f;
}
void master_fclose(FILE *f) {
  if (am_master()) fclose(f);
}

/* The following functions bracket a "critical section," a region
   of code that should be executed by only one process at a time.

   They work by having each process wait for a message from the
   previous process before starting. 

   Each critical section is passed an integer "tag"...ideally, this
   should be a unique identifier for each critical section so that
   messages from different critical sections don't get mixed up
   somehow. */

void begin_critical_section(int tag)
{
#ifdef HAVE_MPI
     int process_rank;
     MPI_Comm_rank(mycomm, &process_rank);
     if (process_rank > 0) { /* wait for a message before continuing */
	  MPI_Status status;
	  int recv_tag = tag - 1; /* initialize to wrong value */
	  MPI_Recv(&recv_tag, 1, MPI_INT, process_rank - 1, tag, 
		   mycomm, &status);
	  if (recv_tag != tag) abort("invalid tag received in begin_critical_section");
     }
#else
     UNUSED(tag);
#endif
}

void end_critical_section(int tag)
{
#ifdef HAVE_MPI
     int process_rank, num_procs;
     MPI_Comm_rank(mycomm, &process_rank);
     MPI_Comm_size(mycomm, &num_procs);
     if (process_rank != num_procs - 1) { /* send a message to next process */
	  MPI_Send(&tag, 1, MPI_INT, process_rank + 1, tag, 
		   mycomm);
     }
#else
     UNUSED(tag);
#endif
}


/* Simple, somewhat hackish API to allow user to run multiple simulations
   in parallel in the same MPI job.  The user calls

   mygroup = divide_parallel_processes(numgroups);

   to divide all of the MPI processes into numgroups equal groups,
   and to return the index (from 0 to numgroups-1) of the current group.
   From this point on, all fields etc. that you create and all
   calls from mympi.cpp will only communicate within your group of
   processes.

   However, there are two calls that you can use to switch back to
   globally communication among all processes:

   begin_global_communications();
   ....do stuff....
   end_global_communications();

   It is important not to mix the two types; e.g. you cannot timestep
   a field created in the local group in global mode, or vice versa.
*/

int divide_parallel_processes(int numgroups)
{
#ifdef HAVE_MPI
  end_divide_parallel();
  if (numgroups > count_processors()) abort("numgroups > count_processors");
  int mygroup = (my_rank() * numgroups) / count_processors();
  MPI_Comm_split(MPI_COMM_WORLD, mygroup, my_rank(), &mycomm);
  return mygroup;
#else
  if (numgroups != 1) abort("cannot divide processes in non-MPI mode");
  return 0;
#endif
}

#ifdef HAVE_MPI
  static MPI_Comm mycomm_save = MPI_COMM_WORLD;
#endif

void begin_global_communications(void)
{
#ifdef HAVE_MPI
  mycomm_save = mycomm;
  mycomm = MPI_COMM_WORLD;
#endif
}

void end_global_communications(void)
{
#ifdef HAVE_MPI
  mycomm = mycomm_save;
  mycomm_save = MPI_COMM_WORLD;
#endif
}

void end_divide_parallel(void)
{
#ifdef HAVE_MPI
  if (mycomm != MPI_COMM_WORLD) MPI_Comm_free(&mycomm);
  if (mycomm_save != MPI_COMM_WORLD) MPI_Comm_free(&mycomm_save);
  mycomm = mycomm_save = MPI_COMM_WORLD;
#endif
}

int my_global_rank() {
#ifdef HAVE_MPI
  int rank;
  MPI_Comm_rank(MPI_COMM_WORLD, &rank);
  return rank;
#else
  return 0;
#endif
}

} // namespace meep