1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
|
/* crc32c.c -- compute CRC-32C using the Intel crc32 instruction
* Copyright (C) 2013, 2015, 2021 Mark Adler
* Version 1.4 31 May 2021 Mark Adler
*/
/*
This software is provided 'as-is', without any express or implied
warranty. In no event will the author be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
Mark Adler
madler@alumni.caltech.edu
*/
/* Use hardware CRC instruction on Intel SSE 4.2 processors. This computes a
CRC-32C, *not* the CRC-32 used by Ethernet and zip, gzip, etc. A software
version is provided as a fall-back, as well as for speed comparisons. */
/* Version history:
1.0 10 Feb 2013 First version
1.1 1 Aug 2013 Correct comments on why three crc instructions in parallel
1.2 1 Nov 2015 Add const qualifier to avoid compiler warning
Load entire input into memory (test code)
Argument gives number of times to repeat (test code)
Argument < 0 forces software implementation (test code)
1.3 31 Dec 2015 Check for Intel architecture using compiler macro
Support big-endian processors in software calculation
Add header for external use
1.4 31 May 2021 Correct register constraints on assembly instructions
*/
#include <pthread.h>
#include "crc32c.h"
crc_func crc32c;
/* CRC-32C (iSCSI) polynomial in reversed bit order. */
#define POLY 0x82f63b78
uint32_t crc32c_sw_little(uint32_t crc, void const *buf, size_t len);
uint32_t crc32c_sw_big(uint32_t crc, void const *buf, size_t len);
#ifdef __x86_64__
/* Hardware CRC-32C for Intel and compatible processors. */
/* Multiply a matrix times a vector over the Galois field of two elements,
GF(2). Each element is a bit in an unsigned integer. mat must have at
least as many entries as the power of two for most significant one bit in
vec. */
static inline uint32_t gf2_matrix_times(uint32_t *mat, uint32_t vec) {
uint32_t sum = 0;
while (vec) {
if (vec & 1)
sum ^= *mat;
vec >>= 1;
mat++;
}
return sum;
}
/* Multiply a matrix by itself over GF(2). Both mat and square must have 32
rows. */
static inline void gf2_matrix_square(uint32_t *square, uint32_t *mat) {
for (unsigned n = 0; n < 32; n++)
square[n] = gf2_matrix_times(mat, mat[n]);
}
/* Construct an operator to apply len zeros to a crc. len must be a power of
two. If len is not a power of two, then the result is the same as for the
largest power of two less than len. The result for len == 0 is the same as
for len == 1. A version of this routine could be easily written for any
len, but that is not needed for this application. */
static void crc32c_zeros_op(uint32_t *even, size_t len) {
uint32_t odd[32]; /* odd-power-of-two zeros operator */
/* put operator for one zero bit in odd */
odd[0] = POLY; /* CRC-32C polynomial */
uint32_t row = 1;
for (unsigned n = 1; n < 32; n++) {
odd[n] = row;
row <<= 1;
}
/* put operator for two zero bits in even */
gf2_matrix_square(even, odd);
/* put operator for four zero bits in odd */
gf2_matrix_square(odd, even);
/* first square will put the operator for one zero byte (eight zero bits),
in even -- next square puts operator for two zero bytes in odd, and so
on, until len has been rotated down to zero */
do {
gf2_matrix_square(even, odd);
len >>= 1;
if (len == 0)
return;
gf2_matrix_square(odd, even);
len >>= 1;
} while (len);
/* answer ended up in odd -- copy to even */
for (unsigned n = 0; n < 32; n++)
even[n] = odd[n];
}
/* Take a length and build four lookup tables for applying the zeros operator
for that length, byte-by-byte on the operand. */
static void crc32c_zeros(uint32_t zeros[][256], size_t len) {
uint32_t op[32];
crc32c_zeros_op(op, len);
for (unsigned n = 0; n < 256; n++) {
zeros[0][n] = gf2_matrix_times(op, n);
zeros[1][n] = gf2_matrix_times(op, n << 8);
zeros[2][n] = gf2_matrix_times(op, n << 16);
zeros[3][n] = gf2_matrix_times(op, n << 24);
}
}
/* Apply the zeros operator table to crc. */
static inline uint32_t crc32c_shift(uint32_t zeros[][256], uint32_t crc) {
return zeros[0][crc & 0xff] ^ zeros[1][(crc >> 8) & 0xff] ^
zeros[2][(crc >> 16) & 0xff] ^ zeros[3][crc >> 24];
}
/* Block sizes for three-way parallel crc computation. LONG and SHORT must
both be powers of two. The associated string constants must be set
accordingly, for use in constructing the assembler instructions. */
#define LONG 8192
#define LONGx1 "8192"
#define LONGx2 "16384"
#define SHORT 256
#define SHORTx1 "256"
#define SHORTx2 "512"
/* Tables for hardware crc that shift a crc by LONG and SHORT zeros. */
static pthread_once_t crc32c_once_hw = PTHREAD_ONCE_INIT;
static uint32_t crc32c_long[4][256];
static uint32_t crc32c_short[4][256];
/* Initialize tables for shifting crcs. */
static void crc32c_init_hw(void) {
crc32c_zeros(crc32c_long, LONG);
crc32c_zeros(crc32c_short, SHORT);
}
/* Compute CRC-32C using the Intel hardware instruction. */
static uint32_t crc32c_hw(uint32_t crc, void const *buf, size_t len) {
/* populate shift tables the first time through */
pthread_once(&crc32c_once_hw, crc32c_init_hw);
/* pre-process the crc */
crc = ~crc;
uint64_t crc0 = crc; /* 64-bits for crc32q instruction */
/* compute the crc for up to seven leading bytes to bring the data pointer
to an eight-byte boundary */
unsigned char const *next = buf;
while (len && ((uintptr_t)next & 7) != 0) {
__asm__("crc32b\t" "(%1), %0"
: "+r"(crc0)
: "r"(next), "m"(*next));
next++;
len--;
}
/* compute the crc on sets of LONG*3 bytes, executing three independent crc
instructions, each on LONG bytes -- this is optimized for the Nehalem,
Westmere, Sandy Bridge, and Ivy Bridge architectures, which have a
throughput of one crc per cycle, but a latency of three cycles */
while (len >= LONG*3) {
uint64_t crc1 = 0;
uint64_t crc2 = 0;
unsigned char const * const end = next + LONG;
do {
__asm__("crc32q\t" "(%3), %0\n\t"
"crc32q\t" LONGx1 "(%3), %1\n\t"
"crc32q\t" LONGx2 "(%3), %2"
: "+r"(crc0), "+r"(crc1), "+r"(crc2)
: "r"(next), "m"(*next));
next += 8;
} while (next < end);
crc0 = crc32c_shift(crc32c_long, crc0) ^ crc1;
crc0 = crc32c_shift(crc32c_long, crc0) ^ crc2;
next += LONG*2;
len -= LONG*3;
}
/* do the same thing, but now on SHORT*3 blocks for the remaining data less
than a LONG*3 block */
while (len >= SHORT*3) {
uint64_t crc1 = 0;
uint64_t crc2 = 0;
unsigned char const * const end = next + SHORT;
do {
__asm__("crc32q\t" "(%3), %0\n\t"
"crc32q\t" SHORTx1 "(%3), %1\n\t"
"crc32q\t" SHORTx2 "(%3), %2"
: "+r"(crc0), "+r"(crc1), "+r"(crc2)
: "r"(next), "m"(*next));
next += 8;
} while (next < end);
crc0 = crc32c_shift(crc32c_short, crc0) ^ crc1;
crc0 = crc32c_shift(crc32c_short, crc0) ^ crc2;
next += SHORT*2;
len -= SHORT*3;
}
/* compute the crc on the remaining eight-byte units less than a SHORT*3
block */
{
unsigned char const * const end = next + (len - (len & 7));
while (next < end) {
__asm__("crc32q\t" "(%1), %0"
: "+r"(crc0)
: "r"(next), "m"(*next));
next += 8;
}
len &= 7;
}
/* compute the crc for up to seven trailing bytes */
while (len) {
__asm__("crc32b\t" "(%1), %0"
: "+r"(crc0)
: "r"(next), "m"(*next));
next++;
len--;
}
/* return a post-processed crc */
return ~crc0;
}
/* Check for SSE 4.2. SSE 4.2 was first supported in Nehalem processors
introduced in November, 2008. This does not check for the existence of the
cpuid instruction itself, which was introduced on the 486SL in 1992, so this
will fail on earlier x86 processors. cpuid works on all Pentium and later
processors. */
#define SSE42(have) \
do { \
uint32_t eax, ecx; \
eax = 1; \
__asm__("cpuid" \
: "=c"(ecx) \
: "a"(eax) \
: "%ebx", "%edx"); \
(have) = (ecx >> 20) & 1; \
} while (0)
/* Compute a CRC-32C. If the crc32 instruction is available, use the hardware
version. Otherwise, use the software version. */
void crc32c_init(void) {
int sse42;
SSE42(sse42);
if (sse42) {
crc32c = crc32c_hw;
} else {
crc32c = crc32c_sw;
}
}
#elif defined(__aarch64__) && (defined(__linux__) || defined(__APPLE__))
#if defined(__linux__) && defined(HAVE_SYS_AUX_H)
#include <sys/auxv.h>
#elif defined(__APPLE__)
#include <sys/sysctl.h>
#endif
#if defined(HWCAP_CRC32)
static inline uint32_t crc32cx(uint32_t crc, const uint64_t data)
{
asm(".arch_extension crc\n"
"crc32cx %w0, %w0, %x1" : "+r" (crc) : "r" (data));
return crc;
}
static inline uint32_t crc32cb(uint32_t crc, const uint8_t data)
{
asm(".arch_extension crc\n"
"crc32cb %w0, %w0, %w1" : "+r" (crc) : "r" (data));
return crc;
}
static uint32_t crc32c_hw(uint32_t crc, void const *buf, size_t len) {
crc = ~crc;
unsigned char const *next = buf;
while (((uintptr_t)next & 7) && len > 0) {
crc = crc32cb(crc, *(uint8_t *)next);
next++;
len--;
}
while (len >= 64) {
uint64_t *next8 = (uint64_t *)next;
crc = crc32cx(crc, next8[0]);
crc = crc32cx(crc, next8[1]);
crc = crc32cx(crc, next8[2]);
crc = crc32cx(crc, next8[3]);
crc = crc32cx(crc, next8[4]);
crc = crc32cx(crc, next8[5]);
crc = crc32cx(crc, next8[6]);
crc = crc32cx(crc, next8[7]);
next += 64;
len -= 64;
}
while (len >= 8) {
crc = crc32cx(crc, *(uint64_t *)next);
next += 8;
len -= 8;
}
while (len > 0) {
crc = crc32cb(crc, *(uint8_t *)next);
next++;
len--;
}
return ~crc;
}
void crc32c_init(void) {
#if defined(__linux__)
uint64_t auxv = getauxval(AT_HWCAP);
crc32c = crc32c_sw;
if (auxv & HWCAP_CRC32)
crc32c = crc32c_hw;
#elif defined(__APPLE__)
int armv8_crc32;
size_t size = sizeof(armv8_crc32);
if (sysctlbyname("hw.optional.armv8_crc32", &armv8_crc32, &size, NULL, 0) == 0 &&
armv8_crc32 == 1)
crc32c = crc32c_hw;
#endif
}
#else /* no hw crc32 on arm64 system supported? old compiler/libc/kernel? */
void crc32c_init(void) {
crc32c = crc32c_sw;
}
#endif
#else /* !__x86_64__i && !__aarch64__ */
void crc32c_init(void) {
crc32c = crc32c_sw;
}
#endif
/* Construct table for software CRC-32C little-endian calculation. */
static pthread_once_t crc32c_once_little = PTHREAD_ONCE_INIT;
static uint32_t crc32c_table_little[8][256];
static void crc32c_init_sw_little(void) {
for (unsigned n = 0; n < 256; n++) {
uint32_t crc = n;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc32c_table_little[0][n] = crc;
}
for (unsigned n = 0; n < 256; n++) {
uint32_t crc = crc32c_table_little[0][n];
for (unsigned k = 1; k < 8; k++) {
crc = crc32c_table_little[0][crc & 0xff] ^ (crc >> 8);
crc32c_table_little[k][n] = crc;
}
}
}
/* Compute a CRC-32C in software assuming a little-endian architecture,
constructing the required table if that hasn't already been done. */
uint32_t crc32c_sw_little(uint32_t crc, void const *buf, size_t len) {
unsigned char const *next = buf;
pthread_once(&crc32c_once_little, crc32c_init_sw_little);
crc = ~crc;
while (len && ((uintptr_t)next & 7) != 0) {
crc = crc32c_table_little[0][(crc ^ *next++) & 0xff] ^ (crc >> 8);
len--;
}
if (len >= 8) {
uint64_t crcw = crc;
do {
crcw ^= *(uint64_t const *)next;
crcw = crc32c_table_little[7][crcw & 0xff] ^
crc32c_table_little[6][(crcw >> 8) & 0xff] ^
crc32c_table_little[5][(crcw >> 16) & 0xff] ^
crc32c_table_little[4][(crcw >> 24) & 0xff] ^
crc32c_table_little[3][(crcw >> 32) & 0xff] ^
crc32c_table_little[2][(crcw >> 40) & 0xff] ^
crc32c_table_little[1][(crcw >> 48) & 0xff] ^
crc32c_table_little[0][crcw >> 56];
next += 8;
len -= 8;
} while (len >= 8);
crc = crcw;
}
while (len) {
crc = crc32c_table_little[0][(crc ^ *next++) & 0xff] ^ (crc >> 8);
len--;
}
return ~crc;
}
/* Swap the bytes in a uint64_t. (Only for big-endian.) */
#if defined(__has_builtin) || (defined(__GNUC__) && \
(__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3)))
# define swap __builtin_bswap64
#else
static inline uint64_t swap(uint64_t x) {
x = ((x << 8) & 0xff00ff00ff00ff00) | ((x >> 8) & 0xff00ff00ff00ff);
x = ((x << 16) & 0xffff0000ffff0000) | ((x >> 16) & 0xffff0000ffff);
return (x << 32) | (x >> 32);
}
#endif
/* Construct tables for software CRC-32C big-endian calculation. */
static pthread_once_t crc32c_once_big = PTHREAD_ONCE_INIT;
static uint32_t crc32c_table_big_byte[256];
static uint64_t crc32c_table_big[8][256];
static void crc32c_init_sw_big(void) {
for (unsigned n = 0; n < 256; n++) {
uint32_t crc = n;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc32c_table_big_byte[n] = crc;
}
for (unsigned n = 0; n < 256; n++) {
uint32_t crc = crc32c_table_big_byte[n];
crc32c_table_big[0][n] = swap(crc);
for (unsigned k = 1; k < 8; k++) {
crc = crc32c_table_big_byte[crc & 0xff] ^ (crc >> 8);
crc32c_table_big[k][n] = swap(crc);
}
}
}
/* Compute a CRC-32C in software assuming a big-endian architecture,
constructing the required tables if that hasn't already been done. */
uint32_t crc32c_sw_big(uint32_t crc, void const *buf, size_t len) {
unsigned char const *next = buf;
pthread_once(&crc32c_once_big, crc32c_init_sw_big);
crc = ~crc;
while (len && ((uintptr_t)next & 7) != 0) {
crc = crc32c_table_big_byte[(crc ^ *next++) & 0xff] ^ (crc >> 8);
len--;
}
if (len >= 8) {
uint64_t crcw = swap(crc);
do {
crcw ^= *(uint64_t const *)next;
crcw = crc32c_table_big[0][crcw & 0xff] ^
crc32c_table_big[1][(crcw >> 8) & 0xff] ^
crc32c_table_big[2][(crcw >> 16) & 0xff] ^
crc32c_table_big[3][(crcw >> 24) & 0xff] ^
crc32c_table_big[4][(crcw >> 32) & 0xff] ^
crc32c_table_big[5][(crcw >> 40) & 0xff] ^
crc32c_table_big[6][(crcw >> 48) & 0xff] ^
crc32c_table_big[7][(crcw >> 56)];
next += 8;
len -= 8;
} while (len >= 8);
crc = swap(crcw);
}
while (len) {
crc = crc32c_table_big_byte[(crc ^ *next++) & 0xff] ^ (crc >> 8);
len--;
}
return ~crc;
}
/* Table-driven software CRC-32C. This is about 15 times slower than using the
hardware instructions. Determine the endianess of the processor and proceed
accordingly. Ideally the endianess will be determined at compile time, in
which case the unused functions and tables for the other endianess will be
removed by the optimizer. If not, then the proper routines and tables will
be used, even if the endianess is changed mid-stream. (Yes, there are
processors that permit that -- go figure.) */
uint32_t crc32c_sw(uint32_t crc, void const *buf, size_t len) {
static int const little = 1;
if (*(char const *)&little)
return crc32c_sw_little(crc, buf, len);
else
return crc32c_sw_big(crc, buf, len);
}
|