File: mpb.cpp

package info (click to toggle)
meep 1.3-4
  • links: PTS
  • area: main
  • in suites: stretch
  • size: 4,504 kB
  • ctags: 7,108
  • sloc: cpp: 64,830; sh: 11,405; lisp: 238; makefile: 205
file content (405 lines) | stat: -rw-r--r-- 14,440 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
/* Copyright (C) 2005-2015 Massachusetts Institute of Technology.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

#include <stdlib.h>
#include "meep.hpp"
#include "config.h"

#ifdef HAVE_MPB
#  include <mpb.h>
#  ifndef SCALAR_COMPLEX
#    error Meep requires complex version of MPB
#  endif
#endif

using namespace std;

namespace meep {

#ifdef HAVE_MPB

typedef struct {
  const double *s, *o;
  ndim dim;
  const fields *f;
} meep_mpb_eps_data;

static void meep_mpb_eps(symmetric_matrix *eps,
			 symmetric_matrix *eps_inv,
			 const mpb_real r[3],
			 void *eps_data_) {
  meep_mpb_eps_data *eps_data = (meep_mpb_eps_data *) eps_data_;
  const double *s = eps_data->s;
  const double *o = eps_data->o;
  vec p(eps_data->dim == D3 ?
	vec(o[0] + r[0] * s[0], o[1] + r[1] * s[1], o[1] + r[1] * s[1]) :
	(eps_data->dim == D2 ?
	 vec(o[0] + r[0] * s[0], o[1] + r[1] * s[1]) :
	 /* D1 */ vec(o[2] + r[2] * s[2])));
  const fields *f = eps_data->f;
  eps_inv->m00 = f->get_chi1inv(Ex, X, p);
  eps_inv->m11 = f->get_chi1inv(Ey, Y, p);
  eps_inv->m22 = f->get_chi1inv(Ez, Z, p);
  //  master_printf("eps_zz(%g,%g) = %g\n", p.x(), p.y(), 1/eps_inv->m00);
  ASSIGN_ESCALAR(eps_inv->m01, f->get_chi1inv(Ex, Y, p), 0);
  ASSIGN_ESCALAR(eps_inv->m02, f->get_chi1inv(Ex, Z, p), 0);
  ASSIGN_ESCALAR(eps_inv->m12, f->get_chi1inv(Ey, Z, p), 0);
  maxwell_sym_matrix_invert(eps, eps_inv);
}

static const complex<mpb_real> *meep_mpb_A_data = 0;
static const int *meep_mpb_A_n = 0;
static const double *meep_mpb_A_s = 0;
static int meep_mpb_A_component = 0;
static vec meep_mpb_A_center;
static complex<double> one(const vec &pt) {(void) pt; return 1.0;}
static complex<double> (*meep_mpb_A_A)(const vec &) = 0;
static complex<double> meep_mpb_A(const vec &p) {
  const complex<mpb_real> *data = meep_mpb_A_data + meep_mpb_A_component;
  int nx = meep_mpb_A_n[0];
  int ny = meep_mpb_A_n[1];
  int nz = meep_mpb_A_n[2];
  const double *s = meep_mpb_A_s;
  double r[3] = {0,0,0};
  vec p0(p - meep_mpb_A_center);
  LOOP_OVER_DIRECTIONS(p.dim, d) r[d%3] = p0.in_direction(d) / s[d%3] + 0.5;
  double rx = r[0], ry = r[1], rz = r[2];

  /* linearly interpolate the amplitude from MPB at point p */
  
  int x, y, z, x2, y2, z2;
  double dx, dy, dz;
  
  /* get the point corresponding to r in the epsilon array grid: */
  x = int(rx * nx);
  y = int(ry * ny);
  z = int(rz * nz);
  
  /* get the difference between (x,y,z) and the actual point */
  dx = rx * nx - x;
  dy = ry * ny - y;
  dz = rz * nz - z;
  
  /* get the other closest point in the grid, with periodic boundaries: */
  x2 = (nx + (dx >= 0.0 ? x + 1 : x - 1)) % nx;
  y2 = (ny + (dy >= 0.0 ? y + 1 : y - 1)) % ny;
  z2 = (nz + (dz >= 0.0 ? z + 1 : z - 1)) % nz;
  x = x % nx; y = y % ny; z = z % nz;
  
  /* take abs(d{xyz}) to get weights for {xyz} and {xyz}2: */
  dx = fabs(dx);
  dy = fabs(dy);
  dz = fabs(dz);
  
  /* define a macro to give us data(x,y,z) on the grid,
     in row-major order (the order used by MPB): */
#define D(x,y,z) (data[(((x)*ny + (y))*nz + (z)) * 3])
  complex<mpb_real> ret;
  ret = (((D(x,y,z)*(1.0-dx) + D(x2,y,z)*dx) * (1.0-dy) +
	  (D(x,y2,z)*(1.0-dx) + D(x2,y2,z)*dx) * dy) * (1.0-dz) +
	 ((D(x,y,z2)*(1.0-dx) + D(x2,y,z2)*dx) * (1.0-dy) +
	  (D(x,y2,z2)*(1.0-dx) + D(x2,y2,z2)*dx) * dy) * dz);
#undef D

  return (complex<double>(double(real(ret)), double(imag(ret)))
	  * meep_mpb_A_A(p));
}

#endif /* HAVE_MPB */

void fields::add_eigenmode_source(component c0, const src_time &src,
				  direction d, const volume &where,
				  const volume &eig_vol,
				  int band_num, 
				  const vec &kpoint, bool match_frequency,
				  int parity,
				  double resolution, double eigensolver_tol,
				  complex<double> amp,
				  complex<double> A(const vec &)) {
#ifdef HAVE_MPB
  if (resolution <= 0) resolution = 2 * gv.a; // default to twice resolution
  int n[3], local_N, N_start, alloc_N, mesh_size[3] = {1,1,1};
  mpb_real k[3] = {0,0,0}, kcart[3] = {0,0,0};
  double s[3] = {0,0,0}, o[3] = {0,0,0};
  mpb_real R[3][3] = {{0,0,0},{0,0,0},{0,0,0}};
  mpb_real G[3][3] = {{0,0,0},{0,0,0},{0,0,0}};
  mpb_real kdir[3] = {0,0,0};
  double omega_src = real(src.frequency()), kscale = 1.0;
  double match_tol = eigensolver_tol * 10;

  if (d == NO_DIRECTION || coordinate_mismatch(gv.dim, d))
    abort("invalid direction in add_eigenmode_source");
  if (where.dim != gv.dim || eig_vol.dim != gv.dim)
    abort("invalid volume dimensionality in add_eigenmode_source");

  if (!eig_vol.contains(where))
    abort("invalid grid_volume in add_eigenmode_source (WHERE must be in EIG_VOL)");

  switch (gv.dim) {
  case D3:
    o[0] = eig_vol.in_direction_min(X);
    o[1] = eig_vol.in_direction_min(Y);
    o[2] = eig_vol.in_direction_min(Z);
    s[0] = eig_vol.in_direction(X);
    s[1] = eig_vol.in_direction(Y);
    s[2] = eig_vol.in_direction(Z);
    k[0] = kpoint.in_direction(X);
    k[1] = kpoint.in_direction(Y);
    k[2] = kpoint.in_direction(Z);
    break;
  case D2:
    o[0] = eig_vol.in_direction_min(X);
    o[1] = eig_vol.in_direction_min(Y);
    s[0] = eig_vol.in_direction(X);
    s[1] = eig_vol.in_direction(Y);
    k[0] = kpoint.in_direction(X);
    k[1] = kpoint.in_direction(Y);
    break;
  case D1:
    o[2] = eig_vol.in_direction_min(Z);
    s[2] = eig_vol.in_direction(Z);
    k[2] = kpoint.in_direction(Z);
    break;
  default:
    abort("unsupported dimensionality in add_eigenmode_source");
  }

  master_printf("KPOINT: %g, %g, %g\n", k[0], k[1], k[2]);
  
  // if match_frequency is true, all we need is a direction for k
  // and a crude guess for its value; we must supply this if k==0.
  if (match_frequency && k[0] == 0 && k[1] == 0 && k[2] == 0) {
    k[d-X] = omega_src * sqrt(get_eps(eig_vol.center()));
    master_printf("NEW KPOINT: %g, %g, %g\n", k[0], k[1], k[2]);
    if (s[d-X] > 0) {
      k[d-X] *= s[d-X]; // put k in G basis (inverted when we compute kcart)
      if (fabs(k[d-X]) > 0.4)  // ensure k is well inside the Brillouin zone
	k[d-X] = k[d-X] > 0 ? 0.4 : -0.4;
      master_printf("NEWER KPOINT: %g, %g, %g\n", k[0], k[1], k[2]);
    }
  }
  
  for (int i = 0; i < 3; ++i) {
    n[i] = int(resolution * s[i] + 0.5); if (n[i] == 0) n[i] = 1;
    R[i][i] = s[i] = s[i] == 0 ? 1 : s[i];
    G[i][i] = 1 / R[i][i]; // recip. latt. vectors / 2 pi
  }

  for (int i = 0; i < 3; ++i)
    for (int j = 0; j < 3; ++j)
      kcart[i] += G[j][i] * k[j];
  double klen0 = sqrt(k[0]*k[0]+k[1]*k[1]+k[2]*k[2]);
  double klen = sqrt(kcart[0]*kcart[0]+kcart[1]*kcart[1]+kcart[2]*kcart[2]);
  if (klen == 0.0) {
    if (match_frequency) abort("need nonzero kpoint guess to match frequency");
    klen = 1;
  }
  kdir[0] = kcart[0] / klen;
  kdir[1] = kcart[1] / klen;
  kdir[2] = kcart[2] / klen;

  maxwell_data *mdata = create_maxwell_data(n[0], n[1], n[2],
					    &local_N, &N_start, &alloc_N,
					    band_num, band_num);
  if (local_N != n[0] * n[1] * n[2])
    abort("MPI version of MPB library not supported");
  
  set_maxwell_data_parity(mdata, parity);
  update_maxwell_data_k(mdata, k, G[0], G[1], G[2]);
  
  if (k[0] == 0 && k[1] == 0 && k[2] == 0) {
    evectmatrix H; H.p = band_num; H.c = 2;
    band_num -= maxwell_zero_k_num_const_bands(H, mdata);
    if (band_num == 0)
      abort("zero-frequency bands at k=0 are ill-defined");
  }
  
  meep_mpb_eps_data eps_data;
  eps_data.s = s; eps_data.o = o; eps_data.dim = gv.dim; eps_data.f = this;
  set_maxwell_dielectric(mdata, mesh_size, R, G, meep_mpb_eps,NULL, &eps_data);
  if (check_maxwell_dielectric(mdata, 0))
    abort("invalid dielectric function for MPB");
  
  evectmatrix H = create_evectmatrix(n[0] * n[1] * n[2], 2, band_num,
				     local_N, N_start, alloc_N);
  for (int i = 0; i < H.n * H.p; ++i) {
    ASSIGN_SCALAR(H.data[i], rand() * 1.0/RAND_MAX, rand() * 1.0/RAND_MAX);
  }

  mpb_real *eigvals = new mpb_real[band_num];
  int num_iters;
  evectmatrix W[3];
  for (int i = 0; i < 3; ++i)
    W[i] = create_evectmatrix(n[0] * n[1] * n[2], 2, band_num,
			      local_N, N_start, alloc_N);
  
  evectconstraint_chain *constraints = NULL;
  constraints = evect_add_constraint(constraints,
				     maxwell_parity_constraint,
				     (void *) mdata);
  if (k[0] == 0 && k[1] == 0 && k[2] == 0)
    constraints = evect_add_constraint(constraints,
				       maxwell_zero_k_constraint,
				       (void *) mdata);
  
  mpb_real knew[3]; for (int i = 0; i < 3; ++i) knew[i] = k[i];

  do {
    eigensolver(H, eigvals, maxwell_operator, (void *) mdata,
#if MPB_VERSION_MAJOR > 1 || (MPB_VERSION_MAJOR == 1 && MPB_VERSION_MINOR >= 6)
                NULL, NULL, /* eventually, we can support mu here */
#endif
		maxwell_preconditioner2, (void *) mdata,
		evectconstraint_chain_func,
		(void *) constraints,
		W, 3, 
		eigensolver_tol, &num_iters, 
		EIGS_DEFAULT_FLAGS | 
		(am_master() && !quiet ? EIGS_VERBOSE : 0));
    if (!quiet)
      master_printf("MPB solved for omega_%d(%g,%g,%g) = %g after %d iters\n",
		    band_num, knew[0],knew[1],knew[2], 
		    sqrt(eigvals[band_num-1]), num_iters);

    if (match_frequency) {
      // copy desired single eigenvector into scratch arrays
      evectmatrix_resize(&W[0], 1, 0);
      evectmatrix_resize(&W[1], 1, 0);
      for (int i = 0; i < H.n; ++i)
	W[0].data[i] = H.data[H.p-1 + i * H.p];
      
      // compute the group velocity in the k direction
      maxwell_ucross_op(W[0], W[1], mdata, kdir); // W[1] = (dTheta/dk) W[0]
      mpb_real v, vscratch; // v = Re( W[0]* (dTheta/dk) W[0] ) = g. velocity
      evectmatrix_XtY_diag_real(W[0], W[1], &v, &vscratch);
      v /= sqrt(eigvals[band_num - 1]);

      // return to original size
      evectmatrix_resize(&W[0], band_num, 0);
      evectmatrix_resize(&W[1], band_num, 0);

      // update k via Newton step
      kscale = kscale - (sqrt(eigvals[band_num - 1]) - omega_src) / (v*klen0);
      if (!quiet)
	master_printf("Newton step: group velocity v=%g, kscale=%g\n",
		      v, kscale);
      if (kscale < 0 || kscale > 100)
	abort("Newton solver not converging -- need a better starting kpoint");
      for (int i = 0; i < 3; ++i) knew[i] = k[i] * kscale;
      update_maxwell_data_k(mdata, knew, G[0], G[1], G[2]);
    }
  } while (match_frequency 
	   && fabs(sqrt(eigvals[band_num - 1]) - omega_src) > 
	   omega_src * match_tol);
  
  evect_destroy_constraints(constraints);
  for (int i = 0; i < 3; ++i)
    destroy_evectmatrix(W[i]);
  
  src_time *src_mpb = src.clone();
  if (!match_frequency)
    src_mpb->set_frequency(omega_src = sqrt(eigvals[band_num - 1]));
  
  complex<mpb_real> *cdata = (complex<mpb_real> *) mdata->fft_data;
  meep_mpb_A_s = s;
  meep_mpb_A_n = n;
  meep_mpb_A_data = cdata;
  meep_mpb_A_center = eig_vol.center() - where.center();
  meep_mpb_A_A = A ? A : one;

  maxwell_compute_h_from_H(mdata, H, (scalar_complex*)cdata, band_num - 1, 1);
  /* choose deterministic phase, maximizing power in real part;
     see fix_field_phase routine in MPB.*/
  {
    int i, N = mdata->fft_output_size * 3;
    double sq_sum0 = 0, sq_sum1 = 0, maxabs = 0.0;
    double theta;
    for (i = 0; i < N; ++i) {
      double a = real(cdata[i]), b = imag(cdata[i]);
      sq_sum0 += a*a - b*b;
      sq_sum1 += 2*a*b;
    }
    theta = 0.5 * atan2(-sq_sum1, sq_sum0);
    complex<mpb_real> phase(cos(theta), sin(theta));
    for (i = 0; i < N; ++i) {
      double r = fabs(real(cdata[i] * phase));
      if (r > maxabs) maxabs = r;
    }
    for (i = N-1; i >= 0 && fabs(real(cdata[i] * phase)) < 0.5 * maxabs; --i)
      ;
    if (real(cdata[i] * phase) < 0) phase = -phase;
    for (i = 0; i < N; ++i) cdata[i] *= phase;
    complex<mpb_real> *hdata = (complex<mpb_real> *) H.data;
    for (i = 0; i < H.n; ++i) hdata[i*H.p + (band_num-1)] *= phase;
  }

  if (is_D(c0)) c0 = direction_component(Ex, component_direction(c0));
  if (is_B(c0)) c0 = direction_component(Hx, component_direction(c0));

  // use principle of equivalence to obtain equivalent currents
  FOR_ELECTRIC_COMPONENTS(c) 
    if (gv.has_field(c) && (c0 == Centered || c0 == c)
	&& component_direction(c) != d
	&& (gv.dim != D2 || !(parity & (EVEN_Z_PARITY | ODD_Z_PARITY))
	    || ((parity & EVEN_Z_PARITY) && !is_tm(c))
	    || ((parity & ODD_Z_PARITY) && is_tm(c)))) {
      // E current source = d x (eigenmode H)
      if ((d + 1) % 3 == component_direction(c) % 3) {
	meep_mpb_A_component = (d + 2) % 3;
	add_volume_source(c, *src_mpb, where, meep_mpb_A, -amp);
      }
      else {
	meep_mpb_A_component = (d + 1) % 3;
	add_volume_source(c, *src_mpb, where, meep_mpb_A, amp);
      }
      }
  
  maxwell_compute_d_from_H(mdata, H, (scalar_complex*)cdata, band_num - 1, 1);
  { // d_from_H actually computes -omega*D (see mpb/src/maxwell/maxwell_op.c)
    double scale = -1.0 / omega_src;
    int N = mdata->fft_output_size * 3;
    for (int i = 0; i < N; ++i) cdata[i] *= scale;
  }
  maxwell_compute_e_from_d(mdata, (scalar_complex*)cdata, 1);
  // use principle of equivalence to obtain equivalent currents
  FOR_MAGNETIC_COMPONENTS(c) 
    if (gv.has_field(c) && (c0 == Centered || c0 == c)
	&& component_direction(c) != d
	&& (gv.dim != D2 || !(parity & (EVEN_Z_PARITY | ODD_Z_PARITY))
	    || ((parity & EVEN_Z_PARITY) && !is_tm(c))
	    || ((parity & ODD_Z_PARITY) && is_tm(c)))) {
      // H current source = - d x (eigenmode E)
      if ((d + 1) % 3 == component_direction(c) % 3) {
	meep_mpb_A_component = (d + 2) % 3;
	add_volume_source(c, *src_mpb, where, meep_mpb_A, amp);
	}
      else {
	meep_mpb_A_component = (d + 1) % 3;
	add_volume_source(c, *src_mpb, where, meep_mpb_A, -amp);
      }
    }
  
  delete src_mpb;
  destroy_evectmatrix(H);
  delete[] eigvals;
  destroy_maxwell_data(mdata);
#else /* !defined(HAVE_MPB) */
  abort("Meep must be configured/compiled with MPB for add_eigenmode_source");
#endif
}

} // namespace meep