1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
|
import unittest
import parameterized
import numpy as np
import meep as mp
class TestPMLCylindrical(unittest.TestCase):
@classmethod
def setUp(cls):
cls.resolution = 25 # pixels/um
cls.s = 5.0
cls.dpml_r = 1.0
cls.dpml_z = 1.0
cls.cell_size = mp.Vector3(
cls.s + cls.dpml_r,
0,
cls.s + 2 * cls.dpml_z,
)
cls.fcen = 1.0
@parameterized.parameterized.expand(
[
(0.0, 0.04, False),
(-1.0, 0, False),
(2.0, 0.14, False),
(3.0, 0.17, True),
]
)
def test_pml_cyl(
self, m: float, rpos: float, accurate_fields_near_cylorigin: bool = False
):
"""Verifies that the z-PML properly attenuates fields at r=0.
Args:
m: exp(imϕ) angular dependence of the fields.
rpos: position of source along R direction.
accurate_fields_near_cylorigin: whether to compute more accurate
fields near r=0 for |m| > 1.
"""
pml_layers = [
mp.PML(self.dpml_r, direction=mp.R),
mp.PML(self.dpml_z, direction=mp.Z),
]
sources = [
mp.Source(
src=mp.GaussianSource(self.fcen, fwidth=0.1 * self.fcen),
center=mp.Vector3(rpos, 0, 0),
component=mp.Er,
),
]
sim = mp.Simulation(
resolution=self.resolution,
cell_size=self.cell_size,
dimensions=mp.CYLINDRICAL,
m=m,
sources=sources,
boundary_layers=pml_layers,
accurate_fields_near_cylorigin=accurate_fields_near_cylorigin,
)
if accurate_fields_near_cylorigin and abs(m) > 1:
sim.Courant = 1 / (abs(m) + 0.6)
flux_plus_z = sim.add_flux(
self.fcen,
0,
1,
mp.FluxRegion(
center=mp.Vector3(
0.5 * self.s,
0,
0.5 * self.s,
),
size=mp.Vector3(self.s, 0, 0),
),
)
flux_plus_r = sim.add_flux(
self.fcen,
0,
1,
mp.FluxRegion(
center=mp.Vector3(self.s, 0, 0),
size=mp.Vector3(0, 0, self.s),
),
)
flux_minus_z = sim.add_flux(
self.fcen,
0,
1,
mp.FluxRegion(
center=mp.Vector3(
0.5 * self.s,
0,
-0.5 * self.s,
),
size=mp.Vector3(self.s, 0, 0),
weight=-1.0,
),
)
sim.run(until_after_sources=50.94)
prev_flux = [
mp.get_fluxes(flux_plus_z)[0],
mp.get_fluxes(flux_plus_r)[0],
mp.get_fluxes(flux_minus_z)[0],
]
for t in [142.15, 214.64, 365.32]:
sim.run(until_after_sources=t)
cur_flux = [
mp.get_fluxes(flux_plus_z)[0],
mp.get_fluxes(flux_plus_r)[0],
mp.get_fluxes(flux_minus_z)[0],
]
cur_flux_str = ", ".join(f"{c:.8f}" for c in cur_flux)
flux_tot = sum(cur_flux)
print(f"flux:, {sim.meep_time()}, {cur_flux_str}, {flux_tot:.8f}")
# Check that the flux is converged with runtime long after the
# source has turned off. This verifies the correctness of the
# z-PML at r=0 for m=0, ±1 which involve special field-update
# equations.
places = 6 if mp.is_single_precision() else 7
for i in range(len(cur_flux)):
self.assertAlmostEqual(
prev_flux[i],
cur_flux[i],
places=places,
)
prev_flux[i] = cur_flux[i]
if __name__ == "__main__":
unittest.main()
|