1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
import math
from typing import List, Tuple
import unittest
import numpy as np
import parameterized
from utils import ApproxComparisonTestCase
import meep as mp
class TestReflectanceAngular(ApproxComparisonTestCase):
@classmethod
def setUpClass(cls):
cls.resolution = 200 # pixels/μm
cls.n1 = 1.4 # refractive index of medium 1
cls.n2 = 3.5 # refractive index of medium 2
cls.t_pml = 1.0
cls.length_z = 7.0
cls.size_z = cls.length_z + 2 * cls.t_pml
cls.wavelength_min = 0.4
cls.wavelength_max = 0.8
cls.frequency_min = 1 / cls.wavelength_max
cls.frequency_max = 1 / cls.wavelength_min
cls.frequency_center = 0.5 * (cls.frequency_min + cls.frequency_max)
cls.frequency_width = cls.frequency_max - cls.frequency_min
cls.num_freq = 11
def reflectance_angular(
self, theta_deg: float, use_bfast: bool
) -> Tuple[List, List, np.ndarray]:
"""Computes properties of the incident and reflected planewave.
Args:
theta_deg: angle of incident planewave.
use_bfast: whether to use the same angle for the incident planewave
for all frequencies. If False, the incident angle is frequency
dependent.
Returns:
A 3-tuple comprising the frequencies of the incident planewave,
angles of the incident planewave, and the reflectance.
"""
theta_rad = math.radians(theta_deg)
if use_bfast:
bfast_scaled_k = (self.n1 * np.sin(theta_rad), 0, 0)
Courant = (1 - bfast_scaled_k[0]) / 3**0.5
k = mp.Vector3()
else:
bfast_scaled_k = (0, 0, 0)
Courant = 0.5
# Wavevector in source medium with refractive index n1.
# Plane of incidence is XZ. Rotation is counter clockwise about
# Y axis. A rotation angle of zero is the +Z axis.
k = (
mp.Vector3(0, 0, 1)
.rotate(mp.Vector3(0, 1, 0), theta_rad)
.scale(self.n1 * self.frequency_min)
)
dimensions = 1 if theta_deg == 0 else 3
cell_size = mp.Vector3(z=self.size_z)
pml_layers = [mp.PML(self.t_pml)]
# P polarization.
source_component = mp.Ex
sources = [
mp.Source(
mp.GaussianSource(self.frequency_center, fwidth=self.frequency_width),
component=source_component,
center=mp.Vector3(z=-0.5 * self.size_z + self.t_pml),
)
]
sim = mp.Simulation(
resolution=self.resolution,
cell_size=cell_size,
dimensions=dimensions,
default_material=mp.Medium(index=self.n1),
sources=sources,
boundary_layers=pml_layers,
k_point=k,
bfast_scaled_k=bfast_scaled_k,
Courant=Courant,
)
monitor_point = -0.5 * self.size_z + self.t_pml + 0.25 * self.length_z
monitor_region = mp.FluxRegion(center=mp.Vector3(z=monitor_point))
flux_monitor = sim.add_flux(
self.frequency_center, self.frequency_width, self.num_freq, monitor_region
)
termination_criteria = mp.stop_when_fields_decayed(
50, source_component, mp.Vector3(z=monitor_point), 1e-6
)
sim.run(until_after_sources=termination_criteria)
empty_data = sim.get_flux_data(flux_monitor)
empty_flux = mp.get_fluxes(flux_monitor)
sim.reset_meep()
geometry = [
mp.Block(
size=mp.Vector3(mp.inf, mp.inf, 0.5 * self.size_z),
center=mp.Vector3(z=0.25 * self.size_z),
material=mp.Medium(index=self.n2),
)
]
sim = mp.Simulation(
resolution=self.resolution,
cell_size=cell_size,
dimensions=dimensions,
default_material=mp.Medium(index=self.n1),
sources=sources,
boundary_layers=pml_layers,
k_point=k,
bfast_scaled_k=bfast_scaled_k,
Courant=Courant,
geometry=geometry,
)
flux_monitor = sim.add_flux(
self.frequency_center, self.frequency_width, self.num_freq, monitor_region
)
sim.load_minus_flux_data(flux_monitor, empty_data)
sim.run(until_after_sources=termination_criteria)
flux_monitor_flux = mp.get_fluxes(flux_monitor)
freqs = mp.get_flux_freqs(flux_monitor)
reflectance = -np.array(flux_monitor_flux) / np.array(empty_flux)
if use_bfast:
theta_in_rad = [theta_rad] * self.num_freq
else:
# Returns the angle of the incident planewave in medium n1 based
# on its frequency given a fixed wavevector component in X.
theta_in_rad = [
math.asin(k.x / (self.n1 * freqs[i])) for i in range(self.num_freq)
]
return freqs, theta_in_rad, reflectance
@parameterized.parameterized.expand([(0, False), (20.6, False), (35.7, True)])
def test_reflectance_angular(self, theta_deg: float, use_bfast: bool):
(
frequency_meep,
theta_in_rad_meep,
reflectance_meep,
) = self.reflectance_angular(theta_deg, use_bfast)
# Returns angle of refracted planewave in medium n2 given
# an incident planewave in medium n1 at angle theta_in_rad.
theta_out = lambda theta_in_rad: math.asin(
self.n1 * math.sin(theta_in_rad) / self.n2
)
# Returns Fresnel reflectance for P polarization in medium n2
# for an incident planewave in medium n1 at angle theta_in_rad.
reflectance_fresnel = lambda theta_in_rad: (
math.fabs(
(
self.n1 * math.cos(theta_out(theta_in_rad))
- self.n2 * math.cos(theta_in_rad)
)
/ (
self.n1 * math.cos(theta_out(theta_in_rad))
+ self.n2 * math.cos(theta_in_rad)
)
)
** 2
)
reflectance_analytic = np.empty((self.num_freq,))
print(
"refl:, wavelength (μm), incident angle (°), reflectance (Meep), "
"reflectance (analytic), error"
)
for i in range(self.num_freq):
reflectance_analytic[i] = reflectance_fresnel(theta_in_rad_meep[i])
err = (
abs(reflectance_meep[i] - reflectance_analytic[i])
/ reflectance_analytic[i]
)
print(
"refl:, {:4.2f}, {:4.2f}, {:8.6f}, {:8.6f}, {:6.4f}".format(
1 / frequency_meep[i],
math.degrees(theta_in_rad_meep[i]),
reflectance_meep[i],
reflectance_analytic[i],
err,
)
)
tol = 0.03
self.assertClose(reflectance_meep, reflectance_analytic, epsilon=tol)
if __name__ == "__main__":
unittest.main()
|