1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<HTML>
<HEAD>
<TITLE>melting</TITLE>
<META NAME="description" CONTENT="melting">
<META NAME="keywords" CONTENT="melting">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="melting/melting.css">
</HEAD>
<BODY >
<H1><A NAME="SECTION00010000000000000000">
1 Name </A>
</H1>
<SMALL>MELTING</SMALL> - nearest-neighbor computation of nucleic acid hybridation
<H1><A NAME="SECTION00020000000000000000">
2 Synopsis</A>
</H1>
<B>melting</B> [<I>options </I>]
<H1><A NAME="SECTION00030000000000000000">
3 Description </A>
</H1>
<P>
<SMALL>MELTING</SMALL> computes, for a nucleic acid duplex, the enthalpy and the
entropy of the helix-coil transition, and then its melting temperature. Three
types of hybridisation are possible: DNA/DNA, DNA/RNA, and RNA/RNA. The program
uses the method of nearest-neighbors. The set of thermodynamic parameters can be
easely changed, for instance following an experimental breakthrough. Melting is
a free program in both sense of the term. It comes with no cost and it is
open-source. In addition it is coded in ISO C and can be compiled on any
operating system. Some perl scripts are provided to show how melting can be used
as a block to construct more ambitious programs.
<P>
If you use <SMALL>MELTING</SMALL>, please quote
<P>
<BLOCKQUOTE>
Le Novère. <SMALL>MELTING</SMALL>, a free tool to compute the
melting temperature of nucleic acid duplex. <I>Bioinformatics</I>, 17: 1226-1227.
</BLOCKQUOTE>
<P>
<H1><A NAME="SECTION00040000000000000000">
4 Options </A>
</H1>
<P>
The options are treated sequentially. If there is a conflict between the value
of two options, the latter normally erases the former.
<P>
<DL>
<DT><STRONG><B>-A</B><I>file.nn</I></STRONG></DT>
<DD>
<BR>
Informs the program to use <I>file.nn</I> as an alternative set of
nearest-neighbor parameters, rather than the default for the specified
hybridisation type (option <B>-H</B>). The standard distribution of melting
provides some files ready-to-use: <I>all97a.nn</I> (Allawi et al 1997),
<I>bre86a.nn</I> (Breslauer et al 1986), <I>san96a.nn</I> (SantaLucia et
al 1996), <I>sug96a.nn</I> (Sugimoto et al 1996), <I>san04a.nn</I> (Santalucia
et al 2004) (DNA/DNA),
<I>fre86a.nn</I> (Freier et al 1986), <I>xia98a.nn</I> (Xia et al 1998)
(RNA/RNA) and <I>sug95a.nn</I> (Sugimoto et al 1995) (DNA/RNA). The program
will look for the file in a directory specified during the installation.
However, if an environment variable NN_PATH is defined, melting will search
in this one first. Be careful, the option <B>-A </B> changes the default
parameter set defined by the option <B>-H.</B>
</DD>
<DT><STRONG><B>-C</B><I>complementary_sequence</I></STRONG></DT>
<DD>
<BR>
Enters the complementary sequence, from 3' to 5'. This option is mandatory if
there are mismatches between the two strands. If it is not used, the program
will compute it as the complement of the sequence entered with the option
<B>-S</B>
</DD>
<DT><STRONG><B>-D</B><I>dnadnade.nn</I></STRONG></DT>
<DD>
<BR>
Informs the program to use the file <I>dnadnade.nn</I> to compute the
contribution of dangling ends to the thermodynamic of helix-coil transition.
The dangling ends are not taken into account by the approximative mode.
</DD>
<DT><STRONG><B>-F</B><I>factor</I> </STRONG></DT>
<DD>
<BR>
This is the a correction factor used to modulate the effect of the nucleic
acid concentration in the computation of the melting temperature. See section
ALGORITHM for details.
</DD>
<DT><STRONG><B>-G</B><I>x.xxe-xx</I> </STRONG></DT>
<DD>
<BR>
Magnesium concentration (No maximum concentration for the moment). The effect
of ions on thermodynamic stability of nucleic acid duplexes is complex,
and the correcting functions are at best rough approximations.The published
Tm correction formula for divalent Mg<sup>2+</sup> ions of Owczarzy et al.(2008) can
take in account the competitive binding of monovalent and divalent ions on DNA.
However this formula is only for DNA duplexes.
</DD>
<DT><STRONG><B>-h</B></STRONG></DT>
<DD>
<BR>
Displays a short help and quit with EXIT_SUCCESS.
</DD>
<DT><STRONG><B>-H</B><I>hybridisation_type</I></STRONG></DT>
<DD>
<BR>
Specifies the hybridisation type. This will set the nearest-neighbor set to
use if no alternative set is provided by the option <B>-A</B> (remember the
options are read sequentially). Moreover this parameter determines the
equation to use if the sequence length exceeds the limit of application of the
nearest-neighbor approach (arbitrarily set up by the author). Possible values
are <I>dnadna</I>, <I>dnarna</I> and <I>rnadna</I> (synonymous), and
<I>rnarna</I>. For reasons of compatibility the values of the previous
versions of melting <I>A,B,C,F,R,S,T,U,W</I> are still available although
<B>strongly </B> deprecated. Use the option <B>-A</B> to require an
alternative set of thermodynamic parameters. <B>Important:</B> If the duplex
is a DNA/RNA heteroduplex, the sequence of the DNA strand has to be entered
with the option <B>-S</B>
</DD>
<DT><STRONG><B>-I</B><I>input_file</I> </STRONG></DT>
<DD>
<BR>
Provides the name of an input file containing the parameters of the
run. The input has to contain one parameter per line, formatted as in
the command line. The order is not important, as well as blank lines.
example:
<P>
<PRE>
-Hdnadna
-Asug96a.nn
-SAGCTCGACTC
-CTCGAGGTGAG
-N0.2
-P0.0001
-v
-Ksan96a
</PRE>
<P>
</DD>
<DT><STRONG><B>-i</B><I>file.nn</I></STRONG></DT>
<DD>
<BR>
Informs the program to use file.nn as an alternative set of inosine pair
parameters, rather than the default for the specified hybridisation type.
The standard distribution of melting provides some files ready-to-use: san05a.nn
(Santalucia et al 2005) for deoxyinosine in DNA duplexes, bre07a.nn (Brent M Znosko
et al 2007)for inosine in RNA duplexes. Note that not all the inosine mismatched
wobble's pairs have been investigated. Therefore it could be impossible to compute
the Tm of a duplex with inosine pairs. Moreover, those inosine pairs are not taken
into account by the approximative mode.
</DD>
<DT><STRONG><B>-K</B><I>salt_correction</I></STRONG></DT>
<DD>
<BR>
Permits to chose another correction for the concentration in sodium. Currently,
one can chose between <I>wet91a, san96a, san98a</I>. See section ALGORITHM
</DD>
<DT><STRONG><B>-k</B><I>x.xxe-xx</I> </STRONG></DT>
<DD>
<BR>
Potassium concentration (No maximum concentration for the moment). The effect of ions
on thermodynamic stability of nucleic acid duplexes is complex, and the correcting
functions are at best rough approximations.The published Tm correction formula for
sodium ions of Owczarzy et al.(2008) is therefore also applicable to buffers containing Tris or
KCl. Monovalent K<sup>+</sup>, Na<sup>+</sup>, Tris<sup>+</sup> ions stabilize DNA duplexes
with similar potency, and their effects on duplex stability are additive. However this formula
is only for DNA duplexes.
</DD>
<DT><STRONG><B>-L</B></STRONG></DT>
<DD>
<BR>
Prints the legal informations and quit
with EXIT_SUCCESS.
</DD>
<DT><STRONG><B>-M</B><I>dnadnamm.nn</I></STRONG></DT>
<DD>
<BR>
Informs the program to use the file <I>dnadnamm.nn</I> to compute
the contribution of mismatches to the thermodynamic of helix-coil
transition. Note that not all the mismatched Crick's pairs have been
investigated. Therefore it could be impossible to compute the Tm of a
mismatched duplex. Moreover, those mismatches are not taken into
account by the approximative mode.
</DD>
<DT><STRONG><B>-N</B><I>x.xxe-xx</I> </STRONG></DT>
<DD>
<BR>
Sodium concentration (between 0 and 10 M). The effect of ions on thermodynamic
stability of nucleic acid duplexes is complex, and the correcting functions
are at best rough approximations. Moreover, they are generally reliable only
for [Na<sup>+</sup>] belonging to [0.1,1 M]. If there are no other ions in
solution, we can use only the sodium correction. In the other case, we use the Owczarzy's
algorithm.
</DD>
<DT><STRONG><B>-O</B><I>output_file</I></STRONG></DT>
<DD>
<BR>
The output is directed to this file instead of the standard
output. The name of the file can be omitted. An automatic name is then
generated, of the form meltingYYYYMMMDD_HHhMMm.out (of course,
on POSIX compliant systems, you can emulate this with the redirection
of stdout to a file constructed with the program date).
</DD>
<DT><STRONG><B>-P</B><I>x.xxe-xx</I></STRONG></DT>
<DD>
<BR>
Concentration of the nucleic acid strand in excess (between 0 and 0.1 M).
</DD>
<DT><STRONG><B>-p</B></STRONG></DT>
<DD>
<BR>
Return the directory supposed to contain the sets of calorimetric parameters and quit with
EXIT_SUCCESS. If the environment variable NN_PATH is set, it is returned. Otherwise, the value
defined by default during the compilation is returned.
</DD>
<DT><STRONG><B>-q</B> </STRONG></DT>
<DD>
<BR>
Turn off the interactive correction of wrongly entered
parameter. Useful for run through a server, or a batch script. Default
is OFF (i.e. interactive on). The switch works in both sens.
Therefore if <B>-q </B> has been set in an input file, another
<B>-q </B> on the command line will switch the quiet mode OFF (same
thing if two <B>-q </B> are set on the same command line).
</DD>
<DT><STRONG><B>-S</B><I>sequence</I> </STRONG></DT>
<DD>
<BR>
Sequence of one strand of the nucleic
acid duplex, entered 5' to 3'. <B>Important:</B> If it is a DNA/RNA heteroduplex,
the sequence of the DNA strand has to be entered.
Uridine and thymidine are
considered as identical. The bases can be upper or lowercase.
</DD>
<DT><STRONG><B>-T</B><I>xxx</I> </STRONG></DT>
<DD>
<BR>
Size threshold before approximative computation. The nearest-neighbour approach
will be used only if the length of the sequence is inferior to this threshold.
</DD>
<DT><STRONG><B>-t</B><I>x.xxe-xx</I> </STRONG></DT>
<DD>
<BR>
Tris buffer concentration (No maximum concentration for the moment).
The effect of ions on thermodynamic stability of nucleic acid
duplexes is complex, and the correcting functions are at best
rough approximations.The published Tm correction formula for sodium ions of
Owczarzy et al (2008)is therefore also applicable to buffers containing Tris or
KCl. Monovalent K<sup>+</sup>, Na<sup>+</sup>, Tris<sup>+</sup> ions stabilize DNA duplexes with similar potency, and
their effects on duplex stability are additive. However this formula is only for DNA
duplexes. Be aware, the Tris<sup>+</sup> ion concentration is about half of the total tris buffer
concentration.
</DD>
<DT><STRONG><B>-v</B> </STRONG></DT>
<DD>
<BR>
Control the verbose
mode, issuing a lot more information about the current run (try it once
to see if you can get something interesting). Default is OFF. The switch
works in both sens. Therefore if <B>-v </B> has been set in an input file, another
<B>-v </B> on the command line will switch the verbose mode OFF (same thing if
two <B>-v </B> are set on the same command line).
</DD>
<DT><STRONG><B>-V</B> </STRONG></DT>
<DD>
<BR>
Displays the version number
and quit with EXIT_SUCCESS
</DD>
<DT><STRONG><B>-x</B> </STRONG></DT>
<DD>
<BR>
Force the program to compute an approximative
tm, based on G+C content. This option has to be used with caution. Note
that such a calcul is increasingly incorrect when the length of the duplex
decreases. Moreover, it does not take into account nucleic acid concentration,
which is a strong mistake.
<P>
</DD>
</DL>
<P>
<H1><A NAME="SECTION00050000000000000000">
5 Algorithm </A>
</H1>
<P>
<H2><A NAME="SECTION00051000000000000000">
5.1 Thermodynamics of helix-coil transition of nucleic acid</A>
</H2>
The nearest-neighbor approach is based on the fact that the helix-coil
transition works as a zipper. After an initial attachment, the hybridisation
propagates laterally. Therefore, the process depends on the adjacent
nucleotides on each strand (the Crick's pairs). Two duplexes with the same base
pairs could have different stabilities, and on the contrary, two duplexes with
different sequences but identical sets of Crick's pairs will have the same
thermodynamics properties (see Sugimoto et al. 1994). This program first
computes the hybridisation enthalpy and entropy from the elementary parameters
of each Crick's pair.
<!-- MATH
\begin{displaymath}
\begin{array}[t]{ccc}
\Delta{}H&=&\delta{}h_\mathrm{initiation}+\sum \delta{}h_\mathrm{Crick's pair}\\
\Delta{}S&=&\delta{}s_\mathrm{initiation}+\sum \delta{}s_\mathrm{Crick's pair}
\end{array}
\end{displaymath}
-->
<P></P>
<DIV ALIGN="CENTER">
<IMG
WIDTH="262" HEIGHT="57" ALIGN="MIDDLE" BORDER="0"
SRC="melting/img1.png"
ALT="$\displaystyle \begin{array}[t]{ccc}
\Delta{}H&=&\delta{}h_\mathrm{initiation}+\...
...&\delta{}s_\mathrm{initiation}+\sum \delta{}s_\mathrm{Crick's pair}
\end{array}$">
</DIV><P></P>
<P>
See Wetmur J.G. (1991) and SantaLucia (1998)
for deep reviews on the nucleic acid hybridisation and on the different
set of nearest-neighbor parameters.
<P>
<P></P>
<DIV ALIGN="CENTER"><A NAME="320"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 1:</STRONG>
Comparison of experimental and computed Tm for various sets of
nearest-neighbor parameters. [Na+] = 1 M, [nucleic acid] = 4.10-4 M</CAPTION>
<TR><TD><IMG
SRC="melting/image1M.png" heigth="200"
></TD></TR>
</TABLE>
</DIV><P></P>
<P>
<P></P>
<DIV ALIGN="CENTER"><A NAME="321"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 2:</STRONG>
Comparison of experimental and computed Tm for various sets of
nearest-neighbor parameters. [Na+] = 0.11 M, [nucleic acid] = 8.10-6 M</CAPTION>
<TR><TD><IMG
SRC="melting/image0_11M.png" heigth="200"
></TD></TR>
</TABLE>
</DIV><P></P>
<P>
<H2><A NAME="SECTION00052000000000000000">
5.2 Effect of mismatches and dangling ends</A>
</H2>
<P>
The mismatching (inosine mismatches included) pairs are also taken into account. However the thermodynamic
parameters are still not available for every possible cases (notably when both
positions are mismatched). In such a case, the program, unable to compute any
relevant result, will quit with a warning. The two first and positions cannot
be mismatched. in such a case, the result is unpredictable, and all cases are
possible. for instance (see Allawi and SanLucia 1997), the duplex
<DIV ALIGN="LEFT">
<TT>
A T
<BR> <U>G</U>TGAGCTCA<U>T</U>
<BR> <U>T</U>ACTCGAGT<U>G</U>
<BR>
T A
<BR></TT>
</DIV>
<P>
is more stable than
<P>
<DIV ALIGN="LEFT">
<TT>
A<U>G</U>TGAGCTCA<U>T</U>T
<BR>
T<U>T</U>ACTCGAGT<U>G</U>A
<BR></TT>
</DIV>
<P>
The dangling ends, that is the unmatched terminal nucleotides, can be taken into
account.
<P>
<H2><A NAME="SECTION00053000000000000000">
5.3 Example</A>
</H2>
<P>
<P></P>
<DIV ALIGN="CENTER"><!-- MATH
\begin{multline*}
\Delta H {\mbox{\texttt{AGCGATGAA-}} \choose \mbox{\texttt{-CGCTGCTTT}}} =
\Delta H {\mbox{\texttt{AG}} \choose \mbox{\texttt{-C}} } +
\Delta H {\mbox{\texttt{A-}} \choose \mbox{\texttt{TT}} } \\+
\Delta H {\mbox{\texttt{G}} \choose \mbox{\texttt{C}} }_\mathrm{init} +
\Delta H {\mbox{\texttt{A}} \choose \mbox{\texttt{T}} }_\mathrm{init} \\+
\Delta H {\mbox{\texttt{GC}} \choose \mbox{\texttt{CG}} } +
\Delta H {\mbox{\texttt{CG}} \choose \mbox{\texttt{GC}} } +
2x \Delta H {\mbox{\texttt{GA}} \choose \mbox{\texttt{CT}} } +
\Delta H {\mbox{\texttt{AA}} \choose \mbox{\texttt{TT}} } \\+
\Delta H {\mbox{\texttt{A\underline{T}}} \choose \mbox{\texttt{T\underline{G}}} } +
\Delta H {\mbox{\texttt{\underline{T}G}} \choose \mbox{\texttt{\underline{G}C}} }
\end{multline*}
-->
<IMG
SRC="melting/img2.png"
ALT="\begin{multline*}
\Delta H {\mbox{\texttt{AGCGATGAA-}} \choose \mbox{\texttt{-CG...
...texttt{\underline{T}G}} \choose \mbox{\texttt{\underline{G}C}} }
\end{multline*}"></DIV>
<BR CLEAR="ALL">
<P><P></P>
<P>
(The same computation is performed for <I>ΔG</I>)
<P>
<H2><A NAME="SECTION00054000000000000000">
5.4 The melting temperature </A>
</H2>
Then the melting temperature is computed by the following formula:
<P>
<TABLE CELLPADDING=3>
<TR><TD ALIGN="RIGHT">Tm</TD>
<TD ALIGN="CENTER">=</TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=115><!-- MATH
\begin{math}
\frac{\displaystyle \Delta{}H}{\displaystyle \Delta{}S + R \ln (C_T/F)} \hspace{2em} +
\end{math}
-->
<IMG
SRC="melting/img4.png"
ALT="$ \frac{\displaystyle \Delta{}H}{\displaystyle \Delta{}S + R \ln (C_T/F)} \hspace{2em} + $"></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=158><!-- MATH
\begin{math}
\mathcal{F}([\mathrm{Na}^+]) - 273.15
\end{math}
-->
<IMG
SRC="melting/img5.png"
ALT="$ \mathcal{F}([\mathrm{Na}^+]) - 273.15 $"></TD>
</TR>
<TR><TD ALIGN="RIGHT"> </TD>
<TD ALIGN="CENTER"> </TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=115> </TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=158> </TD>
</TR>
<TR><TD ALIGN="RIGHT"> </TD>
<TD ALIGN="CENTER"> </TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=115><FONT SIZE="-1"><I>Tm</I> in K (for [Na+] = 1 M) </FONT></TD>
<TD ALIGN="LEFT" VALIGN="TOP" WIDTH=158><FONT SIZE="-1"><I>correction</I> for the
salt concentration (if there are only Na+ cations in the solution) and to get the temperature in degree Celsius. (In fact
some corrections are directly included in the <I>ΔS</I>. See that of SanLucia
1998)
</FONT></TD>
</TR>
</TABLE>
<P>
<H2><A NAME="SECTION00055000000000000000">
5.5 Correction for the concentration of nucleic acid </A>
</H2>
<P>
Many thanks to Ivano Zara (zarivan@cribi.unipd.it), who gave me most of
the following explanation.
<P>
In a reaction <!-- MATH
$A + B \rightleftharpoons D$
-->
<IMG
ALIGN="center"
SRC="melting/img6.png"
ALT="$ A + B \rightleftharpoons D$">, where <I>A</I> is the strand in
excess, <I>B</I> the other strand, and <I>D</I> the duplex, and where the
oligonucleotides <I>are not self-complementary</I>,
<!-- MATH
\begin{displaymath}
\Delta G = \Delta G_0 - RT lnK = \Delta H_0 - T \Delta S_0 - RT lnK
\end{displaymath}
-->
<P></P>
<DIV ALIGN="CENTER">
<IMG
SRC="melting/img7.png"
ALT="$\displaystyle \Delta G = \Delta G_0 - RT lnK = \Delta H_0 - T \Delta S_0 - RT lnK
$">
</DIV><P></P>
and
<!-- MATH
\begin{displaymath}
K = \frac{[A][B]}{[D]}
\end{displaymath}
-->
<P></P>
<DIV ALIGN="CENTER">
<IMG
SRC="melting/img8.png"
ALT="$\displaystyle K = \frac{[A][B]}{[D]}
$">
</DIV><P></P>
If ξ is the fraction of molecules <I>B</I> that forms the duplex,
<BR>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{eqnarray*}
\ [D] & = & \xi [B]_0 \\
\ \mbox{}[B] & = & [B]_0 - [D] = [B]_0 - \xi [B]_0 = [B]_0 ( 1 - \xi ) \\
\mbox{}[A] & = & [A]_0 - [D] = [A]_0 - \xi [B]_0
\end{eqnarray*}
-->
<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
<TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
SRC="melting/img10.png"
ALT="$\displaystyle \ [D]$"></TD>
<TD WIDTH="10" ALIGN="CENTER" NOWRAP><IMG
SRC="melting/img11.png"
ALT="$\displaystyle =$"></TD>
<TD ALIGN="LEFT" NOWRAP><IMG
SRC="melting/img12.png"
ALT="$\displaystyle \xi [B]_0$"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
</TD></TR>
<TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
SRC="melting/img13.png"
ALT="$\displaystyle \ $"> <IMG
SRC="melting/img14.png"
ALT="$\displaystyle [B]$"></TD>
<TD WIDTH="10" ALIGN="CENTER" NOWRAP><IMG
SRC="melting/img11.png"
ALT="$\displaystyle =$"></TD>
<TD ALIGN="LEFT" NOWRAP><IMG
SRC="melting/img15.png"
ALT="$\displaystyle [B]_0 - [D] = [B]_0 - \xi [B]_0 = [B]_0 ( 1 - \xi )$"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
</TD></TR>
<TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"> <IMG
SRC="melting/img16.png"
ALT="$\displaystyle [A]$"></TD>
<TD WIDTH="10" ALIGN="CENTER" NOWRAP><IMG
SRC="melting/img11.png"
ALT="$\displaystyle =$"></TD>
<TD ALIGN="LEFT" NOWRAP><IMG
SRC="melting/img17.png"
ALT="$\displaystyle [A]_0 - [D] = [A]_0 - \xi [B]_0$"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
</TD></TR>
</TABLE></DIV>
<BR CLEAR="ALL"><P></P>
Therefore,
<!-- MATH
\begin{displaymath}
K = \frac{([A]_0 - \xi [B]_0) [B]_0 ( 1 - \xi )}{\xi [B]_0} = \frac{([A]_0 - \xi [B]_0) ( 1 - \xi )}{\xi}
\end{displaymath}
-->
<P></P>
<DIV ALIGN="CENTER">
<IMG
SRC="melting/img18.png"
ALT="$\displaystyle K = \frac{([A]_0 - \xi [B]_0) [B]_0 ( 1 - \xi )}{\xi [B]_0} = \frac{([A]_0 - \xi [B]_0) ( 1 - \xi )}{\xi}
$">
</DIV><P></P>
and, at melting temperature, when <IMG
ALIGN="center"
SRC="melting/img19.png"
ALT="$ \xi = 1/2$">,
<!-- MATH
\begin{displaymath}
K = [A]_0 - \frac{1}{2} [B]_0
\end{displaymath}
-->
<P></P>
<DIV ALIGN="CENTER">
<IMG
SRC="melting/img20.png"
ALT="$\displaystyle K = [A]_0 - \frac{1}{2} [B]_0
$">
</DIV><P></P>
If both strands are present in equivalent amount, <!-- MATH
$[A]_0 = [B]_0$
-->
<IMG
ALIGN="center"
SRC="melting/img21.png"
ALT="$ [A]_0 = [B]_0$"> and
<!-- MATH
$C_T = [A]_0 + [B]_0$
-->
<IMG
ALIGN="center"
SRC="melting/img22.png"
ALT="$ C_T = [A]_0 + [B]_0$">, then <!-- MATH
$K = \frac{C_T}{4}$
-->
<IMG
ALIGN="center"
SRC="melting/img23.png"
ALT="$ K = \frac{C_T}{4}$"> (<IMG
SRC="melting/img24.png"
ALT="$ F=4$">). If <!-- MATH
$[A]_0 \gg
[B]_0$
-->
<IMG
ALIGN="center"
SRC="melting/img25.png"
ALT="$ [A]_0 \gg
[B]_0$">, then <!-- MATH
$C_T \approx [A]_0$
-->
<IMG
ALIGN="center"
SRC="melting/img26.png"
ALT="$ C_T \approx [A]_0$"> and <!-- MATH
$K \approx [A]_0 \approx C_T$
-->
<IMG
ALIGN="center"
SRC="melting/img27.png"
ALT="$ K \approx [A]_0 \approx C_T$"> (<IMG
SRC="melting/img28.png"
ALT="$ F=1$">).
If the oligonucleotides are self-complementary, <!-- MATH
$C_T = [A]_0$
-->
<IMG
ALIGN="center"
SRC="melting/img29.png"
ALT="$ C_T = [A]_0$"> and (<IMG
ALIGN="center"
SRC="melting/img28.png"
ALT="$ F=1$">).
<P>
Note however that <SMALL>MELTING</SMALL> makes the assumption of no self-assembly,
<I>i.e.</I> the computation does not take any entropic term to correct for
self-complementarity.
<P>
<H2><A NAME="SECTION00056000000000000000">
5.6 Correction for the concentration of salt </A>
</H2>
If there are only sodium ions in the solution, we can use the following
corrections. the correction can be chosen between <I>wet91a,</I> presented in
Wetmur 1991 <I>i.e.</I>
<!-- MATH
\begin{displaymath}
\ 16.6 \log \frac{[\mathrm{Na}^+]}{1 + 0.7 [\mathrm{Na}^+]} + 3.85
\end{displaymath}
-->
<P></P>
<DIV ALIGN="CENTER">
<IMG
SRC="melting/img30.png"
ALT="$\displaystyle \ 16.6 \log \frac{[\mathrm{Na}^+]}{1 + 0.7 [\mathrm{Na}^+]} + 3.85
$">
</DIV><P></P>
<P>
<I>san96a</I> presented in SantaLucia et al. 1996
<I>i.e.</I>
<!-- MATH
\begin{displaymath}
12.5 \log [\mbox{Na}^+]
\end{displaymath}
-->
<P></P>
<DIV ALIGN="CENTER">
<IMG
ALIGN="center"
SRC="melting/img31.png"
ALT="$\displaystyle 12.5 \log [$">Na<IMG
ALIGN="center"
SRC="melting/img32.png"
ALT="$\displaystyle ^+]
$">
</DIV><P></P>
and <I>san98a</I> presented in SantaLucia 1998 <I>i.e.</I> a correction
of the entropic term without modification of enthalpy
<!-- MATH
\begin{displaymath}
\ \Delta{}S=\Delta{}S_{[\mathrm{Na}^+]=1\;\mathrm{M}}+0.368 (N-1) \ln [\mathrm{Na}^+]
\end{displaymath}
-->
<P></P>
<DIV ALIGN="CENTER">
<IMG
SRC="melting/img33.png"
ALT="$\displaystyle \ \Delta{}S=\Delta{}S_{[\mathrm{Na}^+]=1\;\mathrm{M}}+0.368 (N-1) \ln [\mathrm{Na}^+]
$">
</DIV><P></P>
Where <I>N</I> is the length of the duplex (SantaLucia 1998 actually used 'N' the number of non-terminal phosphates, that is effectively equal to our N-1).
<P>
<P></P>
<DIV ALIGN="CENTER"><A NAME="259"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 3:</STRONG>
Comparison of experimental and computed Tm for various correction
of salt concentration.</CAPTION>
<TR><TD><IMG
SRC="melting/salt.png"
ALT="\includegraphics[]{salt.eps}"></TD></TR>
</TABLE>
</DIV><P></P>
<P>
<H2><A NAME="SECTION00057000000000000000">
5.7 Correction for the concentration of ions when other monovalent ions such as
Tris<sup>+</sup> and K<sup>+</sup> or divalent Mg<sup>2+</sup> ions are added</A>
</H2>
If there are only Na+ ions, we can use the correction for the concentration of salt
(see above). In the opposite case, we will use the magnesium and monovalent ions correction
from <I>Owczarzy et al (2008)</I>. (only for DNA duplexes)
<P></P>
<DIV ALIGN="CENTER">
[Mon+] = [Na<sup>+</sup>] + [K<sup>+</sup>] + [Tris<sup>+</sup>]
</DIV><P></P>
Where [Tris<sup>+</sup>] is equal to half of total tris buffer concentration. <I>(in the option -t, it is the Tris buffer concentration
which is entered)</I>. <P></P>
When the divalent ions are the only ions present, the melting temperature is :
<P></P>
<DIV ALIGN="CENTER">
<IMG
SRC="melting/magnesium1.png" height="300" >
</DIV>
<P></P>
where :
<P></P>a = 3.92 x 10<sup>-5</sup>
<P></P>b = 9.11 x 10<sup>-6</sup>
<P></P>c = 6.26 x 10<sup>-5</sup>
<P></P>d = 1.42 x 10<sup>-5</sup>
<P></P>e = 4.82 x 10<sup>-4</sup>
<P></P>f = 5.25 x 10<sup>-4</sup>
<P></P>g = 8.31 x 10<sup>-5</sup>.
<P></P>
Fgc is the fraction of GC base pairs in the sequence and
Nbp is the length of the sequence (Number of base pairs).
<P></P>
When there are both monovalent and divalent ions, there are several cases because we can have
a competitive DNA binding between monovalent and divalent
cations :
<P></P>
If the following ratio :<P></P>
<DIV ALIGN="CENTER"> <IMG
SRC="melting/ratio.png" height="60" >
</DIV> <P></P>
is inferior to 0.22, monovalent ion influence is dominant, divalent cations can be
disregarded and the melting temperature is :
<P></P>
<DIV ALIGN="CENTER">
<IMG
SRC="melting/magnesium2.png" height="200">
</DIV> <P></P>
<P></P>
<DIV ALIGN="CENTER"><A NAME="320"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 4:</STRONG>
Comparison of experimental and computed Tm with the algorithm published in Owczarzy et al.(2008). [Mon+] = 0.055 M,[Mg2+] = 0 M, [nucleic acid] = 2.10-6 M</CAPTION>
<TR><TD><IMG
SRC="melting/Owczarzy2.png" heigth="350"
></TD></TR>
</TABLE><P></P></DIV>
If the ratio is included in [0.22, 6[,
we must take in account both Mg<sup>2+</sup> and monovalent cations
concentrations. The melting temperature is calculated with the first equation but with monovalent ions concentration dependent parameters a, d and g :
<DIV ALIGN="CENTER">
<P></P>
a = 3.92 x 10<sup>-5</sup> x (0.843 - 0.352 x [Mon<sup>+</sup>]0.5 x ln([Mon<sup>+</sup>]))
<P></P>
d = 1.42 x 10<sup>-5</sup> x (1.279 - 4.03 x 10<sup>-3</sup> x ln([mon<sup>+</sup>]) - 8.03 x 10<sup>-3</sup> x ln([mon<sup>+</sup>] x ln([mon<sup>+</sup>])
<P></P>
g = 8.31 x 10<sup>-5</sup> x (0.486 - 0.258 x ln([mon<sup>+</sup>]) + 5.25 x 10<sup>+</sup> x ln([mon<sup>+</sup>] x ln([mon<sup>+</sup>] x ln([mon<sup>+</sup>])
<P></P>.
and b, c, e, f are constant.
</DIV>
<P></P>
<DIV ALIGN="CENTER"><A NAME="320"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 5:</STRONG>
Comparison of experimental and computed Tm with the algorithm published in Owczarzy et al.(2008). [Mon+] = 0.055 M,[Mg2+] = 0.0015 M, [nucleic acid] = 2.10-6 M</CAPTION>
<TR><TD><IMG
SRC="melting/Owczarzy3.png" heigth="350"
></TD></TR>
</TABLE><P></P></DIV>
Finally, if the ratio is superior to 6,
divalent ion influence is dominant, monovalent cations can be disregarded and the melting temperature is calculated with the first equation and the constant parameters a, b, c, d,
e, f, g.<P></P>
<DIV ALIGN="CENTER"><A NAME="320"></A>
<TABLE>
<CAPTION ALIGN="BOTTOM"><STRONG>Figure 6:</STRONG>
Comparison of experimental and computed Tm with the algorithm published in Owczarzy et al.(2008). [Mon+] = 0.001 M,[Mg2+] = 0.0015 M, [nucleic acid] = 2.10-6 M</CAPTION>
<TR><TD><IMG
SRC="melting/Owczarzy1.png" heigth="350"
></TD></TR>
</TABLE><P></P></DIV>
<H2><A NAME="SECTION00058000000000000000">
5.8 Long sequences </A>
</H2>
It is important to realise that the nearest-neighbor approach
has been established on small oligonucleotides. Therefore the use of <SMALL>MELTING</SMALL>
in the non-approximative mode is really accurate only for relatively short
sequences (Although if the sequences are two short, let's say < 6 bp, the
influence of extremities becomes too important and the reliability decreases
a lot). For long sequences an approximative mode has been designed. This mode is
launched if the sequence length is higher than the value
given by the option -T (the default threshold is 60 bp).
<P>
The melting temperature is computed by the following formulas:
<P>
<SMALL>ADN/ADN</SMALL>:
<!-- MATH
\begin{displaymath}
Tm = 81.5 + 16.6\log\frac{[\mathrm{Na}^+]}{1+0.7[\mathrm{Na}^+]} + 0.41\% GC - \frac{500}{size}
\end{displaymath}
-->
<P></P>
<DIV ALIGN="CENTER">
<IMG
SRC="melting/img34.png"
ALT="Tm = 81.5 + 16.6\log\frac{[\mathrm{Na}^+]}{1+0.7[\mathrm{Na}^+]} + 0.41\% GC - \frac{500}{size}">
</DIV><P></P>
<SMALL>ADN/ARN</SMALL>:
<!-- MATH
\begin{displaymath}
Tm = 67 + 16.6\log\frac{[\mathrm{Na}^+]}{1+0.7[\mathrm{Na}^+]} + 0.8\% GC - \frac{500}{size}
\end{displaymath}
-->
<P></P>
<DIV ALIGN="CENTER">
<IMG
SRC="melting/img35.png"
ALT="Tm = 67 + 16.6\log\frac{[\mathrm{Na}^+]}{1+0.7[\mathrm{Na}^+]} + 0.8\% GC - \frac{500}{size}">
</DIV><P></P>
<SMALL>ARN/ARN</SMALL>:
<!-- MATH
\begin{displaymath}
Tm = 78 + 16.6\log\frac{[\mathrm{Na}^+]}{1+0.7[\mathrm{Na}^+]} + 0.7\% GC - \frac{500}{size}
\end{displaymath}
-->
<P></P>
<DIV ALIGN="CENTER">
<IMG
SRC="melting/img36.png"
ALT="Tm = 78 + 16.6\log\frac{[\mathrm{Na}^+]}{1+0.7[\mathrm{Na}^+]} + 0.7\% GC - \frac{500}{size}">
</DIV><P></P>
<P>
The usage of this mode is nevertheless <B>strongly disencouraged.</B>
<P>
<H2><A NAME="SECTION00059000000000000000">
5.9 Miscellaneous comments </A>
</H2>
<SMALL>MELTING</SMALL> is currently accurate only when the hybridisation is performed
at pH 71. The computation is valid only for the hybridisations performed
in aqueous medium. Therefore the use of denaturing agents such as formamide
completely invalidates the results.
<P>
<H1><A NAME="SECTION00060000000000000000">
6 References </A>
</H1>
Allawi
H.T., SantaLucia J. (1997). Thermodynamics and NMR of internal G-T mismatches
in DNA. <I>Biochemistry</I> 36: 10581-10594
<P>
Allawi H.T., SantaLucia J. (1998).
Nearest Neighbor thermodynamics parameters for internal G.A mismatches in DNA.
<I> Biochemistry </I>
37: 2170-2179
<P>
Allawi H.T., SantaLucia J. (1998).
Thermodynamics of internal C.T mismatches in DNA.
<I> Nucleic Acids Res </I>
26: 2694-2701
<P>
Allawi H.T., SantaLucia J. (1998).
Nearest Neighbor thermodynamics of internal A.C mismatches in DNA: sequence
dependence and pH effects.
<I> Biochemistry </I>
37: 9435-9444.
<P>
Bommarito S., Peyret N., SantaLucia J. (2000). Thermodynamic parameters for DNA
sequences with dangling ends. <I>Nucleic Acids Res</I> 28: 1929-1934
<P>
Breslauer K.J., Frank R., Blöcker
H., Marky L.A. (1986). Predicting DNA duplex stability from the base sequence.
<I>Proc Natl Acad Sci USA</I> 83: 3746-3750
<P>
Freier S.M., Kierzek R., Jaeger
J.A., Sugimoto N., Caruthers M.H., Neilson T., Turner D.H. (1986). <I>Biochemistry</I>
83:9373-9377
<P>
Owczarzy R., Moreira B.G., You Y., Behlke M.B., Walder J.A.(2008) Predicting stability of DNA duplexes
in solutions containing Magnesium and Monovalent Cations. <I>Biochemistry</I> 47: 5336-5353.
<P>
Peyret N., Seneviratne P.A., Allawi H.T., SantaLucia J. (1999).
Nearest Neighbor thermodynamics and NMR of DNA sequences with internal
A.A, C.C, G.G and T.T mismatches.
dependence and pH effects.
<I> Biochemistry </I>
38: 3468-3477
<P>
SantaLucia J. Jr, Allawi H.T., Seneviratne P.A. (1996). Improved
nearest-neighbor parameters for predicting DNA duplex stability. <I>Biochemistry</I>
35: 3555-3562
<P>
Sugimoto N., Katoh M., Nakano S., Ohmichi T., Sasaki M. (1994).
RNA/DNA hybrid duplexes with identical nearest-neighbor base-pairs hve identical
stability. <I>FEBS Letters</I> 354: 74-78
<P>
Sugimoto N., Nakano S., Katoh M., Matsumura
A., Nakamuta H., Ohmichi T., Yoneyama M., Sasaki M. (1995). Thermodynamic parameters
to predict stability of RNA/DNA hybrid duplexes. <I>Biochemistry</I> 34: 11211-11216
<P>
Sugimoto N., Nakano S., Yoneyama M., Honda K. (1996). Improved thermodynamic
parameters and helix initiation factor to predict stability of DNA duplexes.
<I>Nuc Acids Res</I> 24: 4501-4505
<P>
Watkins N.E., Santalucia J. Jr. (2005). Nearest-neighbor thermodynamics of deoxyinosine
pairs in DNA duplexes. <I>Nucleic Acids Research</I> 33: 6258-6267
<P>
Wright D.J., Rice J.L., Yanker D.M., Znosko B.M. (2007). Nearest neighbor parameters for
inosine-uridine pairs in RNA duplexes. <I>Biochemistry</I> 46: 4625-4634
<P>
Xia T., SantaLucia J., Burkard M.E., Kierzek
R., Schroeder S.J., Jiao X., Cox C., Turner D.H. (1998). Thermodynamics parameters
for an expanded nearest-neighbor model for formation of RNA duplexes with
Watson-Crick base pairs. <I>Biochemistry</I> 37: 14719-14735
<P>
For review see:
<P>
SantaLucia J. (1998) A unified view of polymer, dumbbell, and oligonucleotide
DNA nearest-neighbor thermodynamics. <I>Proc Natl Acad Sci USA</I> 95: 1460-1465
<P>
SantaLucia J., Hicks Donald (2004) The Thermodynamics of DNA structural motifs.
<I>Annu. Rev. Biophys. Struct.</I> 33: 415-440
<P>
Wetmur J.G. (1991) DNA probes: applications of the principles of nucleic
acid hybridization. <I>Crit Rev Biochem Mol Biol</I> 26: 227-259
<P>
<H1><A NAME="SECTION00070000000000000000">
7 Files </A>
</H1>
<DL COMPACT>
<DT><I>*.nn</I></DT>
<DD>Files containing the nearest-neighbor parameters, enthalpy and entropy,
for each Crick's pair. They have to be placed in a directory defined during
the compilation or targeted by the environment variable NN_PATH.
</DD>
<DT><I>tkmelting.pl</I></DT>
<DD>A Graphical User Interface written in perl/tk is available for users
who prefer the 'button and menu' approach.
</DD>
<DT><I>*.pl</I></DT>
<DD>Scripts are available to
use <SMALL>MELTING</SMALL> iteratively. For instance, the script multi.pl permits to predict
the Tm of several duplexes in one shot. The script profil.pl allow
an interactive computation along a sequence, by sliding a window of specified width.
<P>
</DD>
</DL>
<P>
<H1><A NAME="SECTION00080000000000000000">
8 See Also </A>
</H1>
New versions and
related material can be found at <TT><A NAME="tex2html4"
HREF="http://www.ebi.ac.uk/~lenov/meltinghome.html">http://www.ebi.ac.uk/~lenov/meltinghome.html</A></TT>
and at <TT><A HREF= "https://sourceforge.net/projects/melting/">https://sourceforge.net/projects/melting/</A></TT>
<P>
You can use <SMALL>MELTING</SMALL> through a web server at <TT><A NAME="tex2html5"
HREF="http://bioweb.pasteur.fr/seqana
l/interfaces/melting.html">http://bioweb.pasteur.fr/seqana
l/interfaces/melting.html</A></TT>
<P>
<H1><A NAME="SECTION00090000000000000000">
9 Known Bugs </A>
</H1>
The infiles have to be ended by a blank line because otherwise the last line is not decoded.
<P>
If an infile is called, containing the
address of another input file, it does not care of this latter. If it
is its own address, the program quit (is it a bug or a feature?).
<P>
In interactive mode, a sequence can be entered on several lines with a backslash
<BR><TT>AGCGACGAGCTAGCCTA\
<BR>
AGGACCTATACGAC</TT>
<BR>
If by mistake it is entered as
<BR><TT>AGCGACGAGCTAGCCTA\AGGACCTATACGAC</TT>
<P>
The backslash will be considered
as an illegal character. Here again, I do not think it is actually a bug
(even if it is unlikely, there is a small probability that the backslash
could actually be a mistyped base).
<P>
<H1><A NAME="SECTION000100000000000000000">
10 Copyright </A>
</H1>
Melting is copyright
©1997, 2009 by Nicolas Le Novère and Marine Dumousseau
<P>
This program is free software;
you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version
2 of the License, or (at your option) any later version.
This program
is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.
<P>
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
<P>
<H1><A NAME="SECTION000110000000000000000">
11 Acknowledgements</A>
</H1>
Nicolas Joly is an efficient and kind debugger and advisor. Catherine
Letondal wrote the HTML interface to melting. Thanks to Nirav Merchant,
Taejoon Kwon, Leo Schalkwyk, Mauro Petrillo, Andrew Thompson, Wong Chee Hong, Ivano
Zara for their bug fixes and comments. Thanks to Richard Owczarzy for his
magnesium correction. Thanks to Charles Plessy for the graphical interface files..
Finally thanks to the usenet helpers, particularly Olivier Dehon and Nicolas Chuche.
<P>
<H1><A NAME="SECTION000120000000000000000">
12 Authors </A>
</H1>
Nicolas Le Novère and Marine Dumousseau,
<BR>
EMBL-EBI,
<BR>
Wellcome-Trust Genome Campus
<BR>
Hinxton Cambridge, CB10 1SD, UK
<BR>
lenov@ebi.ac.uk
<BR>
<P>
<H1><A NAME="SECTION000130000000000000000">
13 History </A>
</H1>
<P>
See the file ChangeLog for the changes of the versions 4 and more recent.
</BODY>
</HTML>
|