1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
|
/* -*- Mode: C; tab-width: 4; c-basic-offset: 4; indent-tabs-mode: nil -*- */
/*
* Functions for handling the proxy layer. wraps text protocols
*
* NOTE: many lua functions generate pointers via "lua_newuserdatauv" or
* similar. Normal memory checking isn't done as lua will throw a high level
* error if malloc fails. Must keep this in mind while allocating data so any
* manually malloc'ed information gets freed properly.
*/
#include "proxy.h"
#define PROCESS_MULTIGET true
#define PROCESS_NORMAL false
#define PROXY_GC_BACKGROUND_SECONDS 4
#define PROXY_GC_DEFAULT_RATIO 2.0
static void proxy_process_command(conn *c, char *command, size_t cmdlen, bool multiget);
static void *mcp_profile_alloc(void *ud, void *ptr, size_t osize, size_t nsize);
/******** EXTERNAL FUNCTIONS ******/
// functions starting with _ are breakouts for the public functions.
static inline void _proxy_advance_lastkb(lua_State *L, LIBEVENT_THREAD *t) {
int new_kb = lua_gc(L, LUA_GCCOUNT);
// We need to slew the increase in "gc pause" because the lua GC actually
// needs to run twice to free a userdata: once to run the _gc's and again
// to actually clean up the object.
// Meaning we will continually increase in size.
if (new_kb > t->proxy_vm_last_kb) {
new_kb = t->proxy_vm_last_kb + (new_kb - t->proxy_vm_last_kb) * 0.50;
}
// remove the memory freed during this cycle so we can kick off the GC
// early if we're very aggressively making garbage.
// carry our negative delta forward so a huge reclaim can push for a
// couple cycles.
if (t->proxy_vm_negative_delta >= new_kb) {
t->proxy_vm_negative_delta -= new_kb;
new_kb = 1;
} else {
new_kb -= t->proxy_vm_negative_delta;
t->proxy_vm_negative_delta = 0;
}
t->proxy_vm_last_kb = new_kb;
}
// The lua GC is paused while running requests. Run it manually inbetween
// processing network events.
void proxy_gc_poke(LIBEVENT_THREAD *t) {
lua_State *L = t->L;
proxy_ctx_t *ctx = t->proxy_ctx;
float ratio = ctx->tunables.gc_ratio;
struct proxy_int_stats *is = t->proxy_int_stats;
int vm_kb = lua_gc(L, LUA_GCCOUNT) + t->proxy_vm_extra_kb;
WSTAT_L(t);
is->vm_memory_kb = vm_kb;
WSTAT_UL(t);
// equivalent of luagc "pause" value
int last = t->proxy_vm_last_kb;
if (t->proxy_vm_gcrunning <= 0 && vm_kb > last * ratio) {
t->proxy_vm_gcrunning = 1;
//fprintf(stderr, "PROXYGC: proxy_gc_poke START [cur: %d - last: %d - ratio: %f]\n", vm_kb, last, ratio);
}
// We configure small GC "steps" then increase the number of times we run
// a step based on current memory usage.
if (t->proxy_vm_gcrunning > 0) {
t->proxy_vm_gcpokemem = 0;
int loops = t->proxy_vm_gcrunning;
int done = 0;
/*fprintf(stderr, "PROXYGC: proxy_gc_poke [cur: %d - last: %d - loops: %d]\n",
vm_kb,
t->proxy_vm_last_kb,
loops);*/
while (loops-- && !done) {
// reset counters once full GC cycle has completed
done = lua_gc(L, LUA_GCSTEP, 0);
}
int vm_kb_after = lua_gc(L, LUA_GCCOUNT);
int vm_kb_clean = vm_kb - t->proxy_vm_extra_kb;
if (vm_kb_clean > vm_kb_after) {
// track the amount of memory freed during the GC cycle.
t->proxy_vm_negative_delta += vm_kb_clean - vm_kb_after;
}
if (done) {
_proxy_advance_lastkb(L, t);
t->proxy_vm_extra_kb = 0;
t->proxy_vm_gcrunning = 0;
WSTAT_L(t);
is->vm_gc_runs++;
WSTAT_UL(t);
//fprintf(stderr, "PROXYGC: proxy_gc_poke COMPLETE [cur: %d next: %d]\n", lua_gc(L, LUA_GCCOUNT), t->proxy_vm_last_kb);
} else if ((last*ratio) * (1 + t->proxy_vm_gcrunning*0.20) < vm_kb) {
// increase the aggressiveness by memory bloat level.
t->proxy_vm_gcrunning++;
//fprintf(stderr, "PROXYGC: proxy_gc_poke INCREASING AGGRESSIVENESS [cur: %d - aggro: %d]\n", t->proxy_vm_last_kb, t->proxy_vm_gcrunning);
}
}
}
// every couple seconds we force-run one GC step.
// this is needed until after API1 is retired and pool objects are no longer
// managed by the GC.
// We use a negative value so a "timer poke" GC run doesn't cause requests to
// suddenly aggressively run the GC.
static void proxy_gc_timerpoke(evutil_socket_t fd, short event, void *arg) {
LIBEVENT_THREAD *t = arg;
struct timeval next = { PROXY_GC_BACKGROUND_SECONDS, 0 };
evtimer_add(t->proxy_gc_timer, &next);
// if GC ran recently, don't do anything.
// also if memory changed recently, don't do anything.
int curmem = lua_gc(t->L, LUA_GCCOUNT);
if (t->proxy_vm_gcpokemem == 0 || curmem != t->proxy_vm_gcpokemem) {
t->proxy_vm_gcpokemem = curmem;
return;
}
// if we weren't told to skip and there's otherwise no GC running, start a
// GC run.
if (t->proxy_vm_gcrunning == 0) {
t->proxy_vm_gcrunning = -1;
}
// only advance GC if we're doing our own timer run.
if (t->proxy_vm_gcrunning == -1) {
if (lua_gc(t->L, LUA_GCSTEP, 0)) {
// don't advance last_kb: let the main algo decide when to run.
t->proxy_vm_gcrunning = 0;
t->proxy_vm_gcpokemem = 0;
} else {
// only continue running if memory stays where we expect it.
t->proxy_vm_gcpokemem = lua_gc(t->L, LUA_GCCOUNT);
}
}
}
bool proxy_bufmem_checkadd(LIBEVENT_THREAD *t, int len) {
bool oom = false;
pthread_mutex_lock(&t->proxy_limit_lock);
if (t->proxy_buffer_memory_used > t->proxy_buffer_memory_limit) {
oom = true;
} else {
t->proxy_buffer_memory_used += len;
}
pthread_mutex_unlock(&t->proxy_limit_lock);
return oom;
}
// see also: process_extstore_stats()
void proxy_stats(void *arg, ADD_STAT add_stats, void *c) {
if (arg == NULL) {
return;
}
proxy_ctx_t *ctx = arg;
STAT_L(ctx);
APPEND_STAT("proxy_config_reloads", "%llu", (unsigned long long)ctx->global_stats.config_reloads);
APPEND_STAT("proxy_config_reload_fails", "%llu", (unsigned long long)ctx->global_stats.config_reload_fails);
APPEND_STAT("proxy_config_cron_runs", "%llu", (unsigned long long)ctx->global_stats.config_cron_runs);
APPEND_STAT("proxy_config_cron_fails", "%llu", (unsigned long long)ctx->global_stats.config_cron_fails);
APPEND_STAT("proxy_backend_total", "%llu", (unsigned long long)ctx->global_stats.backend_total);
APPEND_STAT("proxy_backend_marked_bad", "%llu", (unsigned long long)ctx->global_stats.backend_marked_bad);
APPEND_STAT("proxy_backend_failed", "%llu", (unsigned long long)ctx->global_stats.backend_failed);
APPEND_STAT("proxy_request_failed_depth", "%llu", (unsigned long long)ctx->global_stats.request_failed_depth);
STAT_UL(ctx);
}
void process_proxy_stats(void *arg, ADD_STAT add_stats, void *c) {
char key_str[STAT_KEY_LEN];
struct proxy_int_stats istats = {0};
int64_t req_limit = 0;
uint64_t buffer_memory_limit = 0;
uint64_t buffer_memory_used = 0;
if (!arg) {
return;
}
proxy_ctx_t *ctx = arg;
STAT_L(ctx);
req_limit = ctx->active_req_limit;
buffer_memory_limit = ctx->buffer_memory_limit;
// prepare aggregated counters.
struct proxy_user_stats_entry *us = ctx->user_stats;
int stats_num = ctx->user_stats_num;
uint64_t counters[stats_num];
memset(counters, 0, sizeof(counters));
// TODO (v3): more globals to remove and/or change API method.
// aggregate worker thread counters.
for (int x = 0; x < settings.num_threads; x++) {
LIBEVENT_THREAD *t = get_worker_thread(x);
struct proxy_user_stats *tus = t->proxy_user_stats;
struct proxy_int_stats *is = t->proxy_int_stats;
WSTAT_L(t);
for (int i = 0; i < CMD_FINAL; i++) {
istats.counters[i] += is->counters[i];
}
istats.vm_gc_runs += is->vm_gc_runs;
istats.vm_memory_kb += is->vm_memory_kb;
if (tus && tus->num_stats >= stats_num) {
for (int i = 0; i < stats_num; i++) {
counters[i] += tus->counters[i];
}
}
WSTAT_UL(t);
pthread_mutex_lock(&t->proxy_limit_lock);
buffer_memory_used += t->proxy_buffer_memory_used;
pthread_mutex_unlock(&t->proxy_limit_lock);
}
// return all of the user generated stats
if (ctx->user_stats_namebuf) {
char vbuf[INCR_MAX_STORAGE_LEN];
char *e = NULL; // ptr into vbuf
const char *pfx = "user_";
const size_t pfxlen = strlen(pfx);
for (int x = 0; x < stats_num; x++) {
if (us[x].cname) {
char *name = ctx->user_stats_namebuf + us[x].cname;
size_t nlen = strlen(name);
if (nlen > STAT_KEY_LEN-6) {
// impossible, but for paranoia.
nlen = STAT_KEY_LEN-6;
}
// avoiding an snprintf call for some performance ("user_%s")
memcpy(key_str, pfx, pfxlen);
memcpy(key_str+pfxlen, name, nlen);
key_str[pfxlen+nlen] = '\0';
// APPEND_STAT() calls another snprintf, which calls our
// add_stats argument. Lets skip yet another snprintf with
// some unrolling.
e = itoa_u64(counters[x], vbuf);
*(e+1) = '\0';
add_stats(key_str, pfxlen+nlen, vbuf, e-vbuf, c);
}
}
}
STAT_UL(ctx);
if (buffer_memory_limit == UINT64_MAX) {
buffer_memory_limit = 0;
} else {
buffer_memory_limit *= settings.num_threads;
}
if (req_limit == INT64_MAX) {
req_limit = 0;
} else {
req_limit *= settings.num_threads;
}
// return proxy counters
APPEND_STAT("active_req_limit", "%lld", (long long int)req_limit);
APPEND_STAT("buffer_memory_limit", "%llu", (unsigned long long)buffer_memory_limit);
APPEND_STAT("buffer_memory_used", "%llu", (unsigned long long)buffer_memory_used);
APPEND_STAT("vm_gc_runs", "%llu", (unsigned long long)istats.vm_gc_runs);
APPEND_STAT("vm_memory_kb", "%llu", (unsigned long long)istats.vm_memory_kb);
APPEND_STAT("cmd_mg", "%llu", (unsigned long long)istats.counters[CMD_MG]);
APPEND_STAT("cmd_ms", "%llu", (unsigned long long)istats.counters[CMD_MS]);
APPEND_STAT("cmd_md", "%llu", (unsigned long long)istats.counters[CMD_MD]);
APPEND_STAT("cmd_mn", "%llu", (unsigned long long)istats.counters[CMD_MN]);
APPEND_STAT("cmd_ma", "%llu", (unsigned long long)istats.counters[CMD_MA]);
APPEND_STAT("cmd_me", "%llu", (unsigned long long)istats.counters[CMD_ME]);
APPEND_STAT("cmd_get", "%llu", (unsigned long long)istats.counters[CMD_GET]);
APPEND_STAT("cmd_gat", "%llu", (unsigned long long)istats.counters[CMD_GAT]);
APPEND_STAT("cmd_set", "%llu", (unsigned long long)istats.counters[CMD_SET]);
APPEND_STAT("cmd_add", "%llu", (unsigned long long)istats.counters[CMD_ADD]);
APPEND_STAT("cmd_cas", "%llu", (unsigned long long)istats.counters[CMD_CAS]);
APPEND_STAT("cmd_gets", "%llu", (unsigned long long)istats.counters[CMD_GETS]);
APPEND_STAT("cmd_gats", "%llu", (unsigned long long)istats.counters[CMD_GATS]);
APPEND_STAT("cmd_incr", "%llu", (unsigned long long)istats.counters[CMD_INCR]);
APPEND_STAT("cmd_decr", "%llu", (unsigned long long)istats.counters[CMD_DECR]);
APPEND_STAT("cmd_touch", "%llu", (unsigned long long)istats.counters[CMD_TOUCH]);
APPEND_STAT("cmd_append", "%llu", (unsigned long long)istats.counters[CMD_APPEND]);
APPEND_STAT("cmd_prepend", "%llu", (unsigned long long)istats.counters[CMD_PREPEND]);
APPEND_STAT("cmd_delete", "%llu", (unsigned long long)istats.counters[CMD_DELETE]);
APPEND_STAT("cmd_replace", "%llu", (unsigned long long)istats.counters[CMD_REPLACE]);
}
void process_proxy_funcstats(void *arg, ADD_STAT add_stats, void *c) {
char key_str[STAT_KEY_LEN];
if (!arg) {
return;
}
proxy_ctx_t *ctx = arg;
lua_State *L = ctx->proxy_sharedvm;
pthread_mutex_lock(&ctx->sharedvm_lock);
// iterate all of the named function slots
lua_pushnil(L);
while (lua_next(L, SHAREDVM_FGEN_IDX) != 0) {
int n = lua_tointeger(L, -1);
lua_pop(L, 1); // drop the value, leave the key.
if (n != 0) {
// reuse the key. make a copy since rawget will pop it.
lua_pushvalue(L, -1);
lua_rawget(L, SHAREDVM_FGENSLOT_IDX);
int slots = lua_tointeger(L, -1);
lua_pop(L, 1); // drop the slot count.
// now grab the name key.
const char *name = lua_tostring(L, -1);
snprintf(key_str, STAT_KEY_LEN-1, "funcs_%s", name);
APPEND_STAT(key_str, "%d", n);
snprintf(key_str, STAT_KEY_LEN-1, "slots_%s", name);
APPEND_STAT(key_str, "%d", slots);
} else {
// TODO: It is safe to delete keys here. Slightly complex so low
// priority.
}
}
pthread_mutex_unlock(&ctx->sharedvm_lock);
}
void process_proxy_bestats(void *arg, ADD_STAT add_stats, void *c) {
char key_str[STAT_KEY_LEN];
if (!arg) {
return;
}
proxy_ctx_t *ctx = arg;
lua_State *L = ctx->proxy_sharedvm;
pthread_mutex_lock(&ctx->sharedvm_lock);
// iterate all of the listed backends
lua_pushnil(L);
while (lua_next(L, SHAREDVM_BACKEND_IDX) != 0) {
int n = lua_tointeger(L, -1);
lua_pop(L, 1); // drop the value, leave the key.
if (n != 0) {
// now grab the name key.
const char *name = lua_tostring(L, -1);
snprintf(key_str, STAT_KEY_LEN-1, "bad_%s", name);
APPEND_STAT(key_str, "%d", n);
} else {
// delete keys of backends that are no longer bad or no longer
// exist to keep the table small.
const char *name = lua_tostring(L, -1);
lua_pushnil(L);
lua_setfield(L, SHAREDVM_BACKEND_IDX, name);
}
}
pthread_mutex_unlock(&ctx->sharedvm_lock);
}
// start the centralized lua state and config thread.
void *proxy_init(bool use_uring, bool proxy_memprofile) {
proxy_ctx_t *ctx = calloc(1, sizeof(proxy_ctx_t));
ctx->use_uring = use_uring;
ctx->memprofile = proxy_memprofile;
pthread_mutex_init(&ctx->config_lock, NULL);
pthread_cond_init(&ctx->config_cond, NULL);
pthread_mutex_init(&ctx->worker_lock, NULL);
pthread_cond_init(&ctx->worker_cond, NULL);
pthread_mutex_init(&ctx->manager_lock, NULL);
pthread_cond_init(&ctx->manager_cond, NULL);
pthread_mutex_init(&ctx->stats_lock, NULL);
ctx->active_req_limit = INT64_MAX;
ctx->buffer_memory_limit = UINT64_MAX;
// FIXME (v2): default defines.
ctx->tunables.tcp_keepalive = false;
ctx->tunables.backend_failure_limit = 3;
ctx->tunables.connect.tv_sec = 5;
ctx->tunables.retry.tv_sec = 3;
ctx->tunables.read.tv_sec = 3;
ctx->tunables.flap_backoff_ramp = 1.5;
ctx->tunables.flap_backoff_max = 3600;
ctx->tunables.gc_ratio = PROXY_GC_DEFAULT_RATIO;
ctx->tunables.backend_depth_limit = 0;
ctx->tunables.max_ustats = MAX_USTATS_DEFAULT;
ctx->tunables.use_iothread = false;
ctx->tunables.use_tls = false;
STAILQ_INIT(&ctx->manager_head);
lua_State *L = NULL;
if (ctx->memprofile) {
struct mcp_memprofile *prof = calloc(1, sizeof(struct mcp_memprofile));
prof->id = ctx->memprofile_thread_counter++;
L = lua_newstate(mcp_profile_alloc, prof);
} else {
L = luaL_newstate();
}
ctx->proxy_state = L;
luaL_openlibs(L);
// NOTE: might need to differentiate the libs yes?
proxy_register_libs(ctx, NULL, L);
// Create the cron table.
lua_newtable(L);
ctx->cron_ref = luaL_ref(L, LUA_REGISTRYINDEX);
ctx->cron_next = INT_MAX;
// set up the shared state VM. Used by short-lock events (counters/state)
// for global visibility.
pthread_mutex_init(&ctx->sharedvm_lock, NULL);
ctx->proxy_sharedvm = luaL_newstate();
luaL_openlibs(ctx->proxy_sharedvm);
// we keep info tables in the top level stack so we don't have to
// constantly fetch them from registry.
lua_newtable(ctx->proxy_sharedvm); // fgen count
lua_newtable(ctx->proxy_sharedvm); // fgen slot count
lua_newtable(ctx->proxy_sharedvm); // backend down status
// Create/start the IO thread, which we need before servers
// start getting created.
proxy_event_thread_t *t = calloc(1, sizeof(proxy_event_thread_t));
ctx->proxy_io_thread = t;
proxy_init_event_thread(t, ctx, NULL);
pthread_create(&t->thread_id, NULL, proxy_event_thread, t);
thread_setname(t->thread_id, "mc-prx-io");
_start_proxy_config_threads(ctx);
return ctx;
}
// Initialize the VM for an individual worker thread.
void proxy_thread_init(void *ctx, LIBEVENT_THREAD *thr) {
assert(ctx != NULL);
assert(thr != NULL);
// Create the hook table.
thr->proxy_hooks = calloc(CMD_SIZE, sizeof(struct proxy_hook));
if (thr->proxy_hooks == NULL) {
fprintf(stderr, "Failed to allocate proxy hooks\n");
exit(EXIT_FAILURE);
}
thr->proxy_int_stats = calloc(1, sizeof(struct proxy_int_stats));
if (thr->proxy_int_stats == NULL) {
fprintf(stderr, "Failed to allocate proxy thread stats\n");
exit(EXIT_FAILURE);
}
pthread_mutex_init(&thr->proxy_limit_lock, NULL);
thr->proxy_ctx = ctx;
// Initialize the lua state.
proxy_ctx_t *pctx = ctx;
lua_State *L = NULL;
if (pctx->memprofile) {
struct mcp_memprofile *prof = calloc(1, sizeof(struct mcp_memprofile));
prof->id = pctx->memprofile_thread_counter++;
L = lua_newstate(mcp_profile_alloc, prof);
} else {
L = luaL_newstate();
}
// With smaller requests the default incremental collector appears to
// never complete. With this simple tuning (def-1, def, def) it seems
// fine.
// We can't use GCGEN until we manage pools with reference counting, as
// they may never hit GC and thus never release their connection
// resources.
lua_gc(L, LUA_GCINC, 199, 100, 12);
lua_gc(L, LUA_GCSTOP); // handle GC on our own schedule.
thr->L = L;
luaL_openlibs(L);
proxy_register_libs(ctx, thr, L);
// TODO: srand on time? do we need to bother?
for (int x = 0; x < 3; x++) {
thr->proxy_rng[x] = rand();
}
// init our internal GC checker.
thr->proxy_vm_last_kb = lua_gc(L, LUA_GCCOUNT);
assert(thr->proxy_vm_last_kb != 0);
thr->proxy_gc_timer = evtimer_new(thr->base, proxy_gc_timerpoke, thr);
// kick off the timer loop.
proxy_gc_timerpoke(0, 0, thr);
// Create a proxy event thread structure to piggyback on the worker.
proxy_event_thread_t *t = calloc(1, sizeof(proxy_event_thread_t));
thr->proxy_event_thread = t;
proxy_init_event_thread(t, ctx, thr->base);
}
void proxy_submit_cb(io_queue_t *q) {
proxy_event_thread_t *e = ((proxy_ctx_t *)q->ctx)->proxy_io_thread;
iop_head_t head;
be_head_t w_head; // worker local stack.
STAILQ_INIT(&head);
STAILQ_INIT(&w_head);
while (!STAILQ_EMPTY(&q->stack)) {
mcp_backend_t *be;
io_pending_proxy_t *p = (io_pending_proxy_t *)STAILQ_FIRST(&q->stack);
STAILQ_REMOVE_HEAD(&q->stack, iop_next);
P_DEBUG("%s: queueing req for backend: %p\n", __func__, (void *)p);
if (p->background) {
P_DEBUG("%s: fast-returning background object: %p\n", __func__, (void *)p);
assert(p->backend == NULL);
// must not resume requests inline here but they can be scheduled
// to run drive_machine() later.
conn_io_queue_return((io_pending_t *)p);
continue;
}
be = p->backend;
if (be->use_io_thread) {
STAILQ_INSERT_TAIL(&head, (io_pending_t *)p, iop_next);
} else {
// emulate some of handler_dequeue()
STAILQ_INSERT_TAIL(&be->iop_head, (io_pending_t *)p, iop_next);
assert(be->depth > -1);
be->depth++;
if (!be->stacked) {
be->stacked = true;
STAILQ_INSERT_TAIL(&w_head, be, be_next);
}
}
}
// q->stack must now be empty, so we can submit new IO's while handling
// the existing ones.
if (!STAILQ_EMPTY(&head)) {
bool do_notify = false;
P_DEBUG("%s: submitting queue to IO thread\n", __func__);
// Transfer request stack to event thread.
pthread_mutex_lock(&e->mutex);
if (STAILQ_EMPTY(&e->iop_head_in)) {
do_notify = true;
}
STAILQ_CONCAT(&e->iop_head_in, &head);
// No point in holding the lock since we're not doing a cond signal.
pthread_mutex_unlock(&e->mutex);
if (do_notify) {
// Signal to check queue.
#ifdef USE_EVENTFD
uint64_t u = 1;
// TODO (v2): check result? is it ever possible to get a short write/failure
// for an eventfd?
if (write(e->event_fd, &u, sizeof(uint64_t)) != sizeof(uint64_t)) {
assert(1 == 0);
}
#else
if (write(e->notify_send_fd, "w", 1) <= 0) {
assert(1 == 0);
}
#endif
}
}
if (!STAILQ_EMPTY(&w_head)) {
P_DEBUG("%s: running inline worker queue\n", __func__);
// emulating proxy_event_handler
proxy_run_backend_queue(&w_head);
}
return;
}
// This function handles return processing for the "old style" API:
// currently just `mcp.internal()`
void proxy_return_rctx_cb(io_pending_t *pending) {
io_pending_proxy_t *p = (io_pending_proxy_t *)pending;
if (p->client_resp && p->client_resp->blen) {
// FIXME: workaround for buffer memory being external to objects.
// can't run 0 since that means something special (run the GC)
unsigned int kb = p->client_resp->blen / 1000;
p->thread->proxy_vm_extra_kb += kb > 0 ? kb : 1;
}
mcp_rcontext_t *rctx = p->rctx;
lua_rotate(rctx->Lc, 1, 1);
lua_settop(rctx->Lc, 1);
// hold the resp for a minute.
mc_resp *resp = rctx->resp;
proxy_run_rcontext(rctx);
if (p->io_sub_type != IO_PENDING_TYPE_EXTSTORE) {
// if we're doing an extstore subrequest, the iop needs to live until
// resp's ->finish_cb is called.
resp->io_pending = NULL;
do_cache_free(p->thread->io_cache, p);
}
}
// This is called if resp_finish is called while an iop exists on the
// resp.
// so we need to release our iop and rctx.
// - This can't happen unless we're doing extstore fetches.
// - the request context is freed before connection processing resumes.
void proxy_finalize_rctx_cb(io_pending_t *pending) {
io_pending_proxy_t *p = (io_pending_proxy_t *)pending;
// TODO: need to remove from stack if subtype is p->active
if (p->io_sub_type == IO_PENDING_TYPE_EXTSTORE) {
assert(p->active == false);
if (p->hdr_it) {
// TODO: lock once, worst case this hashes/locks twice.
if (p->miss) {
item_unlink(p->hdr_it);
}
item_remove(p->hdr_it);
}
}
}
int try_read_command_proxy(conn *c) {
char *el, *cont;
if (c->rbytes == 0)
return 0;
el = memchr(c->rcurr, '\n', c->rbytes);
if (!el) {
if (c->rbytes > 1024) {
/*
* We didn't have a '\n' in the first k. This _has_ to be a
* large multiget, if not we should just nuke the connection.
*/
char *ptr = c->rcurr;
while (*ptr == ' ') { /* ignore leading whitespaces */
++ptr;
}
if (ptr - c->rcurr > 100 ||
(strncmp(ptr, "get ", 4) && strncmp(ptr, "gets ", 5))) {
conn_set_state(c, conn_closing);
return 1;
}
// ASCII multigets are unbound, so our fixed size rbuf may not
// work for this particular workload... For backcompat we'll use a
// malloc/realloc/free routine just for this.
if (!c->rbuf_malloced) {
if (!rbuf_switch_to_malloc(c)) {
conn_set_state(c, conn_closing);
return 1;
}
}
}
return 0;
}
cont = el + 1;
assert(cont <= (c->rcurr + c->rbytes));
c->last_cmd_time = current_time;
proxy_process_command(c, c->rcurr, cont - c->rcurr, PROCESS_NORMAL);
c->rbytes -= (cont - c->rcurr);
c->rcurr = cont;
assert(c->rcurr <= (c->rbuf + c->rsize));
return 1;
}
// Called when a connection is closed while in nread state reading a set
// Must only be called with an active coroutine.
void proxy_cleanup_conn(conn *c) {
assert(c->proxy_rctx);
mcp_rcontext_t *rctx = c->proxy_rctx;
assert(rctx->pending_reqs == 1);
rctx->pending_reqs = 0;
mcp_funcgen_return_rctx(rctx);
c->proxy_rctx = NULL;
}
// we buffered a SET of some kind.
void complete_nread_proxy(conn *c) {
assert(c != NULL);
LIBEVENT_THREAD *thr = c->thread;
lua_State *L = thr->L;
if (c->proxy_rctx == NULL) {
complete_nread_ascii(c);
return;
}
conn_set_state(c, conn_new_cmd);
assert(c->proxy_rctx);
mcp_rcontext_t *rctx = c->proxy_rctx;
c->proxy_rctx = NULL;
mcp_request_t *rq = rctx->request;
if (strncmp((char *)c->item + rq->pr.vlen - 2, "\r\n", 2) != 0) {
lua_settop(L, 0); // clear anything remaining on the main thread.
// FIXME (v2): need to set noreply false if mset_res, but that's kind
// of a weird hack to begin with. Evaluate how to best do that here.
out_string(c, "CLIENT_ERROR bad data chunk");
rctx->pending_reqs--;
mcp_funcgen_return_rctx(rctx);
return;
}
// We move ownership of the c->item buffer from the connection to the
// request object here. Else we can double free if the conn closes while
// inside nread.
rq->pr.vbuf = c->item;
c->item = NULL;
c->item_malloced = false;
pthread_mutex_lock(&thr->proxy_limit_lock);
thr->proxy_buffer_memory_used += rq->pr.vlen;
pthread_mutex_unlock(&thr->proxy_limit_lock);
conn_resp_suspend(rctx->c, rctx->resp);
proxy_run_rcontext(rctx);
lua_settop(L, 0); // clear anything remaining on the main thread.
return;
}
// Simple error wrapper for common failures.
// lua_error() is a jump so this function never returns
// for clarity add a 'return' after calls to this.
void proxy_lua_error(lua_State *L, const char *s) {
lua_pushstring(L, s);
lua_error(L);
}
// Need a custom function so we can prefix lua strings easily.
void proxy_out_errstring(mc_resp *resp, char *type, const char *str) {
size_t len;
size_t prefix_len = strlen(type);
assert(resp != NULL);
resp_reset(resp);
// avoid noreply since we're throwing important errors.
// Fill response object with static string.
len = strlen(str);
if ((len + prefix_len + 2) > WRITE_BUFFER_SIZE) {
/* ought to be always enough. just fail for simplicity */
str = "SERVER_ERROR output line too long";
len = strlen(str);
}
char *w = resp->wbuf;
memcpy(w, type, prefix_len);
w += prefix_len;
memcpy(w, str, len);
w += len;
memcpy(w, "\r\n", 2);
resp_add_iov(resp, resp->wbuf, len + prefix_len + 2);
return;
}
// NOTE: See notes in mcp_queue_io; the secondary problem with setting the
// noreply mode from the response object is that the proxy can return strings
// manually, so we have no way to obey what the original request wanted in
// that case.
static void _set_noreply_mode(mc_resp *resp, mcp_resp_t *r) {
switch (r->mode) {
case RESP_MODE_NORMAL:
break;
case RESP_MODE_NOREPLY:
// ascii noreply only threw egregious errors to client
if (r->status == MCMC_OK) {
resp->skip = true;
}
break;
case RESP_MODE_METAQUIET:
if (r->resp.code == MCMC_CODE_END) {
resp->skip = true;
} else if (r->cmd != CMD_MG && r->resp.code == MCMC_CODE_OK) {
// FIXME (v2): mcmc's parser needs to help us out a bit more
// here.
// This is a broken case in the protocol though; quiet mode
// ignores HD for mutations but not get.
resp->skip = true;
}
break;
default:
assert(1 == 0);
}
}
static void _proxy_run_rcontext_queues(mcp_rcontext_t *rctx) {
for (int x = 0; x < rctx->fgen->max_queues; x++) {
mcp_run_rcontext_handle(rctx, x);
}
}
static void _proxy_run_tresp_to_resp(mc_resp *tresp, mc_resp *resp) {
// The internal cache handler has created a resp we want to swap in
// here. It would be fastest to swap *resp's position in the
// link but if the set is deep this would instead be slow, so
// we copy over details from this temporary resp instead.
// So far all we fill is the wbuf and some iov's? so just copy
// that + the UDP info?
memcpy(resp->wbuf, tresp->wbuf, tresp->iov[0].iov_len);
resp->tosend = 0;
for (int x = 0; x < tresp->iovcnt; x++) {
resp->iov[x] = tresp->iov[x];
resp->tosend += tresp->iov[x].iov_len;
}
// resp->iov[x].iov_base needs to be updated if it's
// pointing within its wbuf.
// FIXME: This is too fragile. we need to be able to
// inherit details and swap resp objects around.
if (tresp->iov[0].iov_base == tresp->wbuf) {
resp->iov[0].iov_base = resp->wbuf;
}
resp->iovcnt = tresp->iovcnt;
resp->chunked_total = tresp->chunked_total;
resp->chunked_data_iov = tresp->chunked_data_iov;
// copy UDP headers...
resp->request_id = tresp->request_id;
resp->udp_sequence = tresp->udp_sequence;
resp->udp_total = tresp->udp_total;
resp->request_addr = tresp->request_addr;
resp->request_addr_size = tresp->request_addr_size;
resp->item = tresp->item; // will be populated if not extstore fetch
tresp->item = NULL; // move ownership of the item to resp from tresp
resp->skip = tresp->skip;
}
int proxy_run_rcontext(mcp_rcontext_t *rctx) {
int nresults = 0;
lua_State *Lc = rctx->Lc;
assert(rctx->lua_narg != 0);
int cores = lua_resume(Lc, NULL, rctx->lua_narg, &nresults);
rctx->lua_narg = 1; // reset to default since not-default is uncommon.
size_t rlen = 0;
mc_resp *resp = rctx->resp;
if (cores == LUA_OK) {
// don't touch the result object if we were a sub-context.
if (!rctx->parent) {
int type = lua_type(Lc, 1);
mcp_resp_t *r = NULL;
P_DEBUG("%s: coroutine completed. return type: %d\n", __func__, type);
if (type == LUA_TUSERDATA && (r = luaL_testudata(Lc, 1, "mcp.response")) != NULL) {
_set_noreply_mode(resp, r);
if (r->status != MCMC_OK && r->resp.type != MCMC_RESP_ERRMSG) {
proxy_out_errstring(resp, PROXY_SERVER_ERROR, "backend failure");
} else if (r->cresp) {
mc_resp *tresp = r->cresp;
_proxy_run_tresp_to_resp(tresp, resp);
// hand off ownership of the result buffer if we were an
// extstore fetch.
if (!resp->item) {
resp->write_and_free = r->buf;
r->buf = NULL;
}
// we let the mcp_resp gc handler free up tresp and any
// associated io_pending's of its own later.
} else if (r->buf) {
// response set from C.
resp->write_and_free = r->buf;
resp_add_iov(resp, r->buf, r->blen);
// stash the length to later remove from memory tracking
resp->wbytes = r->blen + r->extra;
resp->proxy_res = true;
r->buf = NULL;
} else {
// Empty response: used for ascii multiget emulation.
}
} else if (type == LUA_TSTRING) {
// response is a raw string from lua.
const char *s = lua_tolstring(Lc, 1, &rlen);
size_t l = rlen > WRITE_BUFFER_SIZE ? WRITE_BUFFER_SIZE : rlen;
memcpy(resp->wbuf, s, l);
resp_add_iov(resp, resp->wbuf, l);
lua_pop(Lc, 1);
} else {
proxy_out_errstring(resp, PROXY_SERVER_ERROR, "bad response");
}
conn_resp_unsuspend(rctx->c, resp);
rctx->c = NULL; // *conn cannot be used past this point!
rctx->pending_reqs--;
mcp_funcgen_return_rctx(rctx);
} else {
rctx->pending_reqs--;
}
} else if (cores == LUA_YIELD) {
int yield_type = lua_tointeger(Lc, -1);
P_DEBUG("%s: coroutine yielded. return type: %d\n", __func__, yield_type);
assert(yield_type != 0);
lua_pop(Lc, 1);
int res = 0;
switch (yield_type) {
case MCP_YIELD_INTERNAL:
// stack should be: rq, res
if (rctx->parent) {
LOGGER_LOG(NULL, LOG_PROXYEVENTS, LOGGER_PROXY_ERROR, NULL, "cannot run mcp.internal from a sub request");
rctx->pending_reqs--;
return LUA_ERRRUN;
} else {
res = mcplib_internal_run(rctx);
if (res == 0) {
// stack should still be: rq, res
// TODO: turn this function into a for loop that re-runs on
// certain status codes, to avoid recursive depth here.
// or maybe... a goto? :P
proxy_run_rcontext(rctx);
} else if (res > 0) {
// internal run queued for extstore.
} else {
assert(res < 0);
proxy_out_errstring(resp, PROXY_SERVER_ERROR, "bad request");
}
}
break;
case MCP_YIELD_WAITCOND:
case MCP_YIELD_WAITHANDLE:
// Even if we're in WAITHANDLE, we want to dispatch any queued
// requests, so we still need to iterate the full set of qslots.
_proxy_run_rcontext_queues(rctx);
break;
case MCP_YIELD_SLEEP:
// Pause coroutine and do nothing. Alarm will resume.
break;
default:
abort();
}
} else {
// Log the error where it happens, then the parent will handle a
// result object normally.
P_DEBUG("%s: Failed to run coroutine: %s\n", __func__, lua_tostring(Lc, -1));
LOGGER_LOG(NULL, LOG_PROXYEVENTS, LOGGER_PROXY_ERROR, NULL, lua_tostring(Lc, -1));
if (!rctx->parent) {
proxy_out_errstring(resp, PROXY_SERVER_ERROR, "lua failure");
conn_resp_unsuspend(rctx->c, resp);
rctx->c = NULL; // *conn cannot be used past this point!
rctx->pending_reqs--;
mcp_funcgen_return_rctx(rctx);
} else {
rctx->pending_reqs--;
}
}
return cores;
}
// basically any data before the first key.
// max is like 15ish plus spaces. we can be more strict about how many spaces
// to expect because any client spamming space is being deliberately stupid
// anyway.
#define MAX_CMD_PREFIX 20
static void proxy_process_command(conn *c, char *command, size_t cmdlen, bool multiget) {
assert(c != NULL);
LIBEVENT_THREAD *thr = c->thread;
struct proxy_hook *hooks = thr->proxy_hooks;
lua_State *L = thr->L;
proxy_ctx_t *ctx = thr->proxy_ctx;
mcp_parser_t pr = {0};
// Avoid doing resp_start() here, instead do it a bit later or as-needed.
// This allows us to hop over to the internal text protocol parser, which
// also calls resp_start().
// Tighter integration later should obviate the need for this, it is not a
// permanent solution.
int ret = process_request(&pr, command, cmdlen);
if (ret != 0) {
WSTAT_INCR(c->thread, proxy_conn_errors, 1);
if (!resp_start(c)) {
conn_set_state(c, conn_closing);
return;
}
proxy_out_errstring(c->resp, PROXY_CLIENT_ERROR, "parsing request");
if (ret == -2) {
// Kill connection on more critical parse failure.
conn_set_state(c, conn_closing);
}
return;
}
struct proxy_hook *hook = &hooks[pr.command];
struct proxy_hook_ref hook_ref = hook->ref;
// if client came from a tagged listener, scan for a more specific hook.
// TODO: (v2) avoiding a hash table lookup here, but maybe some other
// datastructure would suffice. for 4-8 tags this is perfectly fast.
if (c->tag && hook->tagged) {
struct proxy_hook_tagged *pht = hook->tagged;
while (pht->ref.lua_ref) {
if (c->tag == pht->tag) {
hook_ref = pht->ref;
break;
}
pht++;
}
}
if (!hook_ref.lua_ref) {
// need to pass our command string into the internal handler.
// to minimize the code change, this means allowing it to tokenize the
// full command. The proxy's indirect parser should be built out to
// become common code for both proxy and ascii handlers.
// For now this means we have to null-terminate the command string,
// then call into text protocol handler.
// FIXME (v2): use a ptr or something; don't like this code.
if (cmdlen > 1 && command[cmdlen-2] == '\r') {
command[cmdlen-2] = '\0';
} else {
command[cmdlen-1] = '\0';
}
// lets nread_proxy know we're in ascii mode.
c->proxy_rctx = NULL;
process_command_ascii(c, command);
return;
}
// If ascii multiget, we turn this into a self-calling loop :(
// create new request with next key, call this func again, then advance
// original string.
// might be better to split this function; the below bits turn into a
// function call, then we don't re-process the above bits in the same way?
// The way this is detected/passed on is very fragile.
if (!multiget && pr.cmd_type == CMD_TYPE_GET && pr.has_space) {
uint32_t keyoff = pr.tokens[pr.keytoken];
while (pr.klen != 0) {
char temp[KEY_MAX_LENGTH + MAX_CMD_PREFIX + 30];
char *cur = temp;
// Core daemon can abort the entire command if one key is bad, but
// we cannot from the proxy. Instead we have to inject errors into
// the stream. This should, thankfully, be rare at least.
if (pr.tokens[pr.keytoken] > MAX_CMD_PREFIX) {
if (!resp_start(c)) {
conn_set_state(c, conn_closing);
return;
}
proxy_out_errstring(c->resp, PROXY_CLIENT_ERROR, "malformed request");
} else if (pr.klen > KEY_MAX_LENGTH) {
if (!resp_start(c)) {
conn_set_state(c, conn_closing);
return;
}
proxy_out_errstring(c->resp, PROXY_CLIENT_ERROR, "key too long");
} else {
// copy original request up until the original key token.
memcpy(cur, pr.request, pr.tokens[pr.keytoken]);
cur += pr.tokens[pr.keytoken];
// now copy in our "current" key.
memcpy(cur, &pr.request[keyoff], pr.klen);
cur += pr.klen;
memcpy(cur, "\r\n", 2);
cur += 2;
*cur = '\0';
P_DEBUG("%s: new multiget sub request: %s [%u/%u]\n", __func__, temp, keyoff, pr.klen);
proxy_process_command(c, temp, cur - temp, PROCESS_MULTIGET);
}
// now advance to the next key.
keyoff = _process_request_next_key(&pr);
}
if (!resp_start(c)) {
conn_set_state(c, conn_closing);
return;
}
// The above recursions should have created c->resp's in dispatch
// order.
// So now we add another one at the end to create the capping END
// string.
memcpy(c->resp->wbuf, ENDSTR, ENDLEN);
resp_add_iov(c->resp, c->resp->wbuf, ENDLEN);
return;
}
// We test the command length all the way down here because multigets can
// be very long, and they're chopped up by now.
if (cmdlen >= MCP_REQUEST_MAXLEN) {
WSTAT_INCR(c->thread, proxy_conn_errors, 1);
if (!resp_start(c)) {
conn_set_state(c, conn_closing);
return;
}
proxy_out_errstring(c->resp, PROXY_CLIENT_ERROR, "request too long");
conn_set_state(c, conn_closing);
return;
}
if (!resp_start(c)) {
conn_set_state(c, conn_closing);
return;
}
// Count requests handled by proxy vs local.
// Also batch the counts down this far so we can lock once for the active
// counter instead of twice.
struct proxy_int_stats *istats = c->thread->proxy_int_stats;
int64_t active_reqs = 0;
WSTAT_L(c->thread);
istats->counters[pr.command]++;
c->thread->stats.proxy_conn_requests++;
active_reqs = c->thread->stats.proxy_req_active;
WSTAT_UL(c->thread);
if (active_reqs >= ctx->active_req_limit) {
proxy_out_errstring(c->resp, PROXY_SERVER_ERROR, "active request limit reached");
if (pr.vlen != 0) {
c->sbytes = pr.vlen;
conn_set_state(c, conn_swallow);
}
return;
}
// hook is owned by a function generator.
mcp_rcontext_t *rctx = mcp_funcgen_start(L, hook_ref.ctx, &pr);
if (rctx == NULL) {
proxy_out_errstring(c->resp, PROXY_SERVER_ERROR, "lua start failure");
if (pr.vlen != 0) {
c->sbytes = pr.vlen;
conn_set_state(c, conn_swallow);
}
return;
}
mcp_set_request(&pr, rctx->request, command, cmdlen);
rctx->request->ascii_multiget = multiget;
rctx->c = c;
rctx->conn_fd = c->sfd;
rctx->pending_reqs++; // seed counter with the "main" request
// remember the top level mc_resp, because further requests on the
// same connection will replace c->resp.
rctx->resp = c->resp;
// for the very first call we need to place:
// - rctx->function_ref + rctx->request_ref
// I _think_ here is the right place to do that?
lua_rawgeti(rctx->Lc, LUA_REGISTRYINDEX, rctx->function_ref);
lua_rawgeti(rctx->Lc, LUA_REGISTRYINDEX, rctx->request_ref);
if (pr.vlen != 0) {
c->item = NULL;
// Need to add the used memory later due to needing an extra callback
// handler on error during nread.
bool oom = proxy_bufmem_checkadd(c->thread, 0);
// relying on temporary malloc's not having fragmentation
if (!oom) {
c->item = malloc(pr.vlen);
}
if (c->item == NULL) {
// return the RCTX
rctx->pending_reqs--;
mcp_funcgen_return_rctx(rctx);
// normal cleanup
lua_settop(L, 0);
proxy_out_errstring(c->resp, PROXY_SERVER_ERROR, "out of memory");
c->sbytes = pr.vlen;
conn_set_state(c, conn_swallow);
return;
}
c->item_malloced = true;
c->ritem = c->item;
c->rlbytes = pr.vlen;
// remember the request context for later.
c->proxy_rctx = rctx;
conn_set_state(c, conn_nread);
return;
}
conn_resp_suspend(rctx->c, rctx->resp);
proxy_run_rcontext(rctx);
lua_settop(L, 0); // clear any junk from the main thread.
}
mcp_resp_t *mcp_prep_bare_resobj(lua_State *L, LIBEVENT_THREAD *t) {
mcp_resp_t *r = lua_newuserdatauv(L, sizeof(mcp_resp_t), 0);
// FIXME (v2): is this memset still necessary? I was using it for
// debugging.
memset(r, 0, sizeof(mcp_resp_t));
r->thread = t;
assert(r->thread != NULL);
gettimeofday(&r->start, NULL);
luaL_getmetatable(L, "mcp.response");
lua_setmetatable(L, -2);
return r;
}
void mcp_set_resobj(mcp_resp_t *r, mcp_request_t *rq, mcp_backend_t *be, LIBEVENT_THREAD *t) {
memset(r, 0, sizeof(mcp_resp_t));
r->thread = t;
assert(r->thread != NULL);
gettimeofday(&r->start, NULL);
// Set noreply mode.
// TODO (v2): the response "inherits" the request's noreply mode, which isn't
// strictly correct; we should inherit based on the request that spawned
// the coroutine but the structure doesn't allow that yet.
// Should also be able to settle this exact mode from the parser so we
// don't have to re-branch here.
if (rq->pr.noreply) {
if (rq->pr.cmd_type == CMD_TYPE_META) {
r->mode = RESP_MODE_METAQUIET;
for (int x = 2; x < rq->pr.ntokens; x++) {
if (rq->request[rq->pr.tokens[x]] == 'q') {
rq->request[rq->pr.tokens[x]] = ' ';
}
}
} else {
r->mode = RESP_MODE_NOREPLY;
rq->request[rq->pr.reqlen - 3] = 'Y';
}
} else {
r->mode = RESP_MODE_NORMAL;
}
r->cmd = rq->pr.command;
r->be = be;
}
void mcp_resp_set_elapsed(mcp_resp_t *r) {
struct timeval end;
// stamp the elapsed time into the response object.
gettimeofday(&end, NULL);
r->elapsed = (end.tv_sec - r->start.tv_sec) * 1000000 +
(end.tv_usec - r->start.tv_usec);
}
// Used for any cases where we're queueing requests to the IO subsystem.
// NOTE: it's not currently possible to limit the memory used by the IO
// object cache. So this check is redundant, and any callers may proceed
// as though it is successful.
io_pending_proxy_t *mcp_queue_rctx_io(mcp_rcontext_t *rctx, mcp_request_t *rq, mcp_backend_t *be, mcp_resp_t *r) {
conn *c = rctx->c;
io_queue_t *q = thread_io_queue_get(rctx->fgen->thread, IO_QUEUE_PROXY);
io_pending_proxy_t *p = do_cache_alloc(c->thread->io_cache);
if (p == NULL) {
WSTAT_INCR(c->thread, proxy_conn_oom, 1);
proxy_lua_error(rctx->Lc, "out of memory allocating from IO cache");
// NOTE: the error call above jumps to an error handler, so this does
// not actually return.
return NULL;
}
// this is a re-cast structure, so assert that we never outsize it.
assert(sizeof(io_pending_t) >= sizeof(io_pending_proxy_t));
memset(p, 0, sizeof(io_pending_proxy_t));
// set up back references.
p->io_queue_type = IO_QUEUE_PROXY;
p->thread = c->thread;
p->c = c;
p->client_resp = r;
p->flushed = false;
p->return_cb = NULL;
p->finalize_cb = proxy_finalize_rctx_cb;
// pass along the request context for resumption.
p->rctx = rctx;
if (rq) {
p->ascii_multiget = rq->ascii_multiget;
// The direct backend object. Lc is holding the reference in the stack
p->backend = be;
mcp_request_attach(rq, p);
}
// link into the batch chain.
STAILQ_INSERT_TAIL(&q->stack, (io_pending_t *)p, iop_next);
P_DEBUG("%s: queued\n", __func__);
return p;
}
// DO NOT call this method frequently! globally locked!
void mcp_sharedvm_delta(proxy_ctx_t *ctx, int tidx, const char *name, int delta) {
lua_State *L = ctx->proxy_sharedvm;
pthread_mutex_lock(&ctx->sharedvm_lock);
if (lua_getfield(L, tidx, name) == LUA_TNIL) {
lua_pop(L, 1);
lua_pushinteger(L, delta);
lua_setfield(L, tidx, name);
} else {
lua_pushinteger(L, delta);
lua_arith(L, LUA_OPADD);
lua_setfield(L, tidx, name);
}
pthread_mutex_unlock(&ctx->sharedvm_lock);
}
void mcp_sharedvm_remove(proxy_ctx_t *ctx, int tidx, const char *name) {
lua_State *L = ctx->proxy_sharedvm;
pthread_mutex_lock(&ctx->sharedvm_lock);
lua_pushnil(L);
lua_setfield(L, tidx, name);
pthread_mutex_unlock(&ctx->sharedvm_lock);
}
// Global object support code.
// Global objects are created in the configuration VM, and referenced in
// worker VMs via proxy objects that refer back to memory in the
// configuration VM.
// We manage reference counts: once all remote proxy objects are collected, we
// signal the config thread to remove a final reference and collect garbage to
// remove the global object.
static void mcp_gobj_enqueue(proxy_ctx_t *ctx, struct mcp_globalobj_s *g) {
pthread_mutex_lock(&ctx->manager_lock);
STAILQ_INSERT_TAIL(&ctx->manager_head, g, next);
pthread_cond_signal(&ctx->manager_cond);
pthread_mutex_unlock(&ctx->manager_lock);
}
// References the object, initializing the self-reference if necessary.
// Call from config thread, with global object on top of stack.
void mcp_gobj_ref(lua_State *L, struct mcp_globalobj_s *g) {
pthread_mutex_lock(&g->lock);
if (g->self_ref == 0) {
// Initialization requires a small dance:
// - store a negative of our ref, increase refcount an extra time
// - then link and signal the manager thread as though we were GC'ing
// the object.
// - the manager thread will later acknowledge the initialization of
// this global object and negate the self_ref again
// - this prevents an unused proxy object from causing the global
// object to be reaped early while we are still copying it to worker
// threads, as the manager thread will block waiting for the config
// thread to finish its reload work.
g->self_ref = -luaL_ref(L, LUA_REGISTRYINDEX);
g->refcount++;
proxy_ctx_t *ctx = PROXY_GET_CTX(L);
mcp_gobj_enqueue(ctx, g);
} else {
lua_pop(L, 1); // drop the reference we didn't end up using.
}
g->refcount++;
pthread_mutex_unlock(&g->lock);
}
void mcp_gobj_unref(proxy_ctx_t *ctx, struct mcp_globalobj_s *g) {
pthread_mutex_lock(&g->lock);
g->refcount--;
if (g->refcount == 0) {
mcp_gobj_enqueue(ctx, g);
}
pthread_mutex_unlock(&g->lock);
}
void mcp_gobj_finalize(struct mcp_globalobj_s *g) {
pthread_mutex_destroy(&g->lock);
}
static void *mcp_profile_alloc(void *ud, void *ptr, size_t osize,
size_t nsize) {
struct mcp_memprofile *prof = ud;
struct timespec now;
clock_gettime(CLOCK_MONOTONIC, &now);
enum mcp_memprofile_types t = mcp_memp_free;
if (ptr == NULL) {
switch (osize) {
case LUA_TSTRING:
t = mcp_memp_string;
//fprintf(stderr, "alloc string: %ld\n", nsize);
break;
case LUA_TTABLE:
t = mcp_memp_table;
//fprintf(stderr, "alloc table: %ld\n", nsize);
break;
case LUA_TFUNCTION:
t = mcp_memp_func;
//fprintf(stderr, "alloc func: %ld\n", nsize);
break;
case LUA_TUSERDATA:
t = mcp_memp_userdata;
//fprintf(stderr, "alloc userdata: %ld\n", nsize);
break;
case LUA_TTHREAD:
t = mcp_memp_thread;
//fprintf(stderr, "alloc thread: %ld\n", nsize);
break;
default:
t = mcp_memp_default;
//fprintf(stderr, "alloc osize: %ld nsize: %ld\n", osize, nsize);
}
prof->allocs[t]++;
prof->alloc_bytes[t] += nsize;
} else {
if (nsize != 0) {
prof->allocs[mcp_memp_realloc]++;
prof->alloc_bytes[mcp_memp_realloc] += nsize;
} else {
prof->allocs[mcp_memp_free]++;
prof->alloc_bytes[mcp_memp_free] += osize;
}
//fprintf(stderr, "realloc: osize: %ld nsize: %ld\n", osize, nsize);
}
if (now.tv_sec != prof->last_status.tv_sec) {
prof->last_status.tv_sec = now.tv_sec;
fprintf(stderr, "MEMPROF[%d]:\tstring[%llu][%llu] table[%llu][%llu] func[%llu][%llu] udata[%llu][%llu] thr[%llu][%llu] def[%llu][%llu] realloc[%llu][%llu] free[%llu][%llu]\n",
prof->id,
(unsigned long long)prof->allocs[1],
(unsigned long long)prof->alloc_bytes[1],
(unsigned long long)prof->allocs[2],
(unsigned long long)prof->alloc_bytes[2],
(unsigned long long)prof->allocs[3],
(unsigned long long)prof->alloc_bytes[3],
(unsigned long long)prof->allocs[4],
(unsigned long long)prof->alloc_bytes[4],
(unsigned long long)prof->allocs[5],
(unsigned long long)prof->alloc_bytes[5],
(unsigned long long)prof->allocs[6],
(unsigned long long)prof->alloc_bytes[6],
(unsigned long long)prof->allocs[7],
(unsigned long long)prof->alloc_bytes[7],
(unsigned long long)prof->allocs[0],
(unsigned long long)prof->alloc_bytes[0]);
for (int x = 0; x < 8; x++) {
prof->allocs[x] = 0;
prof->alloc_bytes[x] = 0;
}
}
if (nsize == 0) {
free(ptr);
return NULL;
} else {
return realloc(ptr, nsize);
}
}
// Common lua debug command.
__attribute__((unused)) void dump_stack(lua_State *L, const char *msg) {
int top = lua_gettop(L);
int i = 1;
fprintf(stderr, "--TOP OF STACK [%d] | %s\n", top, msg);
for (; i < top + 1; i++) {
int type = lua_type(L, i);
void *udata = NULL;
// lets find the metatable of this userdata to identify it.
if (lua_getmetatable(L, i) != 0) {
lua_pushstring(L, "__name");
if (lua_rawget(L, -2) != LUA_TNIL) {
if (type == LUA_TUSERDATA) {
udata = lua_touserdata(L, i);
}
fprintf(stderr, "--|%d| [%s] (%s) [ptr: %p]\n", i, lua_typename(L, type), lua_tostring(L, -1), udata);
lua_pop(L, 2);
continue;
}
lua_pop(L, 2);
}
if (type == LUA_TSTRING) {
fprintf(stderr, "--|%d| [%s] | %s\n", i, lua_typename(L, type), lua_tostring(L, i));
} else {
if (type == LUA_TUSERDATA) {
udata = lua_touserdata(L, i);
}
fprintf(stderr, "--|%d| [%s] [ptr: %p]\n", i, lua_typename(L, type), udata);
}
}
fprintf(stderr, "-----------------\n");
}
// Not very pretty, but helped.
// Nice to haves:
// - summarize counts for each metatable (easy enough to do from logging)
// - use a less noisy stack dump instead of calling dump_stack()
__attribute__((unused)) void dump_registry(lua_State *L, const char *msg) {
int ref_size = lua_rawlen(L, LUA_REGISTRYINDEX);
fprintf(stderr, "--LUA REGISTRY TABLE [%d] | %s\n", ref_size, msg);
// walk registry
int ridx = lua_absindex(L, LUA_REGISTRYINDEX);
int udata = 0;
int number = 0;
int string = 0;
int function = 0;
int table = 0;
lua_pushnil(L);
while (lua_next(L, ridx) != 0) {
dump_stack(L, "===registry entry===");
int type = lua_type(L, -1);
if (type == LUA_TUSERDATA) {
udata++;
} else if (type == LUA_TNUMBER) {
number++;
} else if (type == LUA_TSTRING) {
string++;
} else if (type == LUA_TFUNCTION) {
function++;
} else if (type == LUA_TTABLE) {
table++;
}
lua_pop(L, 1); // drop value
}
fprintf(stderr, "SUMMARY:\n\n");
fprintf(stderr, "### UDATA\t[%d]\n", udata);
fprintf(stderr, "### NUMBER\t[%d]\n", number);
fprintf(stderr, "### STRING\t[%d]\n", string);
fprintf(stderr, "### FUNCTION\t[%d]\n", function );
fprintf(stderr, "### TABLE\t[%d]\n", table);
fprintf(stderr, "-----------------\n");
}
// Searches for a function generator with a specific name attached.
// Adding breakpoints on the print lines lets you inspect the fgen and its
// slots.
__attribute__((unused)) void dump_funcgen(lua_State *L, const char *name, const char *msg) {
int ref_size = lua_rawlen(L, LUA_REGISTRYINDEX);
fprintf(stderr, "--LUA FUNCGEN FINDER [%d] | %s\n", ref_size, msg);
// walk registry
int ridx = lua_absindex(L, LUA_REGISTRYINDEX);
lua_pushnil(L);
while (lua_next(L, ridx) != 0) {
int type = lua_type(L, -1);
if (type == LUA_TUSERDATA) {
mcp_funcgen_t *f = luaL_testudata(L, -1, "mcp.funcgen");
if (f != NULL && strcmp(name, f->name) == 0) {
fprintf(stderr, "===found funcgen [%s] [%p]===\n", f->name, (void *)f);
lua_getiuservalue(L, -1, 1);
int tidx = lua_absindex(L, -1);
lua_pushnil(L);
while (lua_next(L, tidx) != 0) {
mcp_rcontext_t *rctx = lua_touserdata(L, -1);
if (rctx != NULL) {
fprintf(stderr, "-- slot: [%p]\n", (void *)rctx);
}
lua_pop(L, 1); // drop value
}
lua_pop(L, 1); // drop slot table
}
}
lua_pop(L, 1); // drop value
}
fprintf(stderr, "-----------------\n");
}
static void dump_pool_info(mcp_pool_t *p) {
fprintf(stderr, "--pool: [%s] size: [%d] be_total: [%d] rc: [%d] io: [%d]\n",
p->beprefix, p->pool_size, p->pool_be_total, p->g.refcount, p->use_iothread);
for (int x = 0; x < p->pool_be_total; x++) {
mcp_backend_t *be = p->pool[x].be;
// Dumb: pool_be_total is wrong if pool is using iothread. Why?
if (be != NULL) {
fprintf(stderr, " --be[%d] label: [%s] name: [%s] conns: [%d] depth: [%d]\n",
x, be->label, be->name, be->conncount, be->depth);
for (int i = 0; i < be->conncount; i++) {
struct mcp_backendconn_s *bec = &be->be[i];
fprintf(stderr, " --bec[%d] bad: [%d] failcnt: [%d] depth: [%d] pendread: [%d] state: [%d] can_write[%d] write_event[%d]\n",
i, bec->bad, bec->failed_count, bec->depth, bec->pending_read, bec->state, bec->can_write, event_pending(&bec->timeout_event, EV_WRITE, NULL));
}
}
}
fprintf(stderr, "=======\n");
}
// Dumps some info about pools.
// If given the config thread, it should find the main pools
// If given a worker thread, it will look for the pool proxy objects and find
// the main pools that way.
__attribute__((unused)) void dump_pools(lua_State *L, const char *msg) {
int ref_size = lua_rawlen(L, LUA_REGISTRYINDEX);
fprintf(stderr, "--LUA POOL DUMPER [%d] | %s\n", ref_size, msg);
// walk registry
int ridx = lua_absindex(L, LUA_REGISTRYINDEX);
lua_pushnil(L);
while (lua_next(L, ridx) != 0) {
int type = lua_type(L, -1);
if (type == LUA_TUSERDATA) {
mcp_pool_t *p = luaL_testudata(L, -1, "mcp.pool");
if (p != NULL) {
dump_pool_info(p);
} else {
mcp_pool_proxy_t *pp = luaL_testudata(L, -1, "mcp.pool_proxy");
if (pp != NULL) {
dump_pool_info(pp->main);
}
}
}
lua_pop(L, 1); // drop value
}
fprintf(stderr, "-----------------\n");
}
|