1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
/* Copyright 2017 Facebook.
*
* Use and distribution licensed under the BSD license. See
* the LICENSE file for full text.
*/
/* -*- Mode: C; tab-width: 4; c-basic-offset: 4; indent-tabs-mode: nil -*- */
#include "memcached.h"
#include "slab_automove_extstore.h"
#include <stdlib.h>
#include <string.h>
#define MIN_PAGES_FOR_SOURCE 2
struct window_data {
uint64_t age;
uint64_t dirty;
uint64_t evicted;
unsigned int excess_free;
unsigned int relaxed;
};
// TODO: use ptrs for before/after to cut the memcpy
// after reach run and save some cpu.
typedef struct {
struct window_data *window_data;
struct settings *settings;
uint32_t window_size;
uint32_t window_cur;
uint32_t item_size;
double max_age_ratio;
double free_ratio;
bool pool_filled_once;
unsigned int global_pool_watermark;
item_stats_automove iam_before[MAX_NUMBER_OF_SLAB_CLASSES];
item_stats_automove iam_after[MAX_NUMBER_OF_SLAB_CLASSES];
slab_stats_automove sam_before[MAX_NUMBER_OF_SLAB_CLASSES];
slab_stats_automove sam_after[MAX_NUMBER_OF_SLAB_CLASSES];
} slab_automove;
void *slab_automove_extstore_init(struct settings *settings) {
uint32_t window_size = settings->slab_automove_window;
double max_age_ratio = settings->slab_automove_ratio;
slab_automove *a = calloc(1, sizeof(slab_automove));
if (a == NULL)
return NULL;
a->window_data = calloc(window_size * MAX_NUMBER_OF_SLAB_CLASSES, sizeof(struct window_data));
a->window_size = window_size;
a->max_age_ratio = max_age_ratio;
a->free_ratio = settings->slab_automove_freeratio;
a->item_size = settings->ext_item_size;
a->settings = settings;
a->pool_filled_once = false;
if (a->window_data == NULL) {
if (a->window_data)
free(a->window_data);
free(a);
return NULL;
}
// do a dry run to fill the before structs
fill_item_stats_automove(a->iam_before);
fill_slab_stats_automove(a->sam_before);
return (void *)a;
}
void slab_automove_extstore_free(void *arg) {
slab_automove *a = (slab_automove *)arg;
free(a->window_data);
free(a);
}
static void window_sum(struct window_data *wd, struct window_data *w,
uint32_t size) {
for (int x = 0; x < size; x++) {
struct window_data *d = &wd[x];
w->age += d->age;
w->dirty += d->dirty;
w->evicted += d->evicted;
w->excess_free += d->excess_free;
w->relaxed += d->relaxed;
}
}
static int global_pool_check(slab_automove *a, unsigned int *count) {
bool mem_limit_reached;
unsigned int free = a->global_pool_watermark;
*count = global_page_pool_size(&mem_limit_reached);
if (!mem_limit_reached)
return 0;
if (*count < free) {
a->pool_filled_once = true;
return 1;
} else {
a->pool_filled_once = true;
}
return 0;
}
/* A percentage of memory is configured to be held "free" as buffers for the
* external storage system.
* % of global memory is desired in the global page pool
* each slab class has a % of free chunks desired based on how much memory is
* currently in the class. This allows time for extstore to flush data when
* spikes or waves of set data arrive.
* The global page pool reserve acts as a secondary buffer for any slab class,
* which helps absorb shifts in which class is active.
*/
static void memcheck(slab_automove *a) {
unsigned int total_pages = 0;
// FIXME: is there a cached counter for total pages alloced?
// technically we only really need to do this once as the pages are
// prefilled and ratio isn't a runtime change.
for (int n = 1; n < MAX_NUMBER_OF_SLAB_CLASSES; n++) {
slab_stats_automove *sam = &a->sam_after[n];
total_pages += sam->total_pages;
}
// always update what remains in the global page pool
total_pages += a->sam_after[0].total_pages;
a->global_pool_watermark = total_pages * a->free_ratio;
if (a->global_pool_watermark < 2)
a->global_pool_watermark = 2;
}
static struct window_data *get_window_data(slab_automove *a, int class) {
int w_offset = class * a->window_size;
return &a->window_data[w_offset + (a->window_cur % a->window_size)];
}
void slab_automove_extstore_run(void *arg, int *src, int *dst) {
slab_automove *a = (slab_automove *)arg;
int n;
struct window_data w_sum;
int oldest = -1;
uint64_t oldest_age = 0;
bool too_free = false;
*src = -1;
*dst = -1;
// calculate how much memory pressure extstore is under.
// 100% means we need to evict item headers.
unsigned int total_low_pages = 0;
unsigned int total_high_pages = 0;
unsigned int global_count = 0;
int global_low = global_pool_check(a, &global_count);
// fill after structs
fill_item_stats_automove(a->iam_after);
fill_slab_stats_automove(a->sam_after);
a->window_cur++;
memcheck(a);
// iterate slabs
for (n = POWER_SMALLEST; n < MAX_NUMBER_OF_SLAB_CLASSES; n++) {
bool small_slab = a->sam_before[n].chunk_size < a->item_size
? true : false;
struct window_data *wd = get_window_data(a, n);
int w_offset = n * a->window_size;
memset(wd, 0, sizeof(struct window_data));
unsigned int free_target = a->sam_after[n].chunks_per_page * MIN_PAGES_FOR_SOURCE;
if (small_slab) {
total_low_pages += a->sam_after[n].total_pages;
} else {
unsigned int pages = a->sam_after[n].total_pages;
// only include potentially movable pages
if (pages > MIN_PAGES_FOR_SOURCE) {
total_high_pages += a->sam_after[n].total_pages;
}
}
// if page delta, oom, or evicted delta, mark window dirty
// classes marked dirty cannot donate memory back to global pool.
if (small_slab) {
if (a->iam_after[n].evicted - a->iam_before[n].evicted > 0 ||
a->iam_after[n].outofmemory - a->iam_before[n].outofmemory > 0) {
wd->evicted = 1;
wd->dirty = 1;
}
if (a->sam_after[n].total_pages - a->sam_before[n].total_pages > 0) {
wd->dirty = 1;
}
}
// reclaim excessively free memory to global after a full window
if (a->sam_after[n].free_chunks > free_target) {
wd->excess_free = 1;
}
// set age into window
wd->age = a->iam_after[n].age;
// summarize the window-up-to-now.
memset(&w_sum, 0, sizeof(struct window_data));
window_sum(&a->window_data[w_offset], &w_sum, a->window_size);
// If global page pool is nearly empty we need to force a move
// from any possible source. Otherwise avoid moving from this class if
// it appears dirty.
if (w_sum.dirty != 0 && global_count != 0) {
continue;
}
// if > N free chunks, reclaim memory
// small slab classes aren't age balanced and rely more on global
if (w_sum.excess_free >= a->window_size) {
*src = n;
*dst = 0;
too_free = true;
}
// large slabs should push to extstore if we try to evict from them.
// so we can be aggressive there if the global pool is low.
if (!small_slab) {
// the first class with enough pages, else the one with the oldest
// tail age.
uint64_t age = a->iam_after[n].age;
if (a->sam_after[n].total_pages > MIN_PAGES_FOR_SOURCE
&& (age > oldest_age || oldest == -1) ) {
oldest = n;
oldest_age = age;
}
}
}
// update the pressure calculation.
float total_pages = total_low_pages + total_high_pages + global_count;
float memory_pressure = (total_low_pages / total_pages) * 100;
STATS_LOCK();
stats_state.extstore_memory_pressure = memory_pressure;
STATS_UNLOCK();
memcpy(a->iam_before, a->iam_after,
sizeof(item_stats_automove) * MAX_NUMBER_OF_SLAB_CLASSES);
memcpy(a->sam_before, a->sam_after,
sizeof(slab_stats_automove) * MAX_NUMBER_OF_SLAB_CLASSES);
// only make decisions if window has filled once.
if (a->window_cur < a->window_size) {
return;
}
settings.ext_global_pool_min = a->global_pool_watermark;
if (!too_free && global_low && oldest != -1) {
*src = oldest;
*dst = 0;
}
return;
}
|