1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
|
/*
* MemTest86+ V5 Specific code (GPL V2.0)
* By Samuel DEMEULEMEESTER, sdemeule@memtest.org
* http://www.canardpc.com - http://www.memtest.org
* ------------------------------------------------
* init.c - MemTest-86 Version 3.6
*
* Released under version 2 of the Gnu Public License.
* By Chris Brady
*/
#include "stdin.h"
#include "stddef.h"
#include "test.h"
#include "defs.h"
#include "config.h"
#include "cpuid.h"
#include "smp.h"
#include "io.h"
#include "spd.h"
#include "multiboot.h"
extern struct tseq tseq[];
extern short memsz_mode;
extern int num_cpus;
extern int act_cpus;
extern int found_cpus;
unsigned long imc_type = 0;
extern int maxcpus;
extern char cpu_mask[];
extern void initialise_cpus();
/* Here we store all of the cpuid data */
extern struct cpu_ident cpu_id;
int l1_cache=0, l2_cache=0, l3_cache=0;
int tsc_invariable = 0;
ulong extclock;
ulong memspeed(ulong src, ulong len, int iter);
static void cpu_type(void);
static int cpuspeed(void);
static void get_cache_size();
static void cpu_cache_speed();
void get_cpuid();
int beepmode;
extern short dmi_initialized;
extern int dmi_err_cnts[MAX_DMI_MEMDEVS];
/* Failsafe function */
/* msec: number of ms to wait - scs: scancode expected to stop */
/* bits: 0 = extended detection - 1: SMP - 2: Temp Check */
/* 3: MP SMP - 4-7: RSVD */
void failsafe(int msec, int scs)
{
int i;
ulong sh, sl, l, h, t;
unsigned char c;
volatile char *pp;
for(i=0, pp=(char *)(SCREEN_ADR+(18*160)+(18*2)+1); i<40; i++, pp+=2) {
*pp = 0x1E;
}
for(i=0, pp=(char *)(SCREEN_ADR+(18*160)+(18*2)+1); i<3; i++, pp+=2) {
*pp = 0x9E;
}
for(i=0, pp=(char *)(SCREEN_ADR+(18*160)+(55*2)+1); i<3; i++, pp+=2) {
*pp = 0x9E;
}
cprint(18, 18, "==> Press F1 to enter Fail-Safe Mode <==");
if(v->fail_safe & 2)
{
cprint(19, 15, "==> Press F2 to force Multi-Threading (SMP) <==");
}
/* save the starting time */
asm __volatile__(
"rdtsc":"=a" (sl),"=d" (sh));
/* loop for n seconds */
while (1) {
asm __volatile__(
"rdtsc":"=a" (l),"=d" (h));
asm __volatile__ (
"subl %2,%0\n\t"
"sbbl %3,%1"
:"=a" (l), "=d" (h)
:"g" (sl), "g" (sh),
"0" (l), "1" (h));
t = h * ((unsigned)0xffffffff / v->clks_msec);
t += (l / v->clks_msec);
/* Is the time up? */
if (t >= msec) { break; }
/* Is expected Scan code pressed? */
c = get_key();
c &= 0x7f;
/* F1 */
if(c == scs) { v->fail_safe |= 1; break; }
/* F2 */
if(c == scs+1)
{
v->fail_safe ^= 2;
break;
}
/* F3 */
if(c == scs+2)
{
if(v->fail_safe & 2) { v->fail_safe ^= 2; }
v->fail_safe |= 8;
break;
}
}
cprint(18, 18, " ");
cprint(19, 15, " ");
for(i=0, pp=(char *)(SCREEN_ADR+(18*160)+(18*2)+1); i<40; i++, pp+=2) {
*pp = 0x17;
}
}
static void display_init(void)
{
int i;
volatile char *pp;
/* Set HW cursor out of screen boundaries */
__outb(0x0F, 0x03D4);
__outb(0xFF, 0x03D5);
__outb(0x0E, 0x03D4);
__outb(0xFF, 0x03D5);
serial_echo_init();
serial_echo_print("[LINE_SCROLL;24r"); /* Set scroll area row 7-23 */
serial_echo_print("[H[2J"); /* Clear Screen */
serial_echo_print("[37m[44m");
serial_echo_print("[0m");
serial_echo_print("[37m[44m");
/* Clear screen & set background to blue */
for(i=0, pp=(char *)(SCREEN_ADR); i<80*24; i++) {
*pp++ = ' ';
*pp++ = 0x17;
}
/* Make the name background green */
for(i=0, pp=(char *)(SCREEN_ADR+1); i<TITLE_WIDTH; i++, pp+=2) {
*pp = 0x20;
}
cprint(0, 0, " Memtest86 5.01 ");
/* Set Blinking "+" */
for(i=0, pp=(char *)(SCREEN_ADR+1); i<2; i++, pp+=30) {
*pp = 0xA4;
}
cprint(0, 15, "+");
/* Do reverse video for the bottom display line */
for(i=0, pp=(char *)(SCREEN_ADR+1+(24 * 160)); i<80; i++, pp+=2) {
*pp = 0x71;
}
serial_echo_print("[0m");
}
/*
* Initialize test, setup screen and find out how much memory there is.
*/
void init(void)
{
int i;
outb(0x8, 0x3f2); /* Kill Floppy Motor */
/* Turn on cache */
set_cache(1);
/* Setup the display */
display_init();
cprint(5, 60, "| Time: 0:00:00");
cprint(1, COL_MID,"Pass %");
cprint(2, COL_MID,"Test %");
cprint(3, COL_MID,"Test #");
cprint(4, COL_MID,"Testing: ");
cprint(5, COL_MID,"Pattern: ");
cprint(1, 0, "CLK: (32b Mode)");
cprint(2, 0, "L1 Cache: Unknown ");
cprint(3, 0, "L2 Cache: Unknown ");
cprint(4, 0, "L3 Cache: None ");
cprint(5, 0, "Memory : ");
cprint(6, 0, "------------------------------------------------------------------------------");
cprint(7, 0, "Core#:");
cprint(8, 0, "State:");
cprint(9, 0, "Cores: Active / Total (Run: All) | Pass: 0 Errors: 0 ");
cprint(10, 0, "------------------------------------------------------------------------------");
/*
for(i=0, pp=(char *)(SCREEN_ADR+(5*160)+(53*2)+1); i<20; i++, pp+=2) {
*pp = 0x92;
}
for(i=0, pp=(char *)(SCREEN_ADR+0*160+1); i<80; i++, pp+=2) {
*pp = 0x47;
}
*/
cprint(7, 39, "| Chipset : Unknown");
cprint(8, 39, "| Memory Type : Unknown");
for(i=0; i < 6; i++) {
cprint(i, COL_MID-2, "| ");
}
footer();
aprint(5, 10, v->test_pages);
v->pass = 0;
v->msg_line = 0;
v->ecount = 0;
v->ecc_ecount = 0;
v->testsel = -1;
v->msg_line = LINE_SCROLL-1;
v->scroll_start = v->msg_line * 160;
v->erri.low_addr.page = 0x7fffffff;
v->erri.low_addr.offset = 0xfff;
v->erri.high_addr.page = 0;
v->erri.high_addr.offset = 0;
v->erri.min_bits = 32;
v->erri.max_bits = 0;
v->erri.min_bits = 32;
v->erri.max_bits = 0;
v->erri.maxl = 0;
v->erri.cor_err = 0;
v->erri.ebits = 0;
v->erri.hdr_flag = 0;
v->erri.tbits = 0;
for (i=0; tseq[i].msg != NULL; i++) {
tseq[i].errors = 0;
}
if (dmi_initialized) {
for (i=0; i < MAX_DMI_MEMDEVS; i++){
if (dmi_err_cnts[i] > 0) {
dmi_err_cnts[i] = 0;
}
}
}
/* setup beep mode */
beepmode = BEEP_MODE;
/* Get the cpu and cache information */
get_cpuid();
/* setup pci */
pci_init();
get_cache_size();
cpu_type();
cpu_cache_speed();
/* Check fail safe */
failsafe(5000, 0x3B);
/* Initalize SMP */
initialise_cpus();
for (i = 0; i <num_cpus; i++) {
dprint(7, i+7, i%10, 1, 0);
cprint(8, i+7, "S");
}
dprint(9, 19, num_cpus, 2, 0);
if((v->fail_safe & 3) == 2)
{
cprint(LINE_CPU,9, "(SMP: Disabled)");
cprint(LINE_RAM,9, "Running...");
}
// dprint(10, 5, found_cpus, 2, 0);
/* Find Memory Specs */
if(v->fail_safe & 1)
{
cprint(LINE_CPU, COL_SPEC, " **** FAIL SAFE **** FAIL SAFE **** ");
cprint(LINE_RAM, COL_SPEC, " No detection, same reliability ");
} else {
find_controller();
get_spd_spec();
if(num_cpus <= 16 && !(v->fail_safe & 4)) { coretemp(); }
}
if(v->check_temp > 0 && !(v->fail_safe & 4))
{
cprint(LINE_CPU, 26, "| CPU Temp");
cprint(LINE_CPU+1, 26, "| C");
}
beep(600);
beep(1000);
/* Record the start time */
asm __volatile__ ("rdtsc":"=a" (v->startl),"=d" (v->starth));
v->snapl = v->startl;
v->snaph = v->starth;
if (l1_cache == 0) { l1_cache = 64; }
if (l2_cache == 0) { l1_cache = 512; }
v->printmode=PRINTMODE_ADDRESSES;
v->numpatn=0;
}
/* Get cache sizes for most AMD and Intel CPUs, exceptions for old CPUs are
* handled in CPU detection */
void get_cache_size()
{
int i, j, n, size;
unsigned int v[4];
unsigned char *dp = (unsigned char *)v;
struct cpuid4_eax *eax = (struct cpuid4_eax *)&v[0];
struct cpuid4_ebx *ebx = (struct cpuid4_ebx *)&v[1];
struct cpuid4_ecx *ecx = (struct cpuid4_ecx *)&v[2];
switch(cpu_id.vend_id.char_array[0]) {
/* AMD Processors */
case 'A':
//l1_cache = cpu_id.cache_info.amd.l1_i_sz;
l1_cache = cpu_id.cache_info.amd.l1_d_sz;
l2_cache = cpu_id.cache_info.amd.l2_sz;
l3_cache = cpu_id.cache_info.amd.l3_sz;
l3_cache *= 512;
break;
case 'G':
/* Intel Processors */
l1_cache = 0;
l2_cache = 0;
l3_cache = 0;
/* Use CPUID(4) if it is available */
if (cpu_id.max_cpuid > 3) {
/* figure out how many cache leaves */
n = -1;
do
{
++n;
/* Do cpuid(4) loop to find out num_cache_leaves */
cpuid_count(4, n, &v[0], &v[1], &v[2], &v[3]);
} while ((eax->ctype) != 0);
/* loop through all of the leaves */
for (i=0; i<n; i++)
{
cpuid_count(4, i, &v[0], &v[1], &v[2], &v[3]);
/* Check for a valid cache type */
if (eax->ctype == 1 || eax->ctype == 3)
{
/* Compute the cache size */
size = (ecx->number_of_sets + 1) *
(ebx->coherency_line_size + 1) *
(ebx->physical_line_partition + 1) *
(ebx->ways_of_associativity + 1);
size /= 1024;
switch (eax->level)
{
case 1:
l1_cache += size;
break;
case 2:
l2_cache += size;
break;
case 3:
l3_cache += size;
break;
}
}
}
return;
}
/* No CPUID(4) so we use the older CPUID(2) method */
/* Get number of times to iterate */
cpuid(2, &v[0], &v[1], &v[2], &v[3]);
n = v[0] & 0xff;
for (i=0 ; i<n ; i++) {
cpuid(2, &v[0], &v[1], &v[2], &v[3]);
/* If bit 31 is set, this is an unknown format */
for (j=0 ; j<3 ; j++) {
if (v[j] & (1 << 31)) {
v[j] = 0;
}
}
/* Byte 0 is level count, not a descriptor */
for (j = 1 ; j < 16 ; j++) {
switch(dp[j]) {
case 0x6:
case 0xa:
case 0x66:
l1_cache += 8;
break;
case 0x8:
case 0xc:
case 0xd:
case 0x60:
case 0x67:
l1_cache += 16;
break;
case 0xe:
l1_cache += 24;
break;
case 0x9:
case 0x2c:
case 0x30:
case 0x68:
l1_cache += 32;
break;
case 0x39:
case 0x3b:
case 0x41:
case 0x79:
l2_cache += 128;
break;
case 0x3a:
l2_cache += 192;
break;
case 0x21:
case 0x3c:
case 0x3f:
case 0x42:
case 0x7a:
case 0x82:
l2_cache += 256;
break;
case 0x3d:
l2_cache += 384;
break;
case 0x3e:
case 0x43:
case 0x7b:
case 0x7f:
case 0x80:
case 0x83:
case 0x86:
l2_cache += 512;
break;
case 0x44:
case 0x78:
case 0x7c:
case 0x84:
case 0x87:
l2_cache += 1024;
break;
case 0x45:
case 0x7d:
case 0x85:
l2_cache += 2048;
break;
case 0x48:
l2_cache += 3072;
break;
case 0x4e:
l2_cache += 6144;
break;
case 0x23:
case 0xd0:
l3_cache += 512;
break;
case 0xd1:
case 0xd6:
l3_cache += 1024;
break;
case 0x25:
case 0xd2:
case 0xd7:
case 0xdc:
case 0xe2:
l3_cache += 2048;
break;
case 0x29:
case 0x46:
case 0x49:
case 0xd8:
case 0xdd:
case 0xe3:
l3_cache += 4096;
break;
case 0x4a:
l3_cache += 6144;
break;
case 0x47:
case 0x4b:
case 0xde:
case 0xe4:
l3_cache += 8192;
break;
case 0x4c:
case 0xea:
l3_cache += 12288;
break;
case 0x4d:
l3_cache += 16384;
break;
case 0xeb:
l3_cache += 18432;
break;
case 0xec:
l3_cache += 24576;
break;
} /* end switch */
} /* end for 1-16 */
} /* end for 0 - n */
}
}
/*
* Find IMC type and set global variables accordingly
*/
void detect_imc(void)
{
// Check AMD IMC
if(cpu_id.vend_id.char_array[0] == 'A' && cpu_id.vers.bits.family == 0xF)
{
switch(cpu_id.vers.bits.extendedFamily)
{
case 0x0:
imc_type = 0x0100; // Old K8
break;
case 0x1:
case 0x2:
imc_type = 0x0101; // K10 (Family 10h & 11h)
break;
case 0x3:
imc_type = 0x0102; // A-Series APU (Family 12h)
break;
case 0x5:
imc_type = 0x0103; // C- / E- / Z- Series APU (Family 14h)
break;
case 0x6:
imc_type = 0x0104; // FX Series (Family 15h)
break;
case 0x7:
imc_type = 0x0105; // Kabini & related (Family 16h)
break;
}
return;
}
// Check Intel IMC
if(cpu_id.vend_id.char_array[0] == 'G' && cpu_id.vers.bits.family == 6 && cpu_id.vers.bits.extendedModel)
{
switch(cpu_id.vers.bits.model)
{
case 0x5:
if(cpu_id.vers.bits.extendedModel == 2) { imc_type = 0x0003; } // Core i3/i5 1st Gen 45 nm (NHM)
if(cpu_id.vers.bits.extendedModel == 3) { v->fail_safe |= 4; } // Atom Clover Trail
if(cpu_id.vers.bits.extendedModel == 4) { imc_type = 0x0007; } // HSW-ULT
break;
case 0x6:
if(cpu_id.vers.bits.extendedModel == 3) {
imc_type = 0x0009; // Atom Cedar Trail
v->fail_safe |= 4; // Disable Core temp
}
break;
case 0xA:
switch(cpu_id.vers.bits.extendedModel)
{
case 0x1:
imc_type = 0x0001; // Core i7 1st Gen 45 nm (NHME)
break;
case 0x2:
imc_type = 0x0004; // Core 2nd Gen (SNB)
break;
case 0x3:
imc_type = 0x0006; // Core 3nd Gen (IVB)
break;
}
break;
case 0xC:
switch(cpu_id.vers.bits.extendedModel)
{
case 0x1:
if(cpu_id.vers.bits.stepping > 9) { imc_type = 0x0008; } // Atom PineView
v->fail_safe |= 4; // Disable Core temp
break;
case 0x2:
imc_type = 0x0002; // Core i7 1st Gen 32 nm (WMR)
break;
case 0x3:
imc_type = 0x0007; // Core 4nd Gen (HSW)
break;
}
break;
case 0xD:
imc_type = 0x0005; // SNB-E
break;
case 0xE:
imc_type = 0x0001; // Core i7 1st Gen 45 nm (NHM)
break;
}
if(imc_type) { tsc_invariable = 1; }
return;
}
}
void smp_default_mode(void)
{
int i, result;
char *cpupsn = cpu_id.brand_id.char_array;
char *disabledcpu[] = { "Opteron", "Xeon", "Genuine Intel" };
for(i = 0; i < 3; i++)
{
result = strstr(cpupsn , disabledcpu[i]);
if(result != -1) { v->fail_safe |= 0b10; }
}
// For 5.01 release, SMP disabled by defualt by config.h toggle
if(CONSERVATIVE_SMP) { v->fail_safe |= 0b10; }
}
/*
* Find CPU type
*/
void cpu_type(void)
{
/* If we can get a brand string use it, and we are done */
if (cpu_id.max_xcpuid >= 0x80000004) {
cprint(0, COL_MID, cpu_id.brand_id.char_array);
//If we have a brand string, maybe we have an IMC. Check that.
detect_imc();
smp_default_mode();
return;
}
/* The brand string is not available so we need to figure out
* CPU what we have */
switch(cpu_id.vend_id.char_array[0]) {
/* AMD Processors */
case 'A':
switch(cpu_id.vers.bits.family) {
case 4:
switch(cpu_id.vers.bits.model) {
case 3:
cprint(0, COL_MID, "AMD 486DX2");
break;
case 7:
cprint(0, COL_MID, "AMD 486DX2-WB");
break;
case 8:
cprint(0, COL_MID, "AMD 486DX4");
break;
case 9:
cprint(0, COL_MID, "AMD 486DX4-WB");
break;
case 14:
cprint(0, COL_MID, "AMD 5x86-WT");
break;
case 15:
cprint(0, COL_MID, "AMD 5x86-WB");
break;
}
/* Since we can't get CPU speed or cache info return */
return;
case 5:
switch(cpu_id.vers.bits.model) {
case 0:
case 1:
case 2:
case 3:
cprint(0, COL_MID, "AMD K5");
l1_cache = 8;
break;
case 6:
case 7:
cprint(0, COL_MID, "AMD K6");
break;
case 8:
cprint(0, COL_MID, "AMD K6-2");
break;
case 9:
cprint(0, COL_MID, "AMD K6-III");
break;
case 13:
cprint(0, COL_MID, "AMD K6-III+");
break;
}
break;
case 6:
switch(cpu_id.vers.bits.model) {
case 1:
cprint(0, COL_MID, "AMD Athlon (0.25)");
break;
case 2:
case 4:
cprint(0, COL_MID, "AMD Athlon (0.18)");
break;
case 6:
if (l2_cache == 64) {
cprint(0, COL_MID, "AMD Duron (0.18)");
} else {
cprint(0, COL_MID, "Athlon XP (0.18)");
}
break;
case 8:
case 10:
if (l2_cache == 64) {
cprint(0, COL_MID, "AMD Duron (0.13)");
} else {
cprint(0, COL_MID, "Athlon XP (0.13)");
}
break;
case 3:
case 7:
cprint(0, COL_MID, "AMD Duron");
/* Duron stepping 0 CPUID for L2 is broken */
/* (AMD errata T13)*/
if (cpu_id.vers.bits.stepping == 0) { /* stepping 0 */
/* Hard code the right L2 size */
l2_cache = 64;
} else {
}
break;
}
break;
/* All AMD family values >= 10 have the Brand ID
* feature so we don't need to find the CPU type */
}
break;
/* Intel or Transmeta Processors */
case 'G':
if ( cpu_id.vend_id.char_array[7] == 'T' ) { /* GenuineTMx86 */
if (cpu_id.vers.bits.family == 5) {
cprint(0, COL_MID, "TM 5x00");
} else if (cpu_id.vers.bits.family == 15) {
cprint(0, COL_MID, "TM 8x00");
}
l1_cache = cpu_id.cache_info.ch[3] + cpu_id.cache_info.ch[7];
l2_cache = (cpu_id.cache_info.ch[11]*256) + cpu_id.cache_info.ch[10];
} else { /* GenuineIntel */
if (cpu_id.vers.bits.family == 4) {
switch(cpu_id.vers.bits.model) {
case 0:
case 1:
cprint(0, COL_MID, "Intel 486DX");
break;
case 2:
cprint(0, COL_MID, "Intel 486SX");
break;
case 3:
cprint(0, COL_MID, "Intel 486DX2");
break;
case 4:
cprint(0, COL_MID, "Intel 486SL");
break;
case 5:
cprint(0, COL_MID, "Intel 486SX2");
break;
case 7:
cprint(0, COL_MID, "Intel 486DX2-WB");
break;
case 8:
cprint(0, COL_MID, "Intel 486DX4");
break;
case 9:
cprint(0, COL_MID, "Intel 486DX4-WB");
break;
}
/* Since we can't get CPU speed or cache info return */
return;
}
switch(cpu_id.vers.bits.family) {
case 5:
switch(cpu_id.vers.bits.model) {
case 0:
case 1:
case 2:
case 3:
case 7:
cprint(0, COL_MID, "Pentium");
if (l1_cache == 0) {
l1_cache = 8;
}
break;
case 4:
case 8:
cprint(0, COL_MID, "Pentium-MMX");
if (l1_cache == 0) {
l1_cache = 16;
}
break;
}
break;
case 6:
switch(cpu_id.vers.bits.model) {
case 0:
case 1:
cprint(0, COL_MID, "Pentium Pro");
break;
case 3:
case 4:
cprint(0, COL_MID, "Pentium II");
break;
case 5:
if (l2_cache == 0) {
cprint(0, COL_MID, "Celeron");
} else {
cprint(0, COL_MID, "Pentium II");
}
break;
case 6:
if (l2_cache == 128) {
cprint(0, COL_MID, "Celeron");
} else {
cprint(0, COL_MID, "Pentium II");
}
}
break;
case 7:
case 8:
case 11:
if (l2_cache == 128) {
cprint(0, COL_MID, "Celeron");
} else {
cprint(0, COL_MID, "Pentium III");
}
break;
case 9:
if (l2_cache == 512) {
cprint(0, COL_MID, "Celeron M (0.13)");
} else {
cprint(0, COL_MID, "Pentium M (0.13)");
}
break;
case 10:
cprint(0, COL_MID, "Pentium III Xeon");
break;
case 12:
l1_cache = 24;
cprint(0, COL_MID, "Atom (0.045)");
break;
case 13:
if (l2_cache == 1024) {
cprint(0, COL_MID, "Celeron M (0.09)");
} else {
cprint(0, COL_MID, "Pentium M (0.09)");
}
break;
case 14:
cprint(0, COL_MID, "Intel Core");
break;
case 15:
if (l2_cache == 1024) {
cprint(0, COL_MID, "Pentium E");
} else {
cprint(0, COL_MID, "Intel Core 2");
}
break;
}
break;
case 15:
switch(cpu_id.vers.bits.model) {
case 0:
case 1:
case 2:
if (l2_cache == 128) {
cprint(0, COL_MID, "Celeron");
} else {
cprint(0, COL_MID, "Pentium 4");
}
break;
case 3:
case 4:
if (l2_cache == 256) {
cprint(0, COL_MID, "Celeron (0.09)");
} else {
cprint(0, COL_MID, "Pentium 4 (0.09)");
}
break;
case 6:
cprint(0, COL_MID, "Pentium D (65nm)");
break;
default:
cprint(0, COL_MID, "Unknown Intel");
break;
break;
}
}
break;
/* VIA/Cyrix/Centaur Processors with CPUID */
case 'C':
if ( cpu_id.vend_id.char_array[1] == 'e' ) { /* CentaurHauls */
l1_cache = cpu_id.cache_info.ch[3] + cpu_id.cache_info.ch[7];
l2_cache = cpu_id.cache_info.ch[11];
switch(cpu_id.vers.bits.family){
case 5:
cprint(0, COL_MID, "Centaur 5x86");
break;
case 6: // VIA C3
switch(cpu_id.vers.bits.model){
default:
if (cpu_id.vers.bits.stepping < 8) {
cprint(0, COL_MID, "VIA C3 Samuel2");
} else {
cprint(0, COL_MID, "VIA C3 Eden");
}
break;
case 10:
cprint(0, COL_MID, "VIA C7 (C5J)");
l1_cache = 64;
l2_cache = 128;
break;
case 13:
cprint(0, COL_MID, "VIA C7 (C5R)");
l1_cache = 64;
l2_cache = 128;
break;
case 15:
cprint(0, COL_MID, "VIA Isaiah (CN)");
l1_cache = 64;
l2_cache = 128;
break;
}
}
} else { /* CyrixInstead */
switch(cpu_id.vers.bits.family) {
case 5:
switch(cpu_id.vers.bits.model) {
case 0:
cprint(0, COL_MID, "Cyrix 6x86MX/MII");
break;
case 4:
cprint(0, COL_MID, "Cyrix GXm");
break;
}
return;
case 6: // VIA C3
switch(cpu_id.vers.bits.model) {
case 6:
cprint(0, COL_MID, "Cyrix III");
break;
case 7:
if (cpu_id.vers.bits.stepping < 8) {
cprint(0, COL_MID, "VIA C3 Samuel2");
} else {
cprint(0, COL_MID, "VIA C3 Ezra-T");
}
break;
case 8:
cprint(0, COL_MID, "VIA C3 Ezra-T");
break;
case 9:
cprint(0, COL_MID, "VIA C3 Nehemiah");
break;
}
// L1 = L2 = 64 KB from Cyrix III to Nehemiah
l1_cache = 64;
l2_cache = 64;
break;
}
}
break;
/* Unknown processor */
default:
/* Make a guess at the family */
switch(cpu_id.vers.bits.family) {
case 5:
cprint(0, COL_MID, "586");
case 6:
cprint(0, COL_MID, "686");
default:
cprint(0, COL_MID, "Unidentified Processor");
}
}
}
#define STEST_ADDR 0x100000 /* Measure memory speed starting at 1MB */
/* Measure and display CPU and cache sizes and speeds */
void cpu_cache_speed()
{
int i, off = 4;
ulong speed;
/* Print CPU speed */
if ((speed = cpuspeed()) > 0) {
if (speed < 999499) {
speed += 50; /* for rounding */
cprint(1, off, " . MHz");
dprint(1, off+1, speed/1000, 3, 1);
dprint(1, off+5, (speed/100)%10, 1, 0);
} else {
speed += 500; /* for rounding */
cprint(1, off, " MHz");
dprint(1, off, speed/1000, 5, 0);
}
extclock = speed;
}
/* Print out L1 cache info */
/* To measure L1 cache speed we use a block size that is 1/4th */
/* of the total L1 cache size since half of it is for instructions */
if (l1_cache) {
cprint(2, 0, "L1 Cache: K ");
dprint(2, 11, l1_cache, 3, 0);
if ((speed=memspeed(STEST_ADDR, (l1_cache/2)*1024, 200))) {
cprint(2, 16, " MB/s");
dprint(2, 16, speed, 6, 0);
}
}
/* Print out L2 cache info */
/* We measure the L2 cache speed by using a block size that is */
/* the size of the L1 cache. We have to fudge if the L1 */
/* cache is bigger than the L2 */
if (l2_cache) {
cprint(3, 0, "L2 Cache: K ");
dprint(3, 10, l2_cache, 4, 0);
if (l2_cache < l1_cache) {
i = l1_cache / 4 + l2_cache / 4;
} else {
i = l1_cache;
}
if ((speed=memspeed(STEST_ADDR, i*1024, 200))) {
cprint(3, 16, " MB/s");
dprint(3, 16, speed, 6, 0);
}
}
/* Print out L3 cache info */
/* We measure the L3 cache speed by using a block size that is */
/* 2X the size of the L2 cache. */
if (l3_cache)
{
cprint(4, 0, "L3 Cache: K ");
aprint(4, 10, l3_cache/4);
//dprint(4, 10, l3_cache, 4, 0);
i = l2_cache*2;
if ((speed=memspeed(STEST_ADDR, i*1024, 150))) {
cprint(4, 16, " MB/s");
dprint(4, 16, speed, 6, 0);
}
}
}
/* Measure and display memory speed, multitasked using all CPUs */
ulong spd[MAX_CPUS];
void get_mem_speed(int me, int ncpus)
{
int i;
ulong speed=0;
/* Determine memory speed. To find the memory speed we use
* A block size that is the sum of all the L1, L2 & L3 caches
* in all cpus * 6 */
i = (l3_cache + l2_cache + l1_cache) * 4;
/* Make sure that we have enough memory to do the test */
/* If not use all we have */
if ((1 + (i * 2)) > (v->plim_upper << 2)) {
i = ((v->plim_upper <<2) - 1) / 2;
}
speed = memspeed(STEST_ADDR, i * 1024, 100);
cprint(5, 16, " MB/s");
dprint(5, 16, speed, 6, 0);
}
/* #define TICKS 5 * 11832 (count = 6376)*/
/* #define TICKS (65536 - 12752) */
#define TICKS 59659 /* 50 ms */
/* Returns CPU clock in khz */
ulong stlow, sthigh;
static int cpuspeed(void)
{
int loops;
ulong end_low, end_high;
if (cpu_id.fid.bits.rdtsc == 0 ) {
return(-1);
}
/* Setup timer */
outb((inb(0x61) & ~0x02) | 0x01, 0x61);
outb(0xb0, 0x43);
outb(TICKS & 0xff, 0x42);
outb(TICKS >> 8, 0x42);
asm __volatile__ ("rdtsc":"=a" (stlow),"=d" (sthigh));
loops = 0;
do {
loops++;
} while ((inb(0x61) & 0x20) == 0);
asm __volatile__ (
"rdtsc\n\t" \
"subl stlow,%%eax\n\t" \
"sbbl sthigh,%%edx\n\t" \
:"=a" (end_low), "=d" (end_high)
);
/* Make sure we have a credible result */
if (loops < 4 || end_low < 50000) {
return(-1);
}
v->clks_msec = end_low/50;
if (tsc_invariable) end_low = correct_tsc(end_low);
return(v->clks_msec);
}
/* Measure cache speed by copying a block of memory. */
/* Returned value is kbytes/second */
ulong memspeed(ulong src, ulong len, int iter)
{
int i;
ulong dst, wlen;
ulong st_low, st_high;
ulong end_low, end_high;
ulong cal_low, cal_high;
if (cpu_id.fid.bits.rdtsc == 0 ) {
return(-1);
}
if (len == 0) return(-2);
dst = src + len;
wlen = len / 4; /* Length is bytes */
/* Calibrate the overhead with a zero word copy */
asm __volatile__ ("rdtsc":"=a" (st_low),"=d" (st_high));
for (i=0; i<iter; i++) {
asm __volatile__ (
"movl %0,%%esi\n\t" \
"movl %1,%%edi\n\t" \
"movl %2,%%ecx\n\t" \
"cld\n\t" \
"rep\n\t" \
"movsl\n\t" \
:: "g" (src), "g" (dst), "g" (0)
: "esi", "edi", "ecx"
);
}
asm __volatile__ ("rdtsc":"=a" (cal_low),"=d" (cal_high));
/* Compute the overhead time */
asm __volatile__ (
"subl %2,%0\n\t"
"sbbl %3,%1"
:"=a" (cal_low), "=d" (cal_high)
:"g" (st_low), "g" (st_high),
"0" (cal_low), "1" (cal_high)
);
/* Now measure the speed */
/* Do the first copy to prime the cache */
asm __volatile__ (
"movl %0,%%esi\n\t" \
"movl %1,%%edi\n\t" \
"movl %2,%%ecx\n\t" \
"cld\n\t" \
"rep\n\t" \
"movsl\n\t" \
:: "g" (src), "g" (dst), "g" (wlen)
: "esi", "edi", "ecx"
);
asm __volatile__ ("rdtsc":"=a" (st_low),"=d" (st_high));
for (i=0; i<iter; i++) {
asm __volatile__ (
"movl %0,%%esi\n\t" \
"movl %1,%%edi\n\t" \
"movl %2,%%ecx\n\t" \
"cld\n\t" \
"rep\n\t" \
"movsl\n\t" \
:: "g" (src), "g" (dst), "g" (wlen)
: "esi", "edi", "ecx"
);
}
asm __volatile__ ("rdtsc":"=a" (end_low),"=d" (end_high));
/* Compute the elapsed time */
asm __volatile__ (
"subl %2,%0\n\t"
"sbbl %3,%1"
:"=a" (end_low), "=d" (end_high)
:"g" (st_low), "g" (st_high),
"0" (end_low), "1" (end_high)
);
/* Subtract the overhead time */
asm __volatile__ (
"subl %2,%0\n\t"
"sbbl %3,%1"
:"=a" (end_low), "=d" (end_high)
:"g" (cal_low), "g" (cal_high),
"0" (end_low), "1" (end_high)
);
/* Make sure that the result fits in 32 bits */
//hprint(11,40,end_high);
if (end_high) {
return(-3);
}
end_low /= 2;
/* Convert to clocks/KB */
end_low /= len;
end_low *= 1024;
end_low /= iter;
if (end_low == 0) {
return(-4);
}
/* Convert to kbytes/sec */
if (tsc_invariable) end_low = correct_tsc(end_low);
return((v->clks_msec)/end_low);
}
#define rdmsr(msr,val1,val2) \
__asm__ __volatile__("rdmsr" \
: "=a" (val1), "=d" (val2) \
: "c" (msr))
ulong correct_tsc(ulong el_org)
{
float coef_now, coef_max;
int msr_lo, msr_hi, is_xe;
rdmsr(0x198, msr_lo, msr_hi);
is_xe = (msr_lo >> 31) & 0x1;
if(is_xe){
rdmsr(0x198, msr_lo, msr_hi);
coef_max = ((msr_hi >> 8) & 0x1F);
if ((msr_hi >> 14) & 0x1) { coef_max = coef_max + 0.5f; }
} else {
rdmsr(0x17, msr_lo, msr_hi);
coef_max = ((msr_lo >> 8) & 0x1F);
if ((msr_lo >> 14) & 0x1) { coef_max = coef_max + 0.5f; }
}
if(cpu_id.fid.bits.eist) {
rdmsr(0x198, msr_lo, msr_hi);
coef_now = ((msr_lo >> 8) & 0x1F);
if ((msr_lo >> 14) & 0x1) { coef_now = coef_now + 0.5f; }
} else {
rdmsr(0x2A, msr_lo, msr_hi);
coef_now = (msr_lo >> 22) & 0x1F;
}
if(coef_max && coef_now) {
el_org = (ulong)(el_org * coef_now / coef_max);
}
return el_org;
}
|