1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
|
/*
streflop: STandalone REproducible FLOating-Point
Copyright 2006 Nicolas Brodu
2012 Mark Vejvoda
You can redistribute this code and/or modify it under
the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version
Heavily relies on GNU Libm, itself depending on netlib fplibm, GNU MP, and IBM MP lib.
Uses SoftFloat too.
Please read the history and copyright information in the documentation provided with the source code
*/
#ifdef STREFLOP_SOFT
// Include generic version
#include "streflop.h"
// Macro to select the correct version of a softfloat function according to user flags
#if N_SPECIALIZED == 96
#define SF_PREPEND(func) floatx80 ## func
#define SF_APPEND(func) func ## floatx80
#define SF_TYPE floatx80
#elif N_SPECIALIZED == 64
#define SF_PREPEND(func) float64 ## func
#define SF_APPEND(func) func ## float64
#define SF_TYPE float64
#elif N_SPECIALIZED == 32
#define SF_PREPEND(func) float32 ## func
#define SF_APPEND(func) func ## float32
#define SF_TYPE float32
#else
#error Unknown specialization size (N_SPECIALIZED)
#endif
// This file may include System.h and SoftFloat
#include "System.h"
#include "softfloat/softfloat.h"
namespace streflop {
using namespace streflop::SoftFloat;
// The template instanciations for N = 4, 8, 10 are done here
template<> SoftFloatWrapper<N_SPECIALIZED>& SoftFloatWrapper<N_SPECIALIZED>::operator+=(const SoftFloatWrapper<N_SPECIALIZED>& f) {
value<SF_TYPE>() = SF_PREPEND(_add)(value<SF_TYPE>(), f.value<SF_TYPE>());
return *this;
}
template<> SoftFloatWrapper<N_SPECIALIZED>& SoftFloatWrapper<N_SPECIALIZED>::operator-=(const SoftFloatWrapper<N_SPECIALIZED>& f) {
value<SF_TYPE>() = SF_PREPEND(_sub)(value<SF_TYPE>(), f.value<SF_TYPE>());
return *this;
}
template<> SoftFloatWrapper<N_SPECIALIZED>& SoftFloatWrapper<N_SPECIALIZED>::operator*=(const SoftFloatWrapper<N_SPECIALIZED>& f) {
value<SF_TYPE>() = SF_PREPEND(_mul)(value<SF_TYPE>(), f.value<SF_TYPE>());
return *this;
}
template<> SoftFloatWrapper<N_SPECIALIZED>& SoftFloatWrapper<N_SPECIALIZED>::operator/=(const SoftFloatWrapper<N_SPECIALIZED>& f) {
value<SF_TYPE>() = SF_PREPEND(_div)(value<SF_TYPE>(), f.value<SF_TYPE>());
return *this;
}
template<> bool SoftFloatWrapper<N_SPECIALIZED>::operator==(const SoftFloatWrapper<N_SPECIALIZED>& f) const {
return SF_PREPEND(_eq)(value<SF_TYPE>(), f.value<SF_TYPE>());
}
template<> bool SoftFloatWrapper<N_SPECIALIZED>::operator!=(const SoftFloatWrapper<N_SPECIALIZED>& f) const {
// Boolean negation is OK for equality comparison
return !SF_PREPEND(_eq)(value<SF_TYPE>(), f.value<SF_TYPE>());
}
template<> bool SoftFloatWrapper<N_SPECIALIZED>::operator<(const SoftFloatWrapper<N_SPECIALIZED>& f) const {
return SF_PREPEND(_lt)(value<SF_TYPE>(), f.value<SF_TYPE>());
}
template<> bool SoftFloatWrapper<N_SPECIALIZED>::operator<=(const SoftFloatWrapper<N_SPECIALIZED>& f) const {
return SF_PREPEND(_le)(value<SF_TYPE>(), f.value<SF_TYPE>());
}
template<> bool SoftFloatWrapper<N_SPECIALIZED>::operator>(const SoftFloatWrapper<N_SPECIALIZED>& f) const {
// Take care of NaN, reverse arguments and do NOT take the boolean negation of <=
return SF_PREPEND(_lt)(f.value<SF_TYPE>(), value<SF_TYPE>());
}
template<> bool SoftFloatWrapper<N_SPECIALIZED>::operator>=(const SoftFloatWrapper<N_SPECIALIZED>& f) const {
// Take care of NaN, reverse arguments and do NOT take the boolean negation of <
return SF_PREPEND(_le)(f.value<SF_TYPE>(), value<SF_TYPE>());
}
// Use compile-time specialization with template meta-programming
// instead of macros to decide on the correct softfloat function
// => sizeof is useable
// Note: To avoid duplicate symbols, insert a third template argument corresponding to N_SPECIALIZED
// This is consistent with the use of SF_XXPEND macros
template<int N, typename T, bool is_large> struct IntConverter {
};
// Specialization for large ints > 32 bits
template<typename T> struct IntConverter<N_SPECIALIZED, T, true> {
static inline SF_TYPE
convert_from_int(T an_int) {
return SF_APPEND(int64_to_)((int64_t)an_int);
}
static inline T convert_to_int(SF_TYPE value) {
return (T)SF_PREPEND(_to_int64_round_to_zero)(value);
}
};
// Specialization for ints <= 32 bits
template<typename T> struct IntConverter<N_SPECIALIZED, T, false> {
static inline SF_TYPE
convert_from_int(T an_int) {
return SF_APPEND(int32_to_)((int32_t)an_int);
}
static inline T convert_to_int(SF_TYPE value) {
return (T)SF_PREPEND(_to_int32_round_to_zero)(value);
}
};
#define STREFLOP_X87DENORMAL_NATIVE_OPS_INT(native_type) \
template<> SoftFloatWrapper<N_SPECIALIZED>::SoftFloatWrapper(const native_type f) { \
value<SF_TYPE>() = IntConverter< N_SPECIALIZED, native_type, (sizeof(native_type)>4) >::convert_from_int(f); \
} \
template<> SoftFloatWrapper<N_SPECIALIZED>& SoftFloatWrapper<N_SPECIALIZED>::operator=(const native_type f) { \
value<SF_TYPE>() = IntConverter< N_SPECIALIZED, native_type, (sizeof(native_type)>4) >::convert_from_int(f); \
return *this; \
} \
template<> SoftFloatWrapper<N_SPECIALIZED>::operator native_type() const { \
return IntConverter< N_SPECIALIZED, native_type, (sizeof(native_type)>4) >::convert_to_int(value<SF_TYPE>()); \
} \
template<> SoftFloatWrapper<N_SPECIALIZED>& SoftFloatWrapper<N_SPECIALIZED>::operator+=(const native_type f) { \
value<SF_TYPE>() = SF_PREPEND(_add)(value<SF_TYPE>(), IntConverter< N_SPECIALIZED, native_type, (sizeof(native_type)>4) >::convert_from_int(f)); \
return *this; \
} \
template<> SoftFloatWrapper<N_SPECIALIZED>& SoftFloatWrapper<N_SPECIALIZED>::operator-=(const native_type f) { \
value<SF_TYPE>() = SF_PREPEND(_sub)(value<SF_TYPE>(), IntConverter< N_SPECIALIZED, native_type, (sizeof(native_type)>4) >::convert_from_int(f)); \
return *this; \
} \
template<> SoftFloatWrapper<N_SPECIALIZED>& SoftFloatWrapper<N_SPECIALIZED>::operator*=(const native_type f) { \
value<SF_TYPE>() = SF_PREPEND(_mul)(value<SF_TYPE>(), IntConverter< N_SPECIALIZED, native_type, (sizeof(native_type)>4) >::convert_from_int(f)); \
return *this; \
} \
template<> SoftFloatWrapper<N_SPECIALIZED>& SoftFloatWrapper<N_SPECIALIZED>::operator/=(const native_type f) { \
value<SF_TYPE>() = SF_PREPEND(_div)(value<SF_TYPE>(), IntConverter< N_SPECIALIZED, native_type, (sizeof(native_type)>4) >::convert_from_int(f)); \
return *this; \
} \
template<> bool SoftFloatWrapper<N_SPECIALIZED>::operator==(const native_type f) const { \
return SF_PREPEND(_eq)(value<SF_TYPE>(), IntConverter< N_SPECIALIZED, native_type, (sizeof(native_type)>4) >::convert_from_int(f)); \
} \
template<> bool SoftFloatWrapper<N_SPECIALIZED>::operator!=(const native_type f) const { \
return !SF_PREPEND(_eq)(value<SF_TYPE>(), IntConverter< N_SPECIALIZED, native_type, (sizeof(native_type)>4) >::convert_from_int(f)); \
} \
template<> bool SoftFloatWrapper<N_SPECIALIZED>::operator<(const native_type f) const { \
return SF_PREPEND(_lt)(value<SF_TYPE>(), IntConverter< N_SPECIALIZED, native_type, (sizeof(native_type)>4) >::convert_from_int(f)); \
} \
template<> bool SoftFloatWrapper<N_SPECIALIZED>::operator<=(const native_type f) const { \
return SF_PREPEND(_le)(value<SF_TYPE>(), IntConverter< N_SPECIALIZED, native_type, (sizeof(native_type)>4) >::convert_from_int(f)); \
} \
template<> bool SoftFloatWrapper<N_SPECIALIZED>::operator>(const native_type f) const { \
return SF_PREPEND(_lt)(IntConverter< N_SPECIALIZED, native_type, (sizeof(native_type)>4) >::convert_from_int(f), value<SF_TYPE>()); \
} \
template<> bool SoftFloatWrapper<N_SPECIALIZED>::operator>=(const native_type f) const { \
return SF_PREPEND(_le)(IntConverter< N_SPECIALIZED, native_type, (sizeof(native_type)>4) >::convert_from_int(f), value<SF_TYPE>()); \
}
// Now handle the same operations with native float types
// Use the softfloat property of memory pattern equivalence.
// => consider the float as a memory zone, then pass that to the softfloat conversion routines
// => this way, conversion is done by softfloat, not by the FPU
// Use a sizeof trick:
// - Specialize for BOTH C type and the expected type size of C type for correct memory pattern
// - Call the template with sizeof(C type) to rule out mismatching combinations
// - this way, it would be possible to extend the scheme to other architectures
// Ex: could specialize for <long double, 10>, <long double, 12> and <long double, 16>
// Note: read above note for specialization on N_SPECIALIZED
template<int N, typename ctype, int ctype_size> struct FloatConverter {
};
// dummy wrapers to cover all cases
inline float32 float32_to_float32(float32 a_float) {return a_float;}
inline float64 float64_to_float64(float64 a_float) {return a_float;}
inline floatx80 floatx80_to_floatx80(floatx80 a_float) {return a_float;}
// Specialization for float32 when C float type size is 4
template<> struct FloatConverter<N_SPECIALIZED, float, 4> {
static inline SF_TYPE
convert_from_float(const float a_float) {
return SF_APPEND(float32_to_)(*reinterpret_cast<const float32*>(&a_float));
}
static inline float convert_to_float(SF_TYPE value) {
float32 res = SF_PREPEND(_to_float32)(value);
return *reinterpret_cast<float*>(&res);
}
};
// Specialization for double64 when C double type size is 8
template<> struct FloatConverter<N_SPECIALIZED, double, 8> {
static inline SF_TYPE
convert_from_float(const double a_float) {
return SF_APPEND(float64_to_)(*reinterpret_cast<const float64*>(&a_float));
}
static inline double convert_to_float(SF_TYPE value) {
float64 res = SF_PREPEND(_to_float64)(value);
return *reinterpret_cast<double*>(&res);
}
};
// Specialization for floatx80 when C long double type size is 8 (there is 16 bit padding, endian dependent)
template<> struct FloatConverter<N_SPECIALIZED, long double, 8> {
// Little endian OK: both address are the same
#if __FLOAT_WORD_ORDER == 1234
static inline SF_TYPE
convert_from_float(const long double a_float) {
return SF_APPEND(floatx80_to_)(*reinterpret_cast<const floatx80*>(&a_float));
}
static inline long double convert_to_float(SF_TYPE value) {
// avoid invalid memory access: must return a 8-bytes value from a 10-byte type
// do it this way, by declaring the 8-byte on the stack
long double holder;
// And use that space for the result using the softfloat memory bit pattern equivalence property
*reinterpret_cast<floatx80*>(&holder) = SF_PREPEND(_to_floatx80)(value);
return holder;
}
// big endian needs address modification, but for what architecture?
#elif __FLOAT_WORD_ORDER == 4321
#warning You are using a completely UNTESTED new architecture. Please check that the 8-byte long double containing a 10-byte float is properly aligned in memory so that softfloat may correctly read the bit pattern. If this works for you, remove this warning and please consider sending a patch!
static inline SF_TYPE
convert_from_float(const long double a_float) {
return SF_APPEND(floatx80_to_)(*reinterpret_cast<const floatx80*>(reinterpret_cast<const char*>(&a_float)-2));
}
static inline long double convert_to_float(SF_TYPE value) {
// avoid invalid memory access: must return a 8-bytes value from a 10-byte type
// do it this way, by declaring the 8-byte on the stack
long double holder;
// And use that space for the result using the softfloat memory bit pattern equivalence property
*reinterpret_cast<floatx80*>(reinterpret_cast<const char*>(&holder)-2) = SF_PREPEND(_to_floatx80)(value);
return holder;
}
#else
#error Unknown byte order
#endif
};
// Specialization for floatx80 when C long double type size is 12 (there is 16 bit padding, endian dependent)
template<> struct FloatConverter<N_SPECIALIZED, long double, 12> {
// Little endian OK: both address are the same
#if __FLOAT_WORD_ORDER == 1234
static inline SF_TYPE
convert_from_float(const long double a_float) {
return SF_APPEND(floatx80_to_)(*reinterpret_cast<const floatx80*>(&a_float));
}
static inline long double convert_to_float(SF_TYPE value) {
// avoid invalid memory access: must return a 12-bytes value from a 10-byte type
// do it this way, by declaring the 12-byte on the stack
long double holder;
// And use that space for the result using the softfloat memory bit pattern equivalence property
*reinterpret_cast<floatx80*>(&holder) = SF_PREPEND(_to_floatx80)(value);
return holder;
}
// big endian needs address modification, but for what architecture?
#elif __FLOAT_WORD_ORDER == 4321
#warning You are using a completely UNTESTED new architecture. Please check that the 12-byte long double containing a 10-byte float is properly aligned in memory so that softfloat may correctly read the bit pattern. If this works for you, remove this warning and please consider sending a patch!
static inline SF_TYPE
convert_from_float(const long double a_float) {
return SF_APPEND(floatx80_to_)(*reinterpret_cast<const floatx80*>(reinterpret_cast<const char*>(&a_float)+2));
}
static inline long double convert_to_float(SF_TYPE value) {
// avoid invalid memory access: must return a 12-bytes value from a 10-byte type
// do it this way, by declaring the 12-byte on the stack
long double holder;
// And use that space for the result using the softfloat memory bit pattern equivalence property
*reinterpret_cast<floatx80*>(reinterpret_cast<const char*>(&holder)+2) = SF_PREPEND(_to_floatx80)(value);
return holder;
}
#else
#error Unknown byte order
#endif
};
// Specialization for floatx80 when C long double type size is 16. This is the case for g++ using -m128bit-long-double, which is itself the default on x86_64
template<> struct FloatConverter<N_SPECIALIZED, long double, 16> {
// Little endian OK: both address are the same
#if __FLOAT_WORD_ORDER == 1234
static inline SF_TYPE
convert_from_float(const long double a_float) {
return SF_APPEND(floatx80_to_)(*reinterpret_cast<const floatx80*>(&a_float));
}
static inline long double convert_to_float(SF_TYPE value) {
// avoid invalid memory access: must return a 16-bytes value from a 10-byte type
// do it this way, by declaring the 16-byte on the stack
long double holder;
// And use that space for the result using the softfloat memory bit pattern equivalence property
*reinterpret_cast<floatx80*>(&holder) = SF_PREPEND(_to_floatx80)(value);
return holder;
}
// big endian needs address modification, but for what architecture?
#elif __FLOAT_WORD_ORDER == 4321
#warning You are using a completely UNTESTED new architecture. Please check that the 16-byte long double containing a 10-byte float is properly aligned in memory so that softfloat may correctly read the bit pattern. If this works for you, remove this warning and please consider sending a patch!
static inline SF_TYPE
convert_from_float(const long double a_float) {
return SF_APPEND(floatx80_to_)(*reinterpret_cast<const floatx80*>(reinterpret_cast<const char*>(&a_float)+6));
}
static inline long double convert_to_float(SF_TYPE value) {
// avoid invalid memory access: must return a 12-bytes value from a 10-byte type
// do it this way, by declaring the 12-byte on the stack
long double holder;
// And use that space for the result using the softfloat memory bit pattern equivalence property
*reinterpret_cast<floatx80*>(reinterpret_cast<const char*>(&holder)+6) = SF_PREPEND(_to_floatx80)(value);
return holder;
}
#else
#error Unknown byte order
#endif
};
#define STREFLOP_X87DENORMAL_NATIVE_OPS_FLOAT(native_type) \
template<> SoftFloatWrapper<N_SPECIALIZED>::SoftFloatWrapper(const native_type f) { \
value<SF_TYPE>() = FloatConverter< N_SPECIALIZED, native_type, sizeof(native_type)>::convert_from_float(f); \
} \
template<> SoftFloatWrapper<N_SPECIALIZED>& SoftFloatWrapper<N_SPECIALIZED>::operator=(const native_type f) { \
value<SF_TYPE>() = FloatConverter< N_SPECIALIZED, native_type, sizeof(native_type)>::convert_from_float(f); \
return *this; \
} \
template<> SoftFloatWrapper<N_SPECIALIZED>::operator native_type() const { \
return FloatConverter< N_SPECIALIZED, native_type, sizeof(native_type)>::convert_to_float(value<SF_TYPE>()); \
} \
template<> SoftFloatWrapper<N_SPECIALIZED>& SoftFloatWrapper<N_SPECIALIZED>::operator+=(const native_type f) { \
value<SF_TYPE>() = SF_PREPEND(_add)(value<SF_TYPE>(), FloatConverter< N_SPECIALIZED, native_type, sizeof(native_type)>::convert_from_float(f)); \
return *this; \
} \
template<> SoftFloatWrapper<N_SPECIALIZED>& SoftFloatWrapper<N_SPECIALIZED>::operator-=(const native_type f) { \
value<SF_TYPE>() = SF_PREPEND(_sub)(value<SF_TYPE>(), FloatConverter< N_SPECIALIZED, native_type, sizeof(native_type)>::convert_from_float(f)); \
return *this; \
} \
template<> SoftFloatWrapper<N_SPECIALIZED>& SoftFloatWrapper<N_SPECIALIZED>::operator*=(const native_type f) { \
value<SF_TYPE>() = SF_PREPEND(_mul)(value<SF_TYPE>(), FloatConverter< N_SPECIALIZED, native_type, sizeof(native_type)>::convert_from_float(f)); \
return *this; \
} \
template<> SoftFloatWrapper<N_SPECIALIZED>& SoftFloatWrapper<N_SPECIALIZED>::operator/=(const native_type f) { \
value<SF_TYPE>() = SF_PREPEND(_div)(value<SF_TYPE>(), FloatConverter< N_SPECIALIZED, native_type, sizeof(native_type)>::convert_from_float(f)); \
return *this; \
} \
template<> bool SoftFloatWrapper<N_SPECIALIZED>::operator==(const native_type f) const { \
return SF_PREPEND(_eq)(value<SF_TYPE>(), FloatConverter< N_SPECIALIZED, native_type, sizeof(native_type)>::convert_from_float(f)); \
} \
template<> bool SoftFloatWrapper<N_SPECIALIZED>::operator!=(const native_type f) const { \
return !SF_PREPEND(_eq)(value<SF_TYPE>(), FloatConverter< N_SPECIALIZED, native_type, sizeof(native_type)>::convert_from_float(f)); \
} \
template<> bool SoftFloatWrapper<N_SPECIALIZED>::operator<(const native_type f) const { \
return SF_PREPEND(_lt)(value<SF_TYPE>(), FloatConverter< N_SPECIALIZED, native_type, sizeof(native_type)>::convert_from_float(f)); \
} \
template<> bool SoftFloatWrapper<N_SPECIALIZED>::operator<=(const native_type f) const { \
return SF_PREPEND(_le)(value<SF_TYPE>(), FloatConverter< N_SPECIALIZED, native_type, sizeof(native_type)>::convert_from_float(f)); \
} \
template<> bool SoftFloatWrapper<N_SPECIALIZED>::operator>(const native_type f) const { \
return SF_PREPEND(_lt)(FloatConverter< N_SPECIALIZED, native_type, sizeof(native_type)>::convert_from_float(f), value<SF_TYPE>()); \
} \
template<> bool SoftFloatWrapper<N_SPECIALIZED>::operator>=(const native_type f) const { \
return SF_PREPEND(_le)(FloatConverter< N_SPECIALIZED, native_type, sizeof(native_type)>::convert_from_float(f), value<SF_TYPE>()); \
}
STREFLOP_X87DENORMAL_NATIVE_OPS_INT(char)
STREFLOP_X87DENORMAL_NATIVE_OPS_INT(unsigned char)
STREFLOP_X87DENORMAL_NATIVE_OPS_INT(short)
STREFLOP_X87DENORMAL_NATIVE_OPS_INT(unsigned short)
STREFLOP_X87DENORMAL_NATIVE_OPS_INT(int)
STREFLOP_X87DENORMAL_NATIVE_OPS_INT(unsigned int)
STREFLOP_X87DENORMAL_NATIVE_OPS_INT(long)
STREFLOP_X87DENORMAL_NATIVE_OPS_INT(unsigned long)
STREFLOP_X87DENORMAL_NATIVE_OPS_INT(long long)
STREFLOP_X87DENORMAL_NATIVE_OPS_INT(unsigned long long)
STREFLOP_X87DENORMAL_NATIVE_OPS_FLOAT(float)
STREFLOP_X87DENORMAL_NATIVE_OPS_FLOAT(double)
STREFLOP_X87DENORMAL_NATIVE_OPS_FLOAT(long double)
/// binary operators
/// use dummy argument factories to distinguish from integer conversion and avoid creating temporary object
template<> SoftFloatWrapper<N_SPECIALIZED> operator+(const SoftFloatWrapper<N_SPECIALIZED>& f1, const SoftFloatWrapper<N_SPECIALIZED>& f2) {
return SoftFloatWrapper<N_SPECIALIZED>(SF_PREPEND(_add)(f1.value<SF_TYPE>(), f2.value<SF_TYPE>()), true);
}
template<> SoftFloatWrapper<N_SPECIALIZED> operator-(const SoftFloatWrapper<N_SPECIALIZED>& f1, const SoftFloatWrapper<N_SPECIALIZED>& f2) {
return SoftFloatWrapper<N_SPECIALIZED>(SF_PREPEND(_sub)(f1.value<SF_TYPE>(), f2.value<SF_TYPE>()), true);
}
template<> SoftFloatWrapper<N_SPECIALIZED> operator*(const SoftFloatWrapper<N_SPECIALIZED>& f1, const SoftFloatWrapper<N_SPECIALIZED>& f2) {
return SoftFloatWrapper<N_SPECIALIZED>(SF_PREPEND(_mul)(f1.value<SF_TYPE>(), f2.value<SF_TYPE>()), true);
}
template<> SoftFloatWrapper<N_SPECIALIZED> operator/(const SoftFloatWrapper<N_SPECIALIZED>& f1, const SoftFloatWrapper<N_SPECIALIZED>& f2) {
return SoftFloatWrapper<N_SPECIALIZED>(SF_PREPEND(_div)(f1.value<SF_TYPE>(), f2.value<SF_TYPE>()), true);
}
#define STREFLOP_X87DENORMAL_BINARY_OPS_INT(native_type) \
template<> SoftFloatWrapper<N_SPECIALIZED> operator+(const SoftFloatWrapper<N_SPECIALIZED>& f1, const native_type f2) { \
return SoftFloatWrapper<N_SPECIALIZED>(SF_PREPEND(_add)(f1.value<SF_TYPE>(), IntConverter< N_SPECIALIZED, native_type, (sizeof(native_type)>4) >::convert_from_int(f2)), true); \
} \
template<> SoftFloatWrapper<N_SPECIALIZED> operator-(const SoftFloatWrapper<N_SPECIALIZED>& f1, const native_type f2) { \
return SoftFloatWrapper<N_SPECIALIZED>(SF_PREPEND(_sub)(f1.value<SF_TYPE>(), IntConverter< N_SPECIALIZED, native_type, (sizeof(native_type)>4) >::convert_from_int(f2)), true); \
} \
template<> SoftFloatWrapper<N_SPECIALIZED> operator*(const SoftFloatWrapper<N_SPECIALIZED>& f1, const native_type f2) { \
return SoftFloatWrapper<N_SPECIALIZED>(SF_PREPEND(_mul)(f1.value<SF_TYPE>(), IntConverter< N_SPECIALIZED, native_type, (sizeof(native_type)>4) >::convert_from_int(f2)), true); \
} \
template<> SoftFloatWrapper<N_SPECIALIZED> operator/(const SoftFloatWrapper<N_SPECIALIZED>& f1, const native_type f2) { \
return SoftFloatWrapper<N_SPECIALIZED>(SF_PREPEND(_div)(f1.value<SF_TYPE>(), IntConverter< N_SPECIALIZED, native_type, (sizeof(native_type)>4) >::convert_from_int(f2)), true); \
} \
template<> SoftFloatWrapper<N_SPECIALIZED> operator+(const native_type f1, const SoftFloatWrapper<N_SPECIALIZED>& f2) { \
return SoftFloatWrapper<N_SPECIALIZED>(SF_PREPEND(_add)(IntConverter< N_SPECIALIZED, native_type, (sizeof(native_type)>4) >::convert_from_int(f1), f2.value<SF_TYPE>()), true); \
} \
template<> SoftFloatWrapper<N_SPECIALIZED> operator-(const native_type f1, const SoftFloatWrapper<N_SPECIALIZED>& f2) { \
return SoftFloatWrapper<N_SPECIALIZED>(SF_PREPEND(_sub)(IntConverter< N_SPECIALIZED, native_type, (sizeof(native_type)>4) >::convert_from_int(f1), f2.value<SF_TYPE>()), true); \
} \
template<> SoftFloatWrapper<N_SPECIALIZED> operator*(const native_type f1, const SoftFloatWrapper<N_SPECIALIZED>& f2) { \
return SoftFloatWrapper<N_SPECIALIZED>(SF_PREPEND(_mul)(IntConverter< N_SPECIALIZED, native_type, (sizeof(native_type)>4) >::convert_from_int(f1), f2.value<SF_TYPE>()), true); \
} \
template<> SoftFloatWrapper<N_SPECIALIZED> operator/(const native_type f1, const SoftFloatWrapper<N_SPECIALIZED>& f2) { \
return SoftFloatWrapper<N_SPECIALIZED>(SF_PREPEND(_div)(IntConverter< N_SPECIALIZED, native_type, (sizeof(native_type)>4) >::convert_from_int(f1), f2.value<SF_TYPE>()), true); \
} \
template<> bool operator==(const native_type value, const SoftFloatWrapper<N_SPECIALIZED>& f) { \
return SF_PREPEND(_eq)(IntConverter< N_SPECIALIZED, native_type, (sizeof(native_type)>4) >::convert_from_int(value), f.value<SF_TYPE>()); \
} \
template<> bool operator!=(const native_type value, const SoftFloatWrapper<N_SPECIALIZED>& f) { \
return !SF_PREPEND(_eq)(IntConverter< N_SPECIALIZED, native_type, (sizeof(native_type)>4) >::convert_from_int(value), f.value<SF_TYPE>()); \
} \
template<> bool operator<(const native_type value, const SoftFloatWrapper<N_SPECIALIZED>& f) { \
return SF_PREPEND(_lt)(IntConverter< N_SPECIALIZED, native_type, (sizeof(native_type)>4) >::convert_from_int(value), f.value<SF_TYPE>()); \
} \
template<> bool operator<=(const native_type value, const SoftFloatWrapper<N_SPECIALIZED>& f) { \
return SF_PREPEND(_le)(IntConverter< N_SPECIALIZED, native_type, (sizeof(native_type)>4) >::convert_from_int(value), f.value<SF_TYPE>()); \
} \
template<> bool operator>(const native_type value, const SoftFloatWrapper<N_SPECIALIZED>& f) { \
return SF_PREPEND(_lt)(f.value<SF_TYPE>(), IntConverter< N_SPECIALIZED, native_type, (sizeof(native_type)>4) >::convert_from_int(value)); \
} \
template<> bool operator>=(const native_type value, const SoftFloatWrapper<N_SPECIALIZED>& f) { \
return SF_PREPEND(_le)(f.value<SF_TYPE>(), IntConverter< N_SPECIALIZED, native_type, (sizeof(native_type)>4) >::convert_from_int(value)); \
}
#define STREFLOP_X87DENORMAL_BINARY_OPS_FLOAT(native_type) \
template<> SoftFloatWrapper<N_SPECIALIZED> operator+(const SoftFloatWrapper<N_SPECIALIZED>& f1, const native_type f2) { \
return SoftFloatWrapper<N_SPECIALIZED>(SF_PREPEND(_add)(f1.value<SF_TYPE>(), FloatConverter< N_SPECIALIZED, native_type, sizeof(native_type)>::convert_from_float(f2)), true); \
} \
template<> SoftFloatWrapper<N_SPECIALIZED> operator-(const SoftFloatWrapper<N_SPECIALIZED>& f1, const native_type f2) { \
return SoftFloatWrapper<N_SPECIALIZED>(SF_PREPEND(_sub)(f1.value<SF_TYPE>(), FloatConverter< N_SPECIALIZED, native_type, sizeof(native_type)>::convert_from_float(f2)), true); \
} \
template<> SoftFloatWrapper<N_SPECIALIZED> operator*(const SoftFloatWrapper<N_SPECIALIZED>& f1, const native_type f2) { \
return SoftFloatWrapper<N_SPECIALIZED>(SF_PREPEND(_mul)(f1.value<SF_TYPE>(), FloatConverter< N_SPECIALIZED, native_type, sizeof(native_type)>::convert_from_float(f2)), true); \
} \
template<> SoftFloatWrapper<N_SPECIALIZED> operator/(const SoftFloatWrapper<N_SPECIALIZED>& f1, const native_type f2) { \
return SoftFloatWrapper<N_SPECIALIZED>(SF_PREPEND(_div)(f1.value<SF_TYPE>(), FloatConverter< N_SPECIALIZED, native_type, sizeof(native_type)>::convert_from_float(f2)), true); \
} \
template<> SoftFloatWrapper<N_SPECIALIZED> operator+(const native_type f1, const SoftFloatWrapper<N_SPECIALIZED>& f2) { \
return SoftFloatWrapper<N_SPECIALIZED>(SF_PREPEND(_add)(FloatConverter< N_SPECIALIZED, native_type, sizeof(native_type)>::convert_from_float(f1), f2.value<SF_TYPE>()), true); \
} \
template<> SoftFloatWrapper<N_SPECIALIZED> operator-(const native_type f1, const SoftFloatWrapper<N_SPECIALIZED>& f2) { \
return SoftFloatWrapper<N_SPECIALIZED>(SF_PREPEND(_sub)(FloatConverter< N_SPECIALIZED, native_type, sizeof(native_type)>::convert_from_float(f1), f2.value<SF_TYPE>()), true); \
} \
template<> SoftFloatWrapper<N_SPECIALIZED> operator*(const native_type f1, const SoftFloatWrapper<N_SPECIALIZED>& f2) { \
return SoftFloatWrapper<N_SPECIALIZED>(SF_PREPEND(_mul)(FloatConverter< N_SPECIALIZED, native_type, sizeof(native_type)>::convert_from_float(f1), f2.value<SF_TYPE>()), true); \
} \
template<> SoftFloatWrapper<N_SPECIALIZED> operator/(const native_type f1, const SoftFloatWrapper<N_SPECIALIZED>& f2) { \
return SoftFloatWrapper<N_SPECIALIZED>(SF_PREPEND(_div)(FloatConverter< N_SPECIALIZED, native_type, sizeof(native_type)>::convert_from_float(f1), f2.value<SF_TYPE>()), true); \
} \
template<> bool operator==(const native_type value, const SoftFloatWrapper<N_SPECIALIZED>& f) { \
return SF_PREPEND(_eq)(FloatConverter< N_SPECIALIZED, native_type, sizeof(native_type)>::convert_from_float(value), f.value<SF_TYPE>()); \
} \
template<> bool operator!=(const native_type value, const SoftFloatWrapper<N_SPECIALIZED>& f) { \
return !SF_PREPEND(_eq)(FloatConverter< N_SPECIALIZED, native_type, sizeof(native_type)>::convert_from_float(value), f.value<SF_TYPE>()); \
} \
template<> bool operator<(const native_type value, const SoftFloatWrapper<N_SPECIALIZED>& f) { \
return SF_PREPEND(_lt)(FloatConverter< N_SPECIALIZED, native_type, sizeof(native_type)>::convert_from_float(value), f.value<SF_TYPE>()); \
} \
template<> bool operator<=(const native_type value, const SoftFloatWrapper<N_SPECIALIZED>& f) { \
return SF_PREPEND(_le)(FloatConverter< N_SPECIALIZED, native_type, sizeof(native_type)>::convert_from_float(value), f.value<SF_TYPE>()); \
} \
template<> bool operator>(const native_type value, const SoftFloatWrapper<N_SPECIALIZED>& f) { \
return SF_PREPEND(_lt)(f.value<SF_TYPE>(), FloatConverter< N_SPECIALIZED, native_type, sizeof(native_type)>::convert_from_float(value)); \
} \
template<> bool operator>=(const native_type value, const SoftFloatWrapper<N_SPECIALIZED>& f) { \
return SF_PREPEND(_le)(f.value<SF_TYPE>(), FloatConverter< N_SPECIALIZED, native_type, sizeof(native_type)>::convert_from_float(value)); \
}
STREFLOP_X87DENORMAL_BINARY_OPS_INT(char)
STREFLOP_X87DENORMAL_BINARY_OPS_INT(unsigned char)
STREFLOP_X87DENORMAL_BINARY_OPS_INT(short)
STREFLOP_X87DENORMAL_BINARY_OPS_INT(unsigned short)
STREFLOP_X87DENORMAL_BINARY_OPS_INT(int)
STREFLOP_X87DENORMAL_BINARY_OPS_INT(unsigned int)
STREFLOP_X87DENORMAL_BINARY_OPS_INT(long)
STREFLOP_X87DENORMAL_BINARY_OPS_INT(unsigned long)
STREFLOP_X87DENORMAL_BINARY_OPS_INT(long long)
STREFLOP_X87DENORMAL_BINARY_OPS_INT(unsigned long long)
STREFLOP_X87DENORMAL_BINARY_OPS_FLOAT(float)
STREFLOP_X87DENORMAL_BINARY_OPS_FLOAT(double)
STREFLOP_X87DENORMAL_BINARY_OPS_FLOAT(long double)
/// Unary operators
template<> SoftFloatWrapper<N_SPECIALIZED> operator-(const SoftFloatWrapper<N_SPECIALIZED>& f) {
// We could do it right here by flipping the bit sign
// However, there is the exceptions handling and such, so...
return SoftFloatWrapper<N_SPECIALIZED>(SF_PREPEND(_sub)(SF_APPEND(int32_to_)(0), f.value<SF_TYPE>()), true);
}
template<> SoftFloatWrapper<N_SPECIALIZED> operator+(const SoftFloatWrapper<N_SPECIALIZED>& f) {
return f; // makes a copy
}
template<> SoftFloatWrapper<N_SPECIALIZED>::SoftFloatWrapper(const SoftFloatWrapper<32>& f) {
value<SF_TYPE>() = SF_APPEND(float32_to_)(f.value<float32>());
}
template<> SoftFloatWrapper<N_SPECIALIZED>& SoftFloatWrapper<N_SPECIALIZED>::operator=(const SoftFloatWrapper<32>& f) {
value<SF_TYPE>() = SF_APPEND(float32_to_)(f.value<float32>());
return *this;
}
template<> SoftFloatWrapper<N_SPECIALIZED>::SoftFloatWrapper(const SoftFloatWrapper<64>& f) {
value<SF_TYPE>() = SF_APPEND(float64_to_)(f.value<float64>());
}
template<> SoftFloatWrapper<N_SPECIALIZED>& SoftFloatWrapper<N_SPECIALIZED>::operator=(const SoftFloatWrapper<64>& f) {
value<SF_TYPE>() = SF_APPEND(float64_to_)(f.value<float64>());
return *this;
}
template<> SoftFloatWrapper<N_SPECIALIZED>::SoftFloatWrapper(const SoftFloatWrapper<96>& f) {
value<SF_TYPE>() = SF_APPEND(floatx80_to_)(f.value<floatx80>());
}
template<> SoftFloatWrapper<N_SPECIALIZED>& SoftFloatWrapper<N_SPECIALIZED>::operator=(const SoftFloatWrapper<96>& f) {
value<SF_TYPE>() = SF_APPEND(floatx80_to_)(f.value<floatx80>());
return *this;
}
} // end of namespace
#endif
|