1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
|
/* Copyright 2017 Facebook.
*
* Use and distribution licensed under the BSD license. See
* the LICENSE file for full text.
*/
/* -*- Mode: C; tab-width: 4; c-basic-offset: 4; indent-tabs-mode: nil -*- */
#include "memcached.h"
#include "slab_automove_extstore.h"
#include <stdlib.h>
#include <string.h>
#define MIN_PAGES_FOR_SOURCE 2
#define MIN_PAGES_FOR_RECLAIM 2.5
#define MIN_PAGES_FREE 1.5
#define MEMCHECK_PERIOD 60
struct window_data {
uint64_t age;
uint64_t dirty;
uint64_t evicted;
unsigned int excess_free;
unsigned int relaxed;
};
struct window_global {
uint32_t pool_low;
uint32_t pool_high;
};
typedef struct {
struct window_data *window_data;
struct window_global *window_global;
struct settings *settings;
uint32_t window_size;
uint32_t window_cur;
uint32_t item_size;
rel_time_t last_memcheck_run;
double max_age_ratio;
double free_ratio;
bool pool_filled_once;
unsigned int free_mem[MAX_NUMBER_OF_SLAB_CLASSES];
item_stats_automove iam_before[MAX_NUMBER_OF_SLAB_CLASSES];
item_stats_automove iam_after[MAX_NUMBER_OF_SLAB_CLASSES];
slab_stats_automove sam_before[MAX_NUMBER_OF_SLAB_CLASSES];
slab_stats_automove sam_after[MAX_NUMBER_OF_SLAB_CLASSES];
} slab_automove;
void *slab_automove_extstore_init(struct settings *settings) {
uint32_t window_size = settings->slab_automove_window;
double max_age_ratio = settings->slab_automove_ratio;
slab_automove *a = calloc(1, sizeof(slab_automove));
if (a == NULL)
return NULL;
a->window_data = calloc(window_size * MAX_NUMBER_OF_SLAB_CLASSES, sizeof(struct window_data));
a->window_global = calloc(window_size, sizeof(struct window_global));
a->window_size = window_size;
a->max_age_ratio = max_age_ratio;
a->free_ratio = settings->slab_automove_freeratio;
a->item_size = settings->ext_item_size;
a->last_memcheck_run = 0;
a->settings = settings;
a->pool_filled_once = false;
if (a->window_data == NULL || a->window_global == NULL) {
if (a->window_data)
free(a->window_data);
if (a->window_global)
free(a->window_global);
free(a);
return NULL;
}
// do a dry run to fill the before structs
fill_item_stats_automove(a->iam_before);
fill_slab_stats_automove(a->sam_before);
return (void *)a;
}
void slab_automove_extstore_free(void *arg) {
slab_automove *a = (slab_automove *)arg;
free(a->window_data);
free(a->window_global);
free(a);
}
static void window_sum(struct window_data *wd, struct window_data *w,
uint32_t size) {
for (int x = 0; x < size; x++) {
struct window_data *d = &wd[x];
w->age += d->age;
w->dirty += d->dirty;
w->evicted += d->evicted;
w->excess_free += d->excess_free;
w->relaxed += d->relaxed;
}
}
/* This could potentially merge with above */
static void window_global_sum(struct window_global *wg,
struct window_global *w, uint32_t size) {
for (int x = 0; x < size; x++) {
struct window_global *d = &wg[x];
w->pool_high += d->pool_high;
w->pool_low += d->pool_low;
}
}
static void global_pool_check(slab_automove *a) {
bool mem_limit_reached;
uint32_t free = a->free_mem[0];
struct window_global *wg = &a->window_global[a->window_cur % a->window_size];
unsigned int count = global_page_pool_size(&mem_limit_reached);
memset(wg, 0, sizeof(struct window_global));
if (!mem_limit_reached)
return;
if (count < free / 2) {
wg->pool_low = 1;
a->pool_filled_once = true;
} else if (count > free) {
wg->pool_high = 1;
} else {
a->pool_filled_once = true;
}
}
/* A percentage of memory is configured to be held "free" as buffers for the
* external storage system.
* % of global memory is desired in the global page pool
* each slab class has a % of free chunks desired based on how much memory is
* currently in the class. This allows time for extstore to flush data when
* spikes or waves of set data arrive.
* The global page pool reserve acts as a secondary buffer for any slab class,
* which helps absorb shifts in which class is active.
*/
static void memcheck(slab_automove *a) {
unsigned int total_pages = 0;
if (current_time < a->last_memcheck_run + MEMCHECK_PERIOD)
return;
a->last_memcheck_run = current_time;
for (int n = 1; n < MAX_NUMBER_OF_SLAB_CLASSES; n++) {
slab_stats_automove *sam = &a->sam_after[n];
total_pages += sam->total_pages;
unsigned int hold_free = (sam->total_pages * sam->chunks_per_page)
* a->free_ratio;
if (sam->chunks_per_page * MIN_PAGES_FREE > hold_free)
hold_free = sam->chunks_per_page * MIN_PAGES_FREE;
a->free_mem[n] = hold_free;
if (a->settings->ext_free_memchunks[n] != hold_free && a->pool_filled_once) {
a->settings->ext_free_memchunks[n] = hold_free;
}
}
// remember to add what remains in global pool.
total_pages += a->sam_after[0].total_pages;
a->free_mem[0] = total_pages * a->free_ratio;
}
static struct window_data *get_window_data(slab_automove *a, int class) {
int w_offset = class * a->window_size;
return &a->window_data[w_offset + (a->window_cur % a->window_size)];
}
void slab_automove_extstore_run(void *arg, int *src, int *dst) {
slab_automove *a = (slab_automove *)arg;
int n;
struct window_data w_sum;
int oldest = -1;
uint64_t oldest_age = 0;
int youngest = -1;
uint64_t youngest_age = ~0;
bool too_free = false;
*src = -1;
*dst = -1;
global_pool_check(a);
struct window_global wg_sum;
memset(&wg_sum, 0, sizeof(struct window_global));
window_global_sum(a->window_global, &wg_sum, a->window_size);
// fill after structs
fill_item_stats_automove(a->iam_after);
fill_slab_stats_automove(a->sam_after);
a->window_cur++;
memcheck(a);
// iterate slabs
for (n = POWER_SMALLEST; n < MAX_NUMBER_OF_SLAB_CLASSES; n++) {
bool small_slab = a->sam_before[n].chunk_size < a->item_size
? true : false;
bool free_enough = false;
struct window_data *wd = get_window_data(a, n);
// summarize the window-up-to-now.
memset(&w_sum, 0, sizeof(struct window_data));
int w_offset = n * a->window_size;
window_sum(&a->window_data[w_offset], &w_sum, a->window_size);
memset(wd, 0, sizeof(struct window_data));
// if page delta, oom, or evicted delta, mark window dirty
// classes marked dirty cannot donate memory back to global pool.
if (a->iam_after[n].evicted - a->iam_before[n].evicted > 0 ||
a->iam_after[n].outofmemory - a->iam_before[n].outofmemory > 0) {
wd->evicted = 1;
wd->dirty = 1;
}
if (a->sam_after[n].total_pages - a->sam_before[n].total_pages > 0) {
wd->dirty = 1;
}
// Mark excess free if we're over the free mem limit for too long.
// "free_enough" means it is either wobbling, recently received a new
// page of memory, or the crawler is freeing memory.
if (a->sam_after[n].free_chunks > a->free_mem[n]) {
free_enough = true;
}
// double the free requirements means we may have memory we can
// reclaim to global, if it stays this way for the whole window.
if (a->sam_after[n].free_chunks > (a->free_mem[n] * 2) && a->free_mem[n] > 0) {
wd->excess_free = 1;
}
// set age into window
wd->age = a->iam_after[n].age;
// grab age as average of window total
uint64_t age = w_sum.age / a->window_size;
// if > N free chunks and not dirty, reclaim memory
// small slab classes aren't age balanced and rely more on global
// pool. reclaim them more aggressively.
if (a->sam_after[n].free_chunks > a->sam_after[n].chunks_per_page * MIN_PAGES_FOR_RECLAIM
&& w_sum.dirty == 0) {
if (small_slab) {
*src = n;
*dst = 0;
too_free = true;
} else if (!small_slab && w_sum.excess_free >= a->window_size) {
// If large slab and free chunks haven't decreased for a full
// window, reclaim pages.
*src = n;
*dst = 0;
too_free = true;
}
}
if (!small_slab) {
// if oldest and have enough pages, is oldest
if (age > oldest_age
&& a->sam_after[n].total_pages > MIN_PAGES_FOR_SOURCE) {
oldest = n;
oldest_age = age;
}
// don't count as youngest if it hasn't been using new chunks.
// (if it was relaxed recently, and is currently "free enough")
if (age < youngest_age && a->sam_after[n].total_pages != 0
&& w_sum.excess_free < a->window_size
&& !(w_sum.relaxed && free_enough)) {
youngest = n;
youngest_age = age;
}
}
}
memcpy(a->iam_before, a->iam_after,
sizeof(item_stats_automove) * MAX_NUMBER_OF_SLAB_CLASSES);
memcpy(a->sam_before, a->sam_after,
sizeof(slab_stats_automove) * MAX_NUMBER_OF_SLAB_CLASSES);
// only make decisions if window has filled once.
if (a->window_cur < a->window_size)
return;
if (wg_sum.pool_high >= a->window_size && !wg_sum.pool_low && youngest != -1) {
if (a->sam_after[youngest].free_chunks <= a->free_mem[youngest]) {
*src = 0;
*dst = youngest;
}
struct window_data *wd = get_window_data(a, youngest);
// "relaxing" here and below allows us to skip classes which will
// never grow or are growing slowly, more quickly finding other
// classes which violate the age ratio.
wd->relaxed = 1;
} else if (!too_free && wg_sum.pool_low && oldest != -1) {
*src = oldest;
*dst = 0;
} else if (!too_free && youngest != -1 && oldest != -1 && youngest != oldest) {
// if we have a youngest and oldest, and oldest is outside the ratio.
if (youngest_age < ((double)oldest_age * a->max_age_ratio)) {
struct window_data *wd = get_window_data(a, youngest);
wd->relaxed = 1;
// only actually assign more memory if it's absorbed what it has
if (a->sam_after[youngest].free_chunks <= a->free_mem[youngest]) {
*src = 0;
*dst = youngest;
}
}
}
return;
}
|