1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
|
// SPDX-License-Identifier: BSD-2-Clause
/* Copyright (C) 2014 - 2021 Intel Corporation. */
#include "framework.hpp"
#include <algorithm> // sort
#include <cassert>
#include <iostream>
#include <math.h> // log2
namespace performance_tests
{
namespace ch = std::chrono;
using std::cout;
using std::endl;
using std::mutex;
using std::unique_lock;
#ifdef __DEBUG
mutex g_coutMutex;
int g_msgLevel = 1;
#endif
void Barrier::wait()
{
unique_lock<mutex> lock(m_barrierMutex);
// Decrement number of threads awaited at the barrier
m_waiting--;
if (m_waiting == 0) {
// Called by the last expected thread - notify all waiting threads and
// exit
m_cVar.notify_all();
// Store the time when barrier was released
if (m_releasedAt.tv_sec == 0 && m_releasedAt.tv_nsec == 0) {
clock_gettime(CLOCK_MONOTONIC, &m_releasedAt);
}
return;
}
// Wait unitl the last expected thread calls wait() on Barrier instance, or
// timeout occurs
m_cVar.wait_until(lock, ch::system_clock::now() + ch::seconds(10),
[]() { return GetInstance().m_waiting == 0; });
}
// Worker class
Worker::Worker(uint32_t actionsCount, const vector<size_t> &allocationSizes,
Operation *freeOperation, memkind_t kind)
: m_actionsCount(actionsCount),
m_allocationSizes(allocationSizes),
m_actions(vector<Action *>(actionsCount, nullptr)),
m_kind(kind)
{
assert(freeOperation->getName() == OperationName::Free);
}
Worker::~Worker()
{
for (Action *action : m_actions) { // each action
delete action;
}
}
void Worker::init(const vector<Operation *> &testOperations,
Operation *&freeOperation)
{
for (uint32_t i = 0; i < m_actionsCount; i++) {
int bucketSize = rand() % Operation::MaxBucketSize;
for (Operation *operation : testOperations) { // each operation
if (operation->checkCondition(bucketSize)) {
size_t size =
m_allocationSizes[m_allocationSizes.size() > 1
? rand() % m_allocationSizes.size()
: 0];
m_actions[i] = new Action(
operation, freeOperation, m_kind, size, log2(rand() % size),
sizeof(void *) *
(1 << ((rand() % Operation::MemalignMaxMultiplier))));
break;
}
}
}
}
void Worker::run()
{
m_thread = new thread(&Worker::work, this);
}
#ifdef __DEBUG
uint16_t Worker::getId()
{
return m_threadId;
}
void Worker::setId(uint16_t threadId)
{
m_threadId = threadId;
}
#endif
void Worker::finish()
{
if (m_thread != nullptr) {
m_thread->join();
delete m_thread;
}
}
void Worker::work()
{
EMIT(1, "Entering barrier " << m_threadId)
Barrier::GetInstance().wait();
EMIT(1, "Starting thread " << m_threadId)
for (Action *action : m_actions) {
action->alloc();
}
}
void Worker::clean()
{
EMIT(2, "Cleaning thread " << m_threadId)
for (Action *action : m_actions) {
action->free();
}
EMIT(1, "Thread " << m_threadId << " finished")
}
// PerformanceTest class
PerformanceTest::PerformanceTest(size_t repeatsCount, size_t threadsCount,
size_t operationsCount)
: m_repeatsCount(repeatsCount),
m_discardCount(repeatsCount * (distardPercent / 100.0)),
m_threadsCount(threadsCount),
m_operationsCount(operationsCount),
m_executionMode(ExecutionMode::SingleInteration)
{}
void PerformanceTest::setAllocationSizes(const vector<size_t> &allocationSizes)
{
m_allocationSizes = allocationSizes;
}
void PerformanceTest::setOperations(
const vector<vector<Operation *>> &testOperations, Operation *freeOperation)
{
m_testOperations = testOperations;
m_freeOperation = freeOperation;
}
void PerformanceTest::setExecutionMode(ExecutionMode executionMode)
{
m_executionMode = executionMode;
}
void PerformanceTest::setKind(const vector<memkind_t> &kinds)
{
m_kinds = kinds;
}
inline void PerformanceTest::runIteration()
{
timespec iterationStop, iterationStart;
Barrier::GetInstance().reset(m_threadsCount);
for (Worker *worker : m_workers) {
worker->run();
}
for (Worker *worker : m_workers) {
worker->finish();
}
EMIT(1, "Alloc completed");
clock_gettime(CLOCK_MONOTONIC, &iterationStop);
iterationStart = Barrier::GetInstance().releasedAt();
m_durations.push_back(
(iterationStop.tv_sec * NanoSecInSec + iterationStop.tv_nsec) -
(iterationStart.tv_sec * NanoSecInSec + iterationStart.tv_nsec));
for (Worker *worker : m_workers) {
worker->clean();
}
}
void PerformanceTest::prepareWorkers()
{
for (size_t threadId = 0; threadId < m_threadsCount; threadId++) {
m_workers.push_back(new Worker(
m_operationsCount, m_allocationSizes, m_freeOperation,
m_kinds.size() > 0 ? m_kinds[threadId % m_kinds.size()] : nullptr));
#ifdef __DEBUG
m_workers.back()->setId(threadId);
#endif
if (m_executionMode == ExecutionMode::SingleInteration) {
// In ManyIterations mode, operations will be set for each thread at
// the beginning of each iteration
m_workers.back()->init(
m_testOperations[threadId % m_testOperations.size()],
m_freeOperation);
}
}
}
Metrics PerformanceTest::getMetrics()
{
uint64_t totalDuration = 0;
std::sort(m_durations.begin(), m_durations.end());
m_durations.erase(m_durations.end() - m_discardCount, m_durations.end());
for (uint64_t &duration : m_durations) {
totalDuration += duration;
}
Metrics metrics;
metrics.executedOperations =
m_durations.size() * m_threadsCount * m_operationsCount;
metrics.totalDuration = totalDuration;
metrics.repeatDuration =
(double)totalDuration / ((uint64_t)m_durations.size() * NanoSecInSec);
metrics.iterationDuration = metrics.repeatDuration;
if (m_executionMode == ExecutionMode::ManyIterations) {
metrics.executedOperations *= m_testOperations.size();
metrics.iterationDuration /= m_testOperations.size();
}
metrics.operationsPerSecond =
(double)metrics.executedOperations * NanoSecInSec / totalDuration;
metrics.avgOperationDuration =
(double)totalDuration / metrics.executedOperations;
assert(metrics.iterationDuration != 0.0);
return metrics;
}
void PerformanceTest::writeMetrics(const string &suiteName,
const string &caseName,
const string &fileName)
{
Metrics metrics = getMetrics();
// For thousands separation
setlocale(LC_ALL, "");
if (!fileName.empty()) {
FILE *f;
if ((f = fopen(fileName.c_str(), "a+"))) {
fprintf(f, "%s;%s;%zu;%zu;%lu;%f;%f;%f;%f\n", suiteName.c_str(),
caseName.c_str(), m_repeatsCount, m_threadsCount,
metrics.executedOperations, metrics.operationsPerSecond,
metrics.avgOperationDuration, metrics.iterationDuration,
metrics.repeatDuration);
fclose(f);
}
}
printf("Operations/sec:\t\t\t%'f\n"
"Avg. operation duration:\t%f nsec\n"
"Iteration duration:\t\t%f sec\n"
"Repeat duration:\t\t%f sec\n",
metrics.operationsPerSecond, metrics.avgOperationDuration,
metrics.iterationDuration, metrics.repeatDuration);
}
int PerformanceTest::run()
{
if (m_testOperations.empty() || m_allocationSizes.empty() ||
m_freeOperation == nullptr) {
cout << "ERROR: Test not initialized" << endl;
return 1;
}
// Create threads
prepareWorkers();
// warmup kinds
void *alloc = nullptr;
for (const memkind_t &kind : m_kinds) {
m_testOperations[0][0]->perform(kind, alloc, 1e6);
m_freeOperation->perform(kind, alloc);
}
for (size_t repeat = 0; repeat < m_repeatsCount; repeat++) {
EMIT(1, "Test run #" << repeat)
if (m_executionMode == ExecutionMode::SingleInteration) {
runIteration();
} else {
// Perform each operations list in separate iteration, for each
// thread
for (vector<Operation *> &ops : m_testOperations) {
for (Worker *worker : m_workers) {
worker->init(ops, m_freeOperation);
}
runIteration();
}
}
}
return 0;
}
void PerformanceTest::showInfo()
{
printf(
"Test parameters: %lu repeats, %lu threads, %d operations per thread\n",
m_repeatsCount, m_threadsCount, m_operationsCount);
printf("Thread memory allocation operations:\n");
for (unsigned long i = 0; i < m_testOperations.size(); i++) {
if (m_executionMode == ExecutionMode::SingleInteration) {
printf("\tThread %lu,%lu,...\n", i, i + (m_testOperations.size()));
} else {
printf("\tIteration %lu\n", i);
}
for (const Operation *op : m_testOperations[i]) {
printf("\t\t %s (bucket size: %d)\n", op->getNameStr().c_str(),
op->getBucketSize());
}
}
printf("Memory free operation:\n\t\t%s\n",
m_freeOperation->getNameStr().c_str());
printf("Allocation sizes:\n");
for (size_t size : m_allocationSizes) {
printf("\t\t%lu bytes\n", size);
}
}
} // namespace performance_tests
|