File: pml.cpp

package info (click to toggle)
meep 1.2.1-2
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 4,420 kB
  • ctags: 6,821
  • sloc: cpp: 62,027; sh: 11,405; lisp: 238; makefile: 194
file content (345 lines) | stat: -rw-r--r-- 12,833 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
#include <stdio.h>
#include <stdlib.h>

#include <meep.hpp>
using namespace meep;

double Rasymp = 1e-15, stretch = 2.0; // PML parameters

// a simple material with xy offdiagonal terms in the tensors, for testing
class offdiag_material : public material_function {
public:
  offdiag_material(double offdiag) : offdiag(offdiag) {}
  virtual bool has_mu() { return true; }
  virtual void eff_chi1inv_row(component c, double chi1inv_row[3],
                               const volume &v,
                               double tol=DEFAULT_SUBPIXEL_TOL,
			       int maxeval=DEFAULT_SUBPIXEL_MAXEVAL) {
    (void) v; (void) tol; (void) maxeval; // unused
    // we are returning inv(1+chi1), so we must compute the inverse
    // inv([1+od od; od 1+od]) = [1+od -od; -od 1+od] / (1+2*o)
    double detinv = 1.0 / (1 + 2 * offdiag);
    if (component_direction(c) == X) {
      chi1inv_row[0] = (1 + offdiag) * detinv;
      chi1inv_row[1] = -offdiag * detinv;
      chi1inv_row[2] = 0.0;
    }
    else if (component_direction(c) == Y) {
      chi1inv_row[0] = -offdiag * detinv;
      chi1inv_row[1] = (1 + offdiag) * detinv;
      chi1inv_row[2] = 0.0;
    }
    else {
      chi1inv_row[0] = 0.0;
      chi1inv_row[1] = 0.0;
      chi1inv_row[2] = 1.0;
    }
  }
  double offdiag;
};

static double one(const vec &) { return 1.0; }
static double notone_val = 1.0;
static double notone(const vec &) { return notone_val; }

static complex<double> do_ft(fields &f, component c, const vec &pt, double freq)
{
  complex<double> ft = 0.0;
  double emax = 0;
  while (f.time() < f.last_source_time()) {
    complex <double> fpt = f.get_field(c, pt);
    ft += fpt * polar(1.0, 2*pi*freq * f.time());
    emax = max(emax, abs(fpt));
    f.step();
  }
  do {
    double emaxcur = 0;
    double T = f.time() + 50;
    while (f.time() < T) {
      complex <double> fpt = f.get_field(c, pt);
      ft += fpt * polar(1.0, 2*pi*freq * f.time());
      double e = abs(fpt);
      emax = max(emax, e);
      emaxcur = max(emaxcur, e);
      f.step();
    }
    if (emaxcur < (sizeof(realnum)==sizeof(float) ? 1e-4 : 1e-6) * emax) break;
    if (T > 500 && emaxcur > 1e-2 * emax) 
      abort("fields do not seem to be decaying");
  } while(1);
  return ft;
}

int check_pml1d(double eps(const vec &), double conductivity) {
  double freq = 1.0, dpml = 1.0;
  double sz = 1.0 + 2*dpml;
  double sz2 = 1.0 + 2*dpml*2;
  complex<double> ft = 0.0, ft2 = 0.0;
  double prev_refl_const = 0.0, refl_const = 0.0;
  vec fpt(0.5*sz - dpml - 0.1);
  master_printf("Checking resolution convergence of 1d PML...\n");
  if (conductivity != 0) master_printf("...with conductivity %g...\n",
				       conductivity);
  notone_val = conductivity;
  for (int i=0; i<(sizeof(realnum)==sizeof(float) ? 5 : 8); i++) {
    double res = 10.0 + 10.0*i;
    {
      grid_volume gv = vol1d(sz,res);
      gv.center_origin();
      structure s(gv, eps, pml(dpml, Rasymp, stretch));
      s.set_conductivity(By, notone);
      fields f(&s);
      gaussian_src_time src(freq, freq / 20);
      f.add_point_source(Ex, src, vec(-0.5*sz+dpml+0.1));
      ft = do_ft(f, Ex, fpt, freq);
    }
    {
      grid_volume gv = vol1d(sz2,res);
      gv.center_origin();
      structure s(gv, eps, pml(dpml*2, Rasymp, stretch));
      s.set_conductivity(By, notone);
      fields f(&s);
      gaussian_src_time src(freq, freq / 20);
      f.add_point_source(Ex, src, vec(-0.5*sz+dpml+0.1));
      ft2 = do_ft(f, Ex, fpt, freq);
    }
    refl_const = pow(abs(ft - ft2),2.0) / pow(abs(ft2),2.0);
    master_printf("refl1d:, %g, %g\n", res, refl_const);
    if (i > 0 && 
	refl_const > prev_refl_const * pow((res - 10)/res,8.0) * 1.1)
      return 1;
    prev_refl_const = refl_const;
  }
  master_printf("passed 1d PML check.\n");
  return 0;
}

int check_pml2d(double eps(const vec &), component c,
		double conductivity,
		bool dispersion,
		double offdiag) {
  double freq = 1.0, dpml = 1.0, sigma0 = 1.0, omega0 = 1.0, gamma0 = 0.3;
  complex<double> ft = 0.0, ft2 = 0.0;
  double prev_refl_const = 0.0, refl_const = 0.0;
  double sxy = 4.0 + 2*dpml;
  double sxy2 = 4.0 + 2*dpml*2;
  double res_step = 6.0;
  vec fpt(0.5*sxy - dpml - 0.1,0);
  if (c != Ez && c != Hz) abort("unimplemented component check");
  double symsign = c == Ez ? 1.0 : -1.0;
  master_printf("Checking resolution convergence of 2d %s PML...\n",
		c == Ez ? "TM" : "TE");
  if (conductivity != 0) master_printf("...with conductivity %g...\n",
				       conductivity);
  if (dispersion) master_printf("...with dispersion\n");
  if (offdiag != 0) master_printf("...with offdiag %g...\n", offdiag);
  offdiag_material mat(offdiag);
  for (int i=0; i<4; i++) {
    double res = 10.0 + res_step*i;
    {
      grid_volume gv = vol2d(sxy,sxy,res);
      gv.center_origin();
      const symmetry S = offdiag != 0 ? rotate2(Z,gv) : mirror(X,gv)*symsign + mirror(Y,gv)*symsign;
      structure s(gv, eps, pml(dpml, Rasymp, stretch), S);
      if (conductivity != 0) {
	notone_val = conductivity;
	s.set_conductivity(Bx, notone);
	s.set_conductivity(By, notone);
	s.set_conductivity(Bz, notone);
	s.set_conductivity(Dx, notone);
	s.set_conductivity(Dy, notone);
	s.set_conductivity(Dz, notone);
      }
      if (dispersion) {
	notone_val = sigma0;
	s.add_susceptibility(notone, E_stuff,
			     lorentzian_susceptibility(omega0, gamma0));
      }
      if (offdiag != 0) s.set_materials(mat, false);
      fields f(&s);
      f.use_real_fields();
      gaussian_src_time src(freq, freq / 20);
      f.add_point_source(c, src, gv.center());
      ft = do_ft(f, c, fpt, freq);
    }
    {
      grid_volume gv = vol2d(sxy2,sxy2,res);
      gv.center_origin();
      const symmetry S = offdiag != 0 ? rotate2(Z,gv) : mirror(X,gv)*symsign + mirror(Y,gv)*symsign;
      structure s(gv, eps, pml(dpml*2, Rasymp, stretch), S);
      if (conductivity != 0) {
	notone_val = conductivity;
	s.set_conductivity(Bx, notone);
	s.set_conductivity(By, notone);
	s.set_conductivity(Bz, notone);
	s.set_conductivity(Dx, notone);
	s.set_conductivity(Dy, notone);
	s.set_conductivity(Dz, notone);
      }
      if (dispersion) {
	notone_val = sigma0;
	s.add_susceptibility(notone, E_stuff,
			     lorentzian_susceptibility(omega0, gamma0));
      }
      if (offdiag != 0) s.set_materials(mat, false);
      fields f(&s);
      f.use_real_fields();
      gaussian_src_time src(freq, freq / 20);
      f.add_point_source(c, src, gv.center());
      ft2 = do_ft(f, c, fpt, freq);
    }
    refl_const = pow(abs(ft - ft2),2.0) / pow(abs(ft2),2.0);
    master_printf("refl2d:, %g, %g\n", res, refl_const);
    if (i > 0 && 
	refl_const > prev_refl_const * pow((res - res_step)/res,
					   offdiag != 0 ? 6.0 : 8.0) * 1.2)
      return 1;
    prev_refl_const = refl_const;
  }
  master_printf("passed 2d %s PML check.\n", c == Ez ? "TM" : "TE");
  return 0;
}

/* The cylindrical case actually shouldn't have a reflection that goes
   to zero with increasing resolution - we implement only a
   "quasi-PML" for cylindrical coordinates, which is basically the PML
   for Cartesian coordinates copied over directly to the cylindrical
   case, rather than doing a proper coordinate stretching of r.  This
   is not a practical issue because, rather than increasing the
   resolution, in practice you increase the PML thickness to eliminate
   reflections, and increasing a quasi-PML thickness makes the
   reflection vanish by the usual adiabatic theorem. 

   Because of that, we don't actually run this check as part of the
   test suite, but I'll leave the code here for future study of the 
   cylindrical PML. */
int check_pmlcyl(double eps(const vec &)) {
  double freq = 1.0, dpml = 1.0;
  complex<double> ft = 0.0, ft2 = 0.0;
  double prev_refl_const = 0.0, refl_const = 0.0;
  double sr = 5.0 + dpml, sz = 1.0 + 2*dpml;
  double sr2 = 5.0 + dpml*2, sz2 = 1.0 + 2*dpml*2;
  vec fpt = veccyl(sr - dpml - 0.1,0);
  double res_step = 6.0;
  master_printf("Checking resolution convergence of cylindrical PML...\n");
  for (int i=0; i<5; i++) {
    double res = 10.0 + res_step*i;
    master_printf("    checking cylindrical resolution %g...\n", res);
    {
      grid_volume gv = volcyl(sr,sz,res);
      gv.center_origin();
      structure s(gv, eps, pml(dpml, Rasymp, stretch));
      fields f(&s, 0);
      gaussian_src_time src(freq, freq / 20);
      f.add_point_source(Ez, src, veccyl(0.1,0.1));
      ft = do_ft(f, Ez, fpt, freq);
    }
    {
      grid_volume gv = volcyl(sr2,sz2,res);
      gv.center_origin();
      structure s(gv, eps, pml(dpml*2, Rasymp, stretch));
      fields f(&s, 0);
      gaussian_src_time src(freq, freq / 20);
      f.add_point_source(Ez, src, veccyl(0.1,0.1));
      ft2 = do_ft(f, Ez, fpt, freq);
    }
    refl_const = pow(abs(ft - ft2),2.0) / pow(abs(ft2),2.0);
    master_printf("reflcyl:, %g, %g\n", res, refl_const);
    prev_refl_const = refl_const;
  }
  master_printf("passed cylindrical PML check.\n");
  return 0;
}

int pml1d_scaling(double eps(const vec &)) {
  double res = 20, freq = 1.0, dpml = 0;
  complex<double> prev_ft = 0.0, ft = 0.0;
  double refl_const = 0.0, prev_refl_const = 0.0;
  master_printf("Checking thickness convergence of 1d PML...\n");
  for (int i=0; i < (sizeof(realnum)==sizeof(float) ? 5 : 7); i++) {
    dpml = pow(2.0,(double)i);
    double sz = 2*dpml + 10.0 + dpml;
    prev_ft = ft;

    grid_volume gv = vol1d(sz,res);
    structure s(gv, eps, (pml(2*dpml,Z,Low, Rasymp, stretch)
			  + pml(dpml,Z,High, Rasymp, stretch)) * 1.5);
    fields f(&s);
    gaussian_src_time src(freq, freq / 20);
    f.add_point_source(Ex, src, vec(2*dpml+0.1));
    ft = do_ft(f, Ex, vec(sz - dpml - 0.1), freq);

    if (i > 0) {
      refl_const = pow(abs(ft - prev_ft),2.0) / pow(abs(prev_ft),2.0);
      master_printf("refl1d:, %g, %g\n", dpml, refl_const);
      if (refl_const > (1e-9)*pow(2/dpml,6.0)
	  || refl_const < (1e-10)*pow(2/dpml, 6.0)) return 1;
      if (i > 1) {
	master_printf("ratio R(%g)/R(%g) * 2^6 = %g\n",
		      dpml, dpml/2, (refl_const/prev_refl_const) * 64.0);
	if ((refl_const/prev_refl_const) * 64.0 > 1.1) return 1;
      }
      prev_refl_const = refl_const;
    }      
  }
  master_printf("pml scales correctly with length.\n");
  return 0;
}

int pmlcyl_scaling(double eps(const vec &), int m) {
  double res = 10, freq = 1.0, dpml = 0;
  complex<double> prev_ft = 0.0, ft = 0.0;
  double refl_const = 0.0, prev_refl_const = 0.0;
  master_printf("Checking thickness convergence of cylindrical PML for m=%d...\n", m);
  for (int i=0; i < 3; i++) {
    dpml = pow(2.0,(double)i);
    double sr = 5.0 + dpml, sz = dpml + 5.0 + dpml;
    prev_ft = ft;

    grid_volume gv = volcyl(sr,sz,res);
    gv.center_origin();
    structure s(gv, eps, pml(dpml, Rasymp, stretch));
    fields f(&s, m);
    gaussian_src_time src(freq, freq / 20);
    f.add_point_source(Ez, src, veccyl(0.5 * (sr - dpml), 0.1));
    ft = do_ft(f, Ez, veccyl(sr - dpml - 0.1,0), freq);

    if (i > 0) {
      refl_const = pow(abs(ft - prev_ft),2.0) / pow(abs(prev_ft),2.0);
      master_printf("reflcyl:, %g, %g\n", dpml, refl_const);
      if (refl_const > (1e-5)*pow(2/dpml,6.0)
	  || refl_const < (1e-8)*pow(2/dpml, 6.0)) return 1;
      if (i > 1) {
	master_printf("ratio R(%g)/R(%g) * 2^6 = %g\n",
		      dpml, dpml/2, (refl_const/prev_refl_const) * 64.0);
	if ((refl_const/prev_refl_const) * 64.0 > 1.1) return 1;
      }
      prev_refl_const = refl_const;
    }      
  }
  master_printf("pml scales correctly with length.\n");
  return 0;
}

int main(int argc, char **argv) {
  initialize mpi(argc, argv);
  quiet = true;
  master_printf("Running PML tests...\n");
  if (check_pml1d(one, 0)) abort("not a pml in 1d.");
  if (check_pml1d(one, 10.0)) abort("not a pml in 1d + conductivity.");
  if (check_pml2d(one,Ez,0,false,0)) abort("not a pml in 2d TM.");
  // if (check_pml2d(one,Ez,1,false,0)) abort("not a pml in 2d TM + conduct.");
  // if (check_pml2d(one,Hz,0,false,0)) abort("not a pml in 2d TE."); 
  if (check_pml2d(one,Hz,1,false,0)) abort("not a pml in 2d TE + conduct.");
  //  if (check_pml2d(one,Ez,0,true,0)) abort("not a pml in 2d TM + dispersion.");
  if (check_pml2d(one,Hz,0,true,0)) abort("not a pml in 2d TE + dispersion.");
  if (check_pml2d(one,Ez,0,false,0.5)) abort("not a pml in 2d TM + offdiag.");
  if (check_pml2d(one,Hz,0,false,0.5)) abort("not a pml in 2d TE + offdiag.");
  // if (check_pmlcyl(one)) abort("not a pml in cylincrical co-ordinates.");
  if (pml1d_scaling(one)) abort("pml doesn't scale properly with length.");
  if (pmlcyl_scaling(one, 0)) abort("m=0 cylindrical pml doesn't scale properly with length.");
  if (pmlcyl_scaling(one, 1)) abort("m=1 cylindrical pml doesn't scale properly with length.");
  if (pmlcyl_scaling(one, 2)) abort("m=2 cylindrical pml doesn't scale properly with length.");

  return 0;
}