File: main.cpp

package info (click to toggle)
memkind 1.14.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 8,508 kB
  • sloc: ansic: 72,572; cpp: 39,493; sh: 4,594; perl: 4,250; xml: 2,044; python: 1,753; makefile: 1,393; csh: 7
file content (211 lines) | stat: -rw-r--r-- 7,529 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
// SPDX-License-Identifier: BSD-2-Clause
/* Copyright (C) 2015 - 2021 Intel Corporation. */

#include <assert.h>
#include <iostream>
#include <stdio.h>
#include <vector>

#include "AllocatorFactory.hpp"
#include "CommandLine.hpp"
#include "Configuration.hpp"
#include "ConsoleLog.hpp"
#include "FunctionCallsPerformanceTask.h"
#include "Stats.hpp"
#include "StressIncreaseToMax.h"
#include "Task.hpp"
#include "TaskFactory.hpp"
#include "Tests.hpp"
#include "Thread.hpp"

/*
Command line description.
Syntax:
        key=value
Options:
        - 'test' - specify the test case. This option can be used with the
following values: 'calls', 'all' or 'self', where: 'calls' - function calls
performance test, 'all' - execute both above ('footprint' and 'calls') tests,
                'self' - execute self tests
                's1' - stress tests
                (perform allocations until the maximum amount of allocated
memory has been reached, than frees allocated memory. If the time interval has
not been exceed, than repeat the test),
        - 'operations' - the number of memory operations per thread
        - 'size_from' - lower bound for the random sizes of allocation
        - 'size_to' - upper bound for the random sizes of allocation
        - 'seed' - random seed
        - 'threads_num' - the number of threads per test case
        - 'time' - minimum execution time interval
        - 'kind' - the kind to test
        - 'csv_log' - if 'true' then log to csv file memory operations and
statistics
        - 'call' specify the allocation function call. This option can be used
with the following values: 'malloc' (default), 'calloc', 'realloc',
        - 'requested_memory_limit' test stops when the requested memory limit
has been reached
* - maximum of available memory in OS, or maximum memory based 'operations'
parameter Example:
1. Performance test:
./perf_tool test=all operations=1000 size_from=32 size_to=20480 seed=11 threads_num=200
2. Stress test
./perf_tool test=s1 time=120 kind=MEMKIND_HBW size_from=1048576 csv_log=true requested_memory_limit=1048576
*/

int main(int argc, char *argv[])
{
    unsigned mem_operations_num = 1000;
    size_t size_from = 32, size_to = 2048 * 1024;
    unsigned seed = 11;
    // should be at least one
    size_t threads_number = 10;

    CommandLine cmd_line(argc, argv);

    if ((argc >= 1) && cmd_line.is_option_set("test", "self")) {
        execute_self_tests();
        getchar();
    }

    cmd_line.parse_with_strtol("operations", mem_operations_num);
    cmd_line.parse_with_strtol("size_from", size_from);
    cmd_line.parse_with_strtol("size_to", size_to);
    cmd_line.parse_with_strtol("seed", seed);
    cmd_line.parse_with_strtol("threads_num", threads_number);

    bool is_csv_log_enabled = cmd_line.is_option_set("csv_log", "true");

    // Heap Manager initialization
    std::vector<AllocatorFactory::initialization_stat> stats =
        AllocatorFactory().initialization_test();

    if (!cmd_line.is_option_set("print_init_stats", "false")) {
        printf("\nInitialization overhead:\n");
        for (int i = 0; i < stats.size(); i++) {
            AllocatorFactory::initialization_stat stat = stats[i];
            printf(
                "%32s : time=%7.7f.s, ref_delta_time=%15f, node0=%10fMB, node1=%7.7fMB\n",
                AllocatorTypes::allocator_name(stat.allocator_type).c_str(),
                stat.total_time, stat.ref_delta_time, stat.memory_overhead[0],
                stat.memory_overhead[1]);
        }
    }

    // Stress test by repeatedly increasing memory (to maximum), until given
    // time interval has been exceed.
    if (cmd_line.is_option_set("test", "s1")) {
        printf("Stress test (StressIncreaseToMax) start. \n");

        if (!cmd_line.is_option_present("operations"))
            mem_operations_num = 1000000;

        unsigned time = 120; // Default time interval.
        cmd_line.parse_with_strtol("time", time);

        size_t requested_memory_limit = 1024 * 1024;
        cmd_line.parse_with_strtol("requested_memory_limit",
                                   requested_memory_limit);

        unsigned allocator = AllocatorTypes::MEMKIND_HBW;
        if (cmd_line.is_option_present("kind")) {
            // Enable memkind allocator and specify kind.
            allocator = AllocatorTypes::allocator_type(
                cmd_line.get_option_value("kind"));
        }
        TypesConf allocator_types;
        allocator_types.enable_type(allocator);

        TypesConf enable_func_calls;
        enable_func_calls.enable_type(FunctionCalls::MALLOC);

        TaskConf task_conf = {
            mem_operations_num,
            {mem_operations_num,
             size_from, // No random sizes.
             size_from},
            enable_func_calls,
            allocator_types,
            11,
            is_csv_log_enabled,
        };

        StressIncreaseToMax::execute_test_iterations(task_conf, time,
                                                     requested_memory_limit);
        return 0;
    }

    printf("\nTest configuration: \n");
    printf("\t memory operations per thread = %u \n", mem_operations_num);
    printf("\t seed = %d\n", seed);
    printf("\t number of threads = %zu\n", threads_number);
    printf("\t size from-to = %zu-%zu\n\n", size_from, size_to);

    assert(size_from <= size_to);

    TypesConf func_calls;
    func_calls.enable_type(FunctionCalls::FREE);

    if (cmd_line.is_option_present("call")) {
        // Enable heap manager function call.
        func_calls.enable_type(
            FunctionCalls::function_type(cmd_line.get_option_value("call")));
    } else {
        func_calls.enable_type(FunctionCalls::MALLOC);
    }

    TypesConf allocator_types;
    if (cmd_line.is_option_present("allocator")) {
        allocator_types.enable_type(AllocatorTypes::allocator_type(
            cmd_line.get_option_value("allocator")));
    } else {
        for (unsigned i = 0; i <= AllocatorTypes::MEMKIND_HBW_PREFERRED; i++) {
            allocator_types.enable_type(i);
        }
    }

    TaskConf conf = {
        mem_operations_num, // number memory operations
        {
            mem_operations_num, // number of memory operations
            size_from,          // min. size of single allocation
            size_to             // max. size of single allocatioion
        },
        func_calls,      // enable function calls
        allocator_types, // enable allocators
        seed,            // random seed
        is_csv_log_enabled,
    };

    // Function calls test
    if (cmd_line.is_option_set("test", "calls") ||
        cmd_line.is_option_set("test", "all")) {
        TaskFactory task_factory;
        std::vector<Thread *> threads;
        std::vector<Task *> tasks;

        for (int i = 0; i < threads_number; i++) {
            FunctionCallsPerformanceTask *task =
                static_cast<FunctionCallsPerformanceTask *>(
                    task_factory.create(conf));
            tasks.push_back(task);
            threads.push_back(new Thread(task));
            conf.seed += 1;
        }

        ThreadsManager threads_manager(threads);
        threads_manager.start();
        threads_manager.barrier();

        TimeStats stats;
        for (int i = 0; i < tasks.size(); i++) {
            stats += tasks[i]->get_results();
        }

        ConsoleLog::print_table(stats);
        ConsoleLog::print_requested_memory(stats, "func. calls test");

        threads_manager.release();
    }

    return 0;
}