1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
|
// SPDX-License-Identifier: BSD-2-Clause
/* Copyright (C) 2014 - 2021 Intel Corporation. */
#include "allocator_perf_tool/HugePageOrganizer.hpp"
#include <memkind/internal/memkind_hbw.h>
#include "check.h"
#include "trial_generator.h"
#include <numa.h>
#include <numaif.h>
#include <unistd.h>
#include <vector>
trial_t TrialGenerator ::create_trial_tuple(alloc_api_t api, size_t size,
size_t alignment, int page_size,
memkind_t memkind, int free_index)
{
trial_t ltrial;
ltrial.api = api;
ltrial.size = size;
ltrial.alignment = alignment;
ltrial.page_size = page_size;
ltrial.memkind = memkind;
ltrial.free_index = free_index;
return ltrial;
}
void TrialGenerator ::generate_gb(alloc_api_t api, int number_of_gb_pages,
memkind_t memkind, alloc_api_t api_free,
bool psize_strict, size_t align)
{
std::vector<size_t> sizes_to_alloc;
// When API = HBW_MEMALIGN_PSIZE: psize is set to HBW_PAGESIZE_1GB_STRICT
// when allocation is a multiple of 1GB. Otherwise it is set to
// HBW_PAGESIZE_1GB.
for (int i = 1; i <= number_of_gb_pages; i++) {
if (psize_strict || api != HBW_MEMALIGN_PSIZE)
sizes_to_alloc.push_back(i * GB);
else
sizes_to_alloc.push_back(i * GB + 1);
}
int k = 0;
trial_vec.clear();
for (int i = 0; i < (int)sizes_to_alloc.size(); i++) {
trial_vec.push_back(create_trial_tuple(api, sizes_to_alloc[i], align,
2 * MB, memkind, -1));
if (i > 0)
k++;
trial_vec.push_back(
create_trial_tuple(api_free, 0, 0, 0, memkind, k++));
}
}
int n_random(int i)
{
return random() % i;
}
void TrialGenerator ::generate_size_2bytes_2KB_2MB(alloc_api_t api)
{
size_t size[] = {2, 2 * KB, 2 * MB};
int k = 0;
trial_vec.clear();
for (unsigned int i = 0; i < (int)(sizeof(size) / sizeof(size[0])); i++) {
trial_vec.push_back(create_trial_tuple(
api, size[i], 32, sysconf(_SC_PAGESIZE), MEMKIND_HBW, -1));
if (i > 0)
k++;
trial_vec.push_back(
create_trial_tuple(HBW_FREE, 0, 0, 0, MEMKIND_HBW, k));
k++;
}
}
void TrialGenerator ::print()
{
std::vector<trial_t>::iterator it;
std::cout << "*********** Size: " << trial_vec.size() << "********\n";
std::cout << "SIZE PSIZE ALIGN FREE KIND" << std::endl;
for (it = trial_vec.begin(); it != trial_vec.end(); it++) {
std::cout << it->size << " " << it->page_size << " " << it->alignment
<< " " << it->free_index << " " << it->memkind << " "
<< std::endl;
}
}
void TrialGenerator ::run(int num_bandwidth, std::vector<int> &bandwidth)
{
int num_trial = trial_vec.size();
int i, ret = 0;
void **ptr_vec = NULL;
ptr_vec = (void **)malloc(num_trial * sizeof(void *));
if (NULL == ptr_vec) {
fprintf(stderr, "Error in allocating ptr array\n");
exit(-1);
}
for (i = 0; i < num_trial; ++i) {
ptr_vec[i] = NULL;
}
for (i = 0; i < num_trial; ++i) {
switch (trial_vec[i].api) {
case HBW_FREE:
if (i == num_trial - 1 || trial_vec[i + 1].api != HBW_REALLOC) {
hbw_free(ptr_vec[trial_vec[i].free_index]);
ptr_vec[trial_vec[i].free_index] = NULL;
ptr_vec[i] = NULL;
} else {
ptr_vec[i + 1] =
hbw_realloc(ptr_vec[trial_vec[i].free_index],
trial_vec[i + 1].size);
ptr_vec[trial_vec[i].free_index] = NULL;
}
break;
case MEMKIND_FREE:
if (i == num_trial - 1 ||
trial_vec[i + 1].api != MEMKIND_REALLOC) {
memkind_free(trial_vec[i].memkind,
ptr_vec[trial_vec[i].free_index]);
ptr_vec[trial_vec[i].free_index] = NULL;
ptr_vec[i] = NULL;
} else {
ptr_vec[i + 1] = memkind_realloc(
trial_vec[i].memkind, ptr_vec[trial_vec[i].free_index],
trial_vec[i + 1].size);
ptr_vec[trial_vec[i].free_index] = NULL;
}
break;
case HBW_MALLOC:
fprintf(stdout, "Allocating %zd bytes using hbw_malloc\n",
trial_vec[i].size);
ptr_vec[i] = hbw_malloc(trial_vec[i].size);
break;
case HBW_CALLOC:
fprintf(stdout, "Allocating %zd bytes using hbw_calloc\n",
trial_vec[i].size);
ptr_vec[i] = hbw_calloc(trial_vec[i].size, 1);
break;
case HBW_REALLOC:
fprintf(stdout, "Allocating %zd bytes using hbw_realloc\n",
trial_vec[i].size);
fflush(stdout);
if (NULL == ptr_vec[i]) {
ptr_vec[i] = hbw_realloc(NULL, trial_vec[i].size);
}
break;
case HBW_MEMALIGN:
fprintf(stdout, "Allocating %zd bytes using hbw_memalign\n",
trial_vec[i].size);
ret = hbw_posix_memalign(&ptr_vec[i], trial_vec[i].alignment,
trial_vec[i].size);
break;
case HBW_MEMALIGN_PSIZE:
fprintf(stdout,
"Allocating %zd bytes using hbw_memalign_psize\n",
trial_vec[i].size);
hbw_pagesize_t psize;
if (trial_vec[i].page_size == (size_t)sysconf(_SC_PAGESIZE))
psize = HBW_PAGESIZE_4KB;
else if (trial_vec[i].page_size == 2097152)
psize = HBW_PAGESIZE_2MB;
else if (trial_vec[i].size % trial_vec[i].page_size > 0)
psize = HBW_PAGESIZE_1GB;
else
psize = HBW_PAGESIZE_1GB_STRICT;
ret = hbw_posix_memalign_psize(&ptr_vec[i],
trial_vec[i].alignment,
trial_vec[i].size, psize);
break;
case MEMKIND_MALLOC:
fprintf(stdout, "Allocating %zd bytes using memkind_malloc\n",
trial_vec[i].size);
ptr_vec[i] =
memkind_malloc(trial_vec[i].memkind, trial_vec[i].size);
break;
case MEMKIND_CALLOC:
fprintf(stdout, "Allocating %zd bytes using memkind_calloc\n",
trial_vec[i].size);
ptr_vec[i] =
memkind_calloc(trial_vec[i].memkind, trial_vec[i].size, 1);
break;
case MEMKIND_REALLOC:
fprintf(stdout, "Allocating %zd bytes using memkind_realloc\n",
trial_vec[i].size);
if (NULL == ptr_vec[i]) {
ptr_vec[i] = memkind_realloc(trial_vec[i].memkind,
ptr_vec[i], trial_vec[i].size);
}
break;
case MEMKIND_POSIX_MEMALIGN:
fprintf(stdout,
"Allocating %zd bytes using memkind_posix_memalign\n",
trial_vec[i].size);
ret = memkind_posix_memalign(trial_vec[i].memkind, &ptr_vec[i],
trial_vec[i].alignment,
trial_vec[i].size);
break;
}
if (trial_vec[i].api != HBW_FREE && trial_vec[i].api != MEMKIND_FREE &&
trial_vec[i].memkind != MEMKIND_DEFAULT) {
ASSERT_TRUE(ptr_vec[i] != NULL);
memset(ptr_vec[i], 0, trial_vec[i].size);
Check check(ptr_vec[i], trial_vec[i]);
if (trial_vec[i].api == HBW_CALLOC) {
EXPECT_EQ(0, check.check_zero());
}
if (trial_vec[i].api == HBW_MEMALIGN ||
trial_vec[i].api == HBW_MEMALIGN_PSIZE ||
trial_vec[i].api == MEMKIND_POSIX_MEMALIGN) {
EXPECT_EQ(0, check.check_align(trial_vec[i].alignment));
EXPECT_EQ(0, ret);
}
if (trial_vec[i].api == HBW_MEMALIGN_PSIZE ||
(trial_vec[i].api == MEMKIND_MALLOC &&
(trial_vec[i].memkind == MEMKIND_HBW_HUGETLB ||
trial_vec[i].memkind == MEMKIND_HBW_PREFERRED_HUGETLB))) {
EXPECT_EQ(0, check.check_page_size(trial_vec[i].page_size));
}
}
}
for (i = 0; i < num_trial; ++i) {
if (ptr_vec[i]) {
hbw_free(ptr_vec[i]);
}
}
}
void TGTest ::SetUp()
{
size_t node;
char *hbw_nodes_env, *endptr;
tgen = std::unique_ptr<TrialGenerator>(new TrialGenerator());
hbw_nodes_env = getenv("MEMKIND_HBW_NODES");
if (hbw_nodes_env) {
num_bandwidth = 128;
for (node = 0; node < num_bandwidth; node++) {
bandwidth.push_back(1);
}
node = strtol(hbw_nodes_env, &endptr, 10);
bandwidth.push_back(2);
while (*endptr == ':') {
hbw_nodes_env = endptr + 1;
node = strtol(hbw_nodes_env, &endptr, 10);
if (endptr != hbw_nodes_env && node < num_bandwidth) {
bandwidth.push_back(2);
}
}
} else {
num_bandwidth = NUMA_NUM_NODES;
nodemask_t nodemask;
struct bitmask nodemask_bm = {NUMA_NUM_NODES, nodemask.n};
numa_bitmask_clearall(&nodemask_bm);
memkind_hbw_all_get_mbind_nodemask(NULL, nodemask.n, NUMA_NUM_NODES);
int i, max_node = numa_max_node();
for (i = 0; i < NUMA_NUM_NODES; i++) {
if (i > max_node) {
bandwidth.push_back(0);
} else if (numa_bitmask_isbitset(&nodemask_bm, i)) {
bandwidth.push_back(2);
} else {
bandwidth.push_back(1);
}
}
}
}
void TGTest ::TearDown()
{}
|