1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
// SPDX-License-Identifier: BSD-2-Clause
/* Copyright (C) 2014 - 2021 Intel Corporation. */
#include <memkind/internal/memkind_hbw.h>
#include <cstring>
#include <errno.h>
#include <fcntl.h>
#include <fstream>
#include <iostream>
#include <numa.h>
#include <numaif.h>
#include <sstream>
#include <stdio.h>
#include <stdlib.h>
#include <string>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include "check.h"
using namespace std;
/*Check each page between the start
and the end address additionally also
check the end address for pagesize*/
Check::Check(const void *p, const trial_t &trial)
: Check(p, trial.size, trial.page_size)
{}
Check::Check(const void *p, const size_t size, const size_t page_size)
{
const size_t min_page_size = 4096;
this->ptr = p;
this->size = size;
size_t psize = (page_size >= min_page_size ? page_size : min_page_size);
if (p && size && psize) {
num_address = size / psize;
num_address += size % psize ? 1 : 0;
address = new void *[num_address];
size_t i;
for (i = 0; i < num_address - 1; ++i) {
address[i] = (char *)ptr + i * psize;
}
address[i] = (char *)p + size - 1;
} else {
address = NULL;
num_address = 0;
}
}
Check::~Check()
{
delete[] address;
}
Check::Check(const Check &other)
{
num_address = other.num_address;
address = new void *[num_address];
for (size_t i = 0; i < num_address; ++i) {
address[i] = other.address[i];
}
}
int Check::check_zero(void)
{
size_t i;
const char *cptr = (char *)ptr;
for (i = 0; i < size; ++i) {
if (cptr[i] != '\0') {
return -1;
}
}
return 0;
}
int Check::check_align(size_t align)
{
return (size_t)ptr % align;
}
string Check::skip_to_next_entry(ifstream &ip)
{
string temp, token;
size_t found = 0;
string empty = "";
while (!ip.eof()) {
getline(ip, temp);
found = temp.find("-");
if (found != string::npos) {
istringstream iss(temp);
getline(iss, token, ' ');
return token;
}
}
return empty;
}
string Check::skip_to_next_kpage(ifstream &ip)
{
string temp, token;
size_t found = 0;
string empty = "";
while (!ip.eof()) {
getline(ip, temp);
found = temp.find("KernelPageSize:");
if (found != string::npos) {
return temp;
}
}
return empty;
}
void Check::get_address_range(string &line, unsigned long long *start_addr,
unsigned long long *end_addr)
{
stringstream ss(line);
string token;
getline(ss, token, '-');
*start_addr = strtoul(token.c_str(), NULL, 16);
getline(ss, token, '-');
*end_addr = strtoul(token.c_str(), NULL, 16);
}
size_t Check::get_kpagesize(string line)
{
stringstream ss(line);
string token;
size_t pagesize;
ss >> token;
ss >> token;
pagesize = atol(token.c_str());
return (size_t)pagesize;
}
int Check::check_page_size(size_t page_size)
{
int err = 0;
size_t i;
ip.open("/proc/self/smaps");
populate_smaps_table();
if (check_page_size(page_size, address[0])) {
err = -1;
}
for (i = 1; i < num_address && !err; ++i) {
if (check_page_size(page_size, address[i])) {
err = i;
}
}
return err;
}
int Check::populate_smaps_table()
{
string read;
size_t lpagesize;
smaps_entry_t lentry;
unsigned long long start_addr;
unsigned long long end_addr;
ip >> read;
while (!ip.eof()) {
start_addr = end_addr = 0;
get_address_range(read, &start_addr, &end_addr);
read = skip_to_next_kpage(ip);
getline(ip, read);
lpagesize = get_kpagesize(read);
lpagesize *= 1024;
lentry.start_addr = start_addr;
lentry.end_addr = end_addr;
lentry.pagesize = lpagesize;
smaps_table.push_back(lentry);
read = skip_to_next_entry(ip);
if (read.empty()) {
break;
}
}
if (0 == smaps_table.size()) {
fprintf(stderr, "Empty smaps table\n");
return -1;
} else {
return 0;
}
}
int Check::check_page_size(size_t page_size, void *vaddr)
{
string read;
unsigned long long virt_addr;
size_t lpagesize;
list<smaps_entry_t>::iterator it;
unsigned long long start_addr;
unsigned long long end_addr;
virt_addr = (unsigned long long)(vaddr);
for (it = smaps_table.begin(); it != smaps_table.end(); it++) {
start_addr = it->start_addr;
end_addr = it->end_addr;
if ((virt_addr >= start_addr) && (virt_addr < end_addr)) {
lpagesize = it->pagesize;
if (lpagesize == page_size) {
return 0;
} else {
/*The pagesize of allocation and req don't match*/
fprintf(stderr, "%zd does not match entry in SMAPS (%zd)\n",
page_size, lpagesize);
return -1;
}
}
}
/*Never found a match!*/
return 1;
}
|