1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
"""
Verifies that the magnitude and phase of the reflection coefficient of a
total internal reflected (TIR) mode of a flat interface of two lossless
materials given an incident planewave at oblique incidence computed using
the mode-decomposition feature matches the Fresnel equations.
ref: https://meep.readthedocs.io/en/latest/Python_Tutorials/Mode_Decomposition/#phase-of-a-total-internal-reflected-mode
"""
import cmath
from enum import Enum
import math
import meep as mp
import numpy as np
Polarization = Enum("Polarization", "S P")
# refractive indices of materials 1 and 2
n1 = 1.5
n2 = 1.0
def refl_coeff_meep(pol: Polarization, theta: float, L: float) -> complex:
"""Returns the complex reflection coefficient of a TIR mode computed
using mode decomposition.
Args:
pol: polarization of the incident planewave (S or P).
theta: angle of the incident planewave (radians).
L: position of the mode monitor relative to the flat interface.
"""
if theta < math.asin(n2 / n1):
raise ValueError(
f"incident angle of {math.degrees(theta):.2f}° is "
f"not a total internal reflected mode."
)
resolution = 50.0
# cell size is arbitrary
sx = 7.0
sy = 3.0
dpml = 2.0
cell_size = mp.Vector3(sx + 2 * dpml, sy, 0)
pml_layers = [mp.PML(dpml, direction=mp.X)]
fcen = 1.0 # source/monitor frequency
df = 0.1 * fcen
# k (in source medium) with correct length
# plane of incidence is xy
k = mp.Vector3(n1 * fcen, 0, 0).rotate(mp.Vector3(0, 0, 1), theta)
# planewave amplitude function (for line source)
def pw_amp(k, x0):
def _pw_amp(x):
return cmath.exp(1j * 2 * math.pi * k.dot(x + x0))
return _pw_amp
src_pt = mp.Vector3(-0.5 * sx, 0, 0)
if pol.name == "S":
src_cmpt = mp.Ez
eig_parity = mp.ODD_Z
elif pol.name == "P":
src_cmpt = mp.Hz
eig_parity = mp.EVEN_Z
else:
raise ValueError("pol must be S or P, only.")
sources = [
mp.Source(
mp.GaussianSource(fcen, fwidth=df),
component=src_cmpt,
center=src_pt,
size=mp.Vector3(0, cell_size.y, 0),
amp_func=pw_amp(k, src_pt),
),
]
sim = mp.Simulation(
resolution=resolution,
cell_size=cell_size,
default_material=mp.Medium(index=n1),
boundary_layers=pml_layers,
k_point=k,
sources=sources,
)
# DFT monitor for incident fields
mode_mon = sim.add_mode_monitor(
fcen,
0,
1,
mp.FluxRegion(
center=mp.Vector3(-L, 0, 0),
size=mp.Vector3(0, cell_size.y, 0),
),
)
sim.run(
until_after_sources=mp.stop_when_fields_decayed(
50,
src_cmpt,
mp.Vector3(-L, 0, 0),
1e-6,
),
)
res = sim.get_eigenmode_coefficients(
mode_mon,
bands=[1],
eig_parity=eig_parity,
kpoint_func=lambda *not_used: k,
direction=mp.NO_DIRECTION,
)
input_mode_coeff = res.alpha[0, 0, 0]
input_flux_data = sim.get_flux_data(mode_mon)
sim.reset_meep()
geometry = [
mp.Block(
material=mp.Medium(index=n1),
center=mp.Vector3(-0.25 * (sx + 2 * dpml), 0, 0),
size=mp.Vector3(0.5 * (sx + 2 * dpml), mp.inf, mp.inf),
),
mp.Block(
material=mp.Medium(index=n2),
center=mp.Vector3(0.25 * (sx + 2 * dpml), 0, 0),
size=mp.Vector3(0.5 * (sx + 2 * dpml), mp.inf, mp.inf),
),
]
sim = mp.Simulation(
resolution=resolution,
cell_size=cell_size,
boundary_layers=pml_layers,
k_point=k,
sources=sources,
geometry=geometry,
)
# DFT monitor for reflected fields
mode_mon = sim.add_mode_monitor(
fcen,
0,
1,
mp.FluxRegion(
center=mp.Vector3(-L, 0, 0),
size=mp.Vector3(0, cell_size.y, 0),
),
)
sim.load_minus_flux_data(mode_mon, input_flux_data)
sim.run(
until_after_sources=mp.stop_when_fields_decayed(
50,
src_cmpt,
mp.Vector3(-L, 0, 0),
1e-6,
),
)
res = sim.get_eigenmode_coefficients(
mode_mon,
bands=[1],
eig_parity=eig_parity,
kpoint_func=lambda *not_used: k,
direction=mp.NO_DIRECTION,
)
# mode coefficient of reflected planewave
refl_mode_coeff = res.alpha[0, 0, 1]
# reflection coefficient
refl_coeff = refl_mode_coeff / input_mode_coeff
# apply phase correction factor
refl_coeff /= cmath.exp(1j * k.x * 2 * math.pi * 2 * L)
return refl_coeff
def refl_coeff_Fresnel(pol: Polarization, theta: float) -> complex:
"""Returns the complex reflection coefficient of a TIR mode computed
using the Fresnel equations.
Args:
pol: polarization of the incident planewave (S or P).
theta: angle of the incident planewave (radians).
"""
if pol.name == "S":
refl_coeff = (
math.cos(theta) - ((n2 / n1) ** 2 - math.sin(theta) ** 2) ** 0.5
) / (math.cos(theta) + ((n2 / n1) ** 2 - math.sin(theta) ** 2) ** 0.5)
else:
refl_coeff = (
-((n2 / n1) ** 2) * math.cos(theta)
+ ((n2 / n1) ** 2 - math.sin(theta) ** 2) ** 0.5
) / (
(n2 / n1) ** 2 * math.cos(theta)
+ ((n2 / n1) ** 2 - math.sin(theta) ** 2) ** 0.5
)
return refl_coeff
if __name__ == "__main__":
# angle of incident planewave (degrees)
thetas = [54.3, 48.5]
# position of mode monitor relative to flat interface
Ls = [0.4, 1.2]
# polarization of incident planewave
pols = [Polarization.S, Polarization.P]
for pol, theta, L in zip(pols, thetas, Ls):
theta_rad = np.radians(theta)
R_meep = refl_coeff_meep(pol, theta_rad, L)
R_fres = refl_coeff_Fresnel(pol, theta_rad)
complex_to_str = lambda cnum: f"{cnum.real:.5f}{cnum.imag:+.5f}j"
print(
f"refl-coeff:, {pol.name}, {theta}, "
f"{complex_to_str(R_meep)} (Meep), "
f"{complex_to_str(R_fres)} (Fresnel)"
)
mag_meep = abs(R_meep)
mag_fres = abs(R_fres)
err_mag = abs(mag_meep - mag_fres) / mag_fres
print(
f"magnitude:, {mag_meep:.5f} (Meep), {mag_fres:.5f} (Fresnel), "
f"{err_mag:.5f} (error)"
)
phase_meep = cmath.phase(R_meep)
phase_fres = cmath.phase(R_fres)
err_phase = abs(phase_meep - phase_fres) / abs(phase_fres)
print(
f"phase:, {phase_meep:.5f} (Meep), {phase_fres:.5f} (Fresnel), "
f"{err_phase:.5f} (error)"
)
|