File: smp.c

package info (click to toggle)
memtest86+ 5.01-3
  • links: PTS
  • area: main
  • in suites: buster, sid, stretch
  • size: 1,336 kB
  • ctags: 2,585
  • sloc: ansic: 17,514; asm: 1,805; makefile: 239; sh: 127
file content (692 lines) | stat: -rw-r--r-- 17,061 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
/*
 * MemTest86+ V5 Specific code (GPL V2.0)
 * By Samuel DEMEULEMEESTER, sdemeule@memtest.org
 * http://www.canardpc.com - http://www.memtest.org
 * ------------------------------------------------
 * smp.c - MemTest-86  Version 3.5
 *
 * Released under version 2 of the Gnu Public License.
 * By Chris Brady
 */

#include "stddef.h"
#include "stdint.h"
#include "cpuid.h"
#include "smp.h"
#include "test.h"

#define DELAY_FACTOR 1
unsigned num_cpus = 1; // There is at least one cpu, the BSP
int act_cpus;
unsigned found_cpus = 0;

extern void memcpy(void *dst, void *src , int len);
extern void test_start(void);
extern int run_cpus;
extern int maxcpus;
extern char cpu_mask[];
extern struct cpu_ident cpu_id;

struct barrier_s *barr;

void smp_find_cpus();

void barrier_init(int max)
{
	/* Set the adddress of the barrier structure */
	barr = (struct barrier_s *)0x9ff00;
        barr->lck.slock = 1;
        barr->mutex.slock = 1;
        barr->maxproc = max;
        barr->count = max;
        barr->st1.slock = 1;
        barr->st2.slock = 0;
}

void s_barrier_init(int max)
{
        barr->s_lck.slock = 1;
        barr->s_maxproc = max;
        barr->s_count = max;
        barr->s_st1.slock = 1;
        barr->s_st2.slock = 0;
}

void barrier()
{
	if (num_cpus == 1 || v->fail_safe & 3) {
		return;
	}
	spin_wait(&barr->st1);     /* Wait if the barrier is active */
        spin_lock(&barr->lck);	   /* Get lock for barr struct */
        if (--barr->count == 0) {  /* Last process? */
                barr->st1.slock = 0;   /* Hold up any processes re-entering */
                barr->st2.slock = 1;   /* Release the other processes */
                barr->count++;
                spin_unlock(&barr->lck); 
        } else {
                spin_unlock(&barr->lck); 
                spin_wait(&barr->st2);	/* wait for peers to arrive */
                spin_lock(&barr->lck);   
                if (++barr->count == barr->maxproc) { 
                        barr->st1.slock = 1; 
                        barr->st2.slock = 0; 
                }
                spin_unlock(&barr->lck); 
        }
}

void s_barrier()
{
	if (run_cpus == 1 || v->fail_safe & 3) {
		return;
	}
	spin_wait(&barr->s_st1);     /* Wait if the barrier is active */
        spin_lock(&barr->s_lck);     /* Get lock for barr struct */
        if (--barr->s_count == 0) {  /* Last process? */
                barr->s_st1.slock = 0;   /* Hold up any processes re-entering */
                barr->s_st2.slock = 1;   /* Release the other processes */
                barr->s_count++;
                spin_unlock(&barr->s_lck); 
        } else {
                spin_unlock(&barr->s_lck); 
                spin_wait(&barr->s_st2);	/* wait for peers to arrive */
                spin_lock(&barr->s_lck);   
                if (++barr->s_count == barr->s_maxproc) { 
                        barr->s_st1.slock = 1; 
                        barr->s_st2.slock = 0; 
                }
                spin_unlock(&barr->s_lck); 
        }
}

typedef struct {
   bool started;
} ap_info_t;

volatile apic_register_t *APIC = NULL;
/* CPU number to APIC ID mapping table. CPU 0 is the BSP. */
static unsigned cpu_num_to_apic_id[MAX_CPUS];
volatile ap_info_t AP[MAX_CPUS];

void PUT_MEM16(uintptr_t addr, uint16_t val)
{
   *((volatile uint16_t *)addr) = val;
}

void PUT_MEM32(uintptr_t addr, uint32_t val)
{
   *((volatile uint32_t *)addr) = val;
}

static void inline 
APIC_WRITE(unsigned reg, uint32_t val)
{
   APIC[reg][0] = val;
}

static inline uint32_t 
APIC_READ(unsigned reg)
{
   return APIC[reg][0];
}


static void 
SEND_IPI(unsigned apic_id, unsigned trigger, unsigned level, unsigned mode,
	    uint8_t vector)
{
   uint32_t v;

   v = APIC_READ(APICR_ICRHI) & 0x00ffffff;
   APIC_WRITE(APICR_ICRHI, v | (apic_id << 24));

   v = APIC_READ(APICR_ICRLO) & ~0xcdfff;
   v |= (APIC_DEST_DEST << APIC_ICRLO_DEST_OFFSET) 
      | (trigger << APIC_ICRLO_TRIGGER_OFFSET)
      | (level << APIC_ICRLO_LEVEL_OFFSET)
      | (mode << APIC_ICRLO_DELMODE_OFFSET)
      | (vector);
   APIC_WRITE(APICR_ICRLO, v);
}


// Silly way of busywaiting, but we don't have a timer
void delay(unsigned us) 
{
   unsigned freq = 1000; // in MHz, assume 1GHz CPU speed
   uint64_t cycles = us * freq;
   uint64_t t0 = RDTSC();
   uint64_t t1;
   volatile unsigned k;

   do {
      for (k = 0; k < 1000; k++) continue;
      t1 = RDTSC();
   } while (t1 - t0 < cycles);
}

static inline void
memset (void *dst,
        char  value,
        int   len)
{
   int i;
   for (i = 0 ; i < len ; i++ ) { 
      *((char *) dst + i) = value;
   }
}
void initialise_cpus(void)
{
	int i;

	act_cpus = 0;

	if (maxcpus > 1) {
		smp_find_cpus();
		/* The total number of CPUs may be limited */
		if (num_cpus > maxcpus) {
			num_cpus = maxcpus;
		}
		/* Determine how many cpus have been selected */
		for(i = 0; i < num_cpus; i++) {
			if (cpu_mask[i]) {
				act_cpus++;
			}
		}
	} else {
		act_cpus = found_cpus = num_cpus = 1;
	}

	/* Initialize the barrier before starting AP's */
	barrier_init(act_cpus);

	/* let the BSP initialise the APs. */
	for(i = 1; i < num_cpus; i++) {
	    /* Only start this CPU if it is selected by the mask */
	    if (cpu_mask[i]) {
	        smp_boot_ap(i);
	    }
	}

}
void kick_cpu(unsigned cpu_num)
{
   unsigned num_sipi, apic_id;
   apic_id = cpu_num_to_apic_id[cpu_num];

   // clear the APIC ESR register
   APIC_WRITE(APICR_ESR, 0);
   APIC_READ(APICR_ESR);

   // asserting the INIT IPI
   SEND_IPI(apic_id, APIC_TRIGGER_LEVEL, 1, APIC_DELMODE_INIT, 0);
   delay(100000 / DELAY_FACTOR);

   // de-assert the INIT IPI
   SEND_IPI(apic_id, APIC_TRIGGER_LEVEL, 0, APIC_DELMODE_INIT, 0);

   for (num_sipi = 0; num_sipi < 2; num_sipi++) {
      unsigned timeout;
      bool send_pending;
      unsigned err;

      APIC_WRITE(APICR_ESR, 0);

      SEND_IPI(apic_id, 0, 0, APIC_DELMODE_STARTUP, (unsigned)startup_32 >> 12);

      timeout = 0;
      do {
	 delay(10);
	 timeout++;
	 send_pending = (APIC_READ(APICR_ICRLO) & APIC_ICRLO_STATUS_MASK) != 0;
      } while (send_pending && timeout < 1000);

      if (send_pending) {
	 cprint(LINE_STATUS+3, 0, "SMP: STARTUP IPI was never sent");
      }
      
      delay(100000 / DELAY_FACTOR);

      err = APIC_READ(APICR_ESR) & 0xef;
      if (err) {
	 cprint(LINE_STATUS+3, 0, "SMP: After STARTUP IPI: err = 0x");
         hprint(LINE_STATUS+3, COL_MID, err);
      }
   }
}

// These memory locations are used for the trampoline code and data.

#define BOOTCODESTART 0x9000
#define GDTPOINTERADDR 0x9100
#define GDTADDR 0x9110

void boot_ap(unsigned cpu_num)
{
   unsigned num_sipi, apic_id;
   extern uint8_t gdt; 
   extern uint8_t _ap_trampoline_start;
   extern uint8_t _ap_trampoline_protmode;
   unsigned len = &_ap_trampoline_protmode - &_ap_trampoline_start;
   apic_id = cpu_num_to_apic_id[cpu_num];


   memcpy((uint8_t*)BOOTCODESTART, &_ap_trampoline_start, len);

   // Fixup the LGDT instruction to point to GDT pointer.
   PUT_MEM16(BOOTCODESTART + 3, GDTPOINTERADDR);

   // Copy a pointer to the temporary GDT to addr GDTPOINTERADDR.
   // The temporary gdt is at addr GDTADDR
   PUT_MEM16(GDTPOINTERADDR, 4 * 8);
   PUT_MEM32(GDTPOINTERADDR + 2, GDTADDR);

   // Copy the first 4 gdt entries from the currently used GDT to the
   // temporary GDT.
   memcpy((uint8_t *)GDTADDR, &gdt, 32);

   // clear the APIC ESR register
   APIC_WRITE(APICR_ESR, 0);
   APIC_READ(APICR_ESR);

   // asserting the INIT IPI
   SEND_IPI(apic_id, APIC_TRIGGER_LEVEL, 1, APIC_DELMODE_INIT, 0);
   delay(100000 / DELAY_FACTOR);

   // de-assert the INIT IPI
   SEND_IPI(apic_id, APIC_TRIGGER_LEVEL, 0, APIC_DELMODE_INIT, 0);

   for (num_sipi = 0; num_sipi < 2; num_sipi++) {
      unsigned timeout;
      bool send_pending;
      unsigned err;

      APIC_WRITE(APICR_ESR, 0);

      SEND_IPI(apic_id, 0, 0, APIC_DELMODE_STARTUP, BOOTCODESTART >> 12);

      timeout = 0;
      do {
	 delay(10);
	 timeout++;
	 send_pending = (APIC_READ(APICR_ICRLO) & APIC_ICRLO_STATUS_MASK) != 0;
      } while (send_pending && timeout < 1000);

      if (send_pending) {
	 cprint(LINE_STATUS+3, 0, "SMP: STARTUP IPI was never sent");
      }
      
      delay(100000 / DELAY_FACTOR);

      err = APIC_READ(APICR_ESR) & 0xef;
      if (err) {
	 cprint(LINE_STATUS+3, 0, "SMP: After STARTUP IPI: err = 0x");
         hprint(LINE_STATUS+3, COL_MID, err);
      }
   }
}

static int checksum(unsigned char *mp, int len)
{
   int sum = 0;

   while (len--) {
       sum += *mp++;
   }
   return (sum & 0xFF);
}

/* Parse an MP config table for CPU information */
bool read_mp_config_table(uintptr_t addr)
{
   mp_config_table_header_t *mpc = (mp_config_table_header_t*)addr;
   uint8_t *tab_entry_ptr;
   uint8_t *mpc_table_end;

   if (mpc->signature != MPCSignature) {
      return FALSE;
   }
   if (checksum((unsigned char*)mpc, mpc->length) != 0) {
      return FALSE;
   }

   /* FIXME: the uintptr_t cast here works around a compilation problem on
    * AMD64, but it ignores the real problem, which is that lapic_addr
    * is only 32 bits.  Maybe that's OK, but it should be investigated.
    */
   APIC = (volatile apic_register_t*)(uintptr_t)mpc->lapic_addr;

   tab_entry_ptr = ((uint8_t*)mpc) + sizeof(mp_config_table_header_t);
   mpc_table_end = ((uint8_t*)mpc) + mpc->length;
      
   while (tab_entry_ptr < mpc_table_end) {
      switch (*tab_entry_ptr) {
	      case MP_PROCESSOR: {
		 			mp_processor_entry_t *pe = (mp_processor_entry_t*)tab_entry_ptr;
	
					 if (pe->cpu_flag & CPU_BOOTPROCESSOR) {
					    // BSP is CPU 0
					    cpu_num_to_apic_id[0] = pe->apic_id;
					 } else if (num_cpus < MAX_CPUS) {
					    cpu_num_to_apic_id[num_cpus] = pe->apic_id;
					    num_cpus++;
					 }
					 found_cpus++;
					    
					 // we cannot handle non-local 82489DX apics
					 if ((pe->apic_ver & 0xf0) != 0x10) {
					    return 0;
					 }
				
					 tab_entry_ptr += sizeof(mp_processor_entry_t);
					 break;
				}
	      case MP_BUS: {
					 tab_entry_ptr += sizeof(mp_bus_entry_t);
					 break;
				}
	      case MP_IOAPIC: {
					 tab_entry_ptr += sizeof(mp_io_apic_entry_t);
					 break;
				}
	      case MP_INTSRC:
					 tab_entry_ptr += sizeof(mp_interrupt_entry_t);
					 break;
	      case MP_LINTSRC:
					 tab_entry_ptr += sizeof(mp_local_interrupt_entry_t);
					 break;
	      default: 
		 			 return FALSE;
      }
   }
   return TRUE;
}

/* Search for a Floating Pointer structure */
floating_pointer_struct_t *
scan_for_floating_ptr_struct(uintptr_t addr, uint32_t length)
{
   floating_pointer_struct_t *fp;
   uintptr_t end = addr + length;


   while ((uintptr_t)addr < end) {
      fp = (floating_pointer_struct_t*)addr;
      if (*(unsigned int *)addr == FPSignature && fp->length == 1 && checksum((unsigned char*)addr, 16) == 0 &&	((fp->spec_rev == 1) || (fp->spec_rev == 4))) {
	   		return fp;
      }
      addr += 4;
   }
   return NULL;
}

/* Search for a Root System Descriptor Pointer */
rsdp_t *scan_for_rsdp(uintptr_t addr, uint32_t length)
{
   rsdp_t *rp;
   uintptr_t end = addr + length;


   while ((uintptr_t)addr < end) {
      rp = (rsdp_t*)addr;
      if (*(unsigned int *)addr == RSDPSignature && 
		checksum((unsigned char*)addr, rp->length) == 0) {
	   return rp;
      }
      addr += 4;
   }
   return NULL;
}

/* Parse a MADT table for processor entries */
int parse_madt(uintptr_t addr) {

   mp_config_table_header_t *mpc = (mp_config_table_header_t*)addr;
   uint8_t *tab_entry_ptr;
   uint8_t *mpc_table_end;

   if (checksum((unsigned char*)mpc, mpc->length) != 0) {
      return FALSE;
   }

   APIC = (volatile apic_register_t*)(uintptr_t)mpc->lapic_addr;

   tab_entry_ptr = ((uint8_t*)mpc) + sizeof(mp_config_table_header_t);
   mpc_table_end = ((uint8_t*)mpc) + mpc->length;
   	while (tab_entry_ptr < mpc_table_end) {
		
			madt_processor_entry_t *pe = (madt_processor_entry_t*)tab_entry_ptr;
			if (pe->type == MP_PROCESSOR) {
				if (pe->enabled) {
					if (num_cpus < MAX_CPUS) {
						cpu_num_to_apic_id[num_cpus] = pe->apic_id;
		
						/* the first CPU is the BSP, don't increment */
						if (found_cpus) {
							num_cpus++;
						}
					}
					found_cpus++;
				}
			}
			tab_entry_ptr += pe->length;
		}
   return TRUE;
}

/* This is where we search for SMP information in the following order
 * look for a floating MP pointer
 *   found:
 *     check for a default configuration
 * 	 found:
 *	   setup config, return
 *     check for a MP config table
 *	 found:
 *	   validate:
 *           good:
 *	        parse the MP config table
 *		  good:
 *		    setup config, return
 *
 * find & validate ACPI RSDP (Root System Descriptor Pointer)
 *   found:
 *     find & validate RSDT (Root System Descriptor Table)
 *       found:
 *         find & validate MSDT
 *	     found:
 *             parse the MADT table
 *               good:
 *		   setup config, return
 */
void smp_find_cpus()
{
   floating_pointer_struct_t *fp;
   rsdp_t *rp;
   rsdt_t *rt;
   uint8_t *tab_ptr, *tab_end;
   unsigned int *ptr;
   unsigned int uiptr;

   if(v->fail_safe & 3) { return; }

   memset(&AP, 0, sizeof AP);

	if(v->fail_safe & 8)
	{		
	   // Search for the Floating MP structure pointer
	   fp = scan_for_floating_ptr_struct(0x0, 0x400);
	   if (fp == NULL) {
	      fp = scan_for_floating_ptr_struct(639*0x400, 0x400);
	   }
	   if (fp == NULL) {
	      fp = scan_for_floating_ptr_struct(0xf0000, 0x10000);
	   }
	   if (fp == NULL) {
	        // Search the BIOS ESDS area
	        unsigned int address = *(unsigned short *)0x40E;
	        address <<= 4;
					if (address) {
	       		fp = scan_for_floating_ptr_struct(address, 0x400);
	        }
	   }
	
	   if (fp != NULL) {
				// We have a floating MP pointer
				// Is this a default configuration?
				
				if (fp->feature[0] > 0 && fp->feature[0] <=7) {
				    // This is a default config so plug in the numbers
				    num_cpus = 2;
				    APIC = (volatile apic_register_t*)0xFEE00000;
				    cpu_num_to_apic_id[0] = 0;
				    cpu_num_to_apic_id[1] = 1;
				    return;
				}
				
				// Do we have a pointer to a MP configuration table?
				if ( fp->phys_addr != 0) {
				    if (read_mp_config_table(fp->phys_addr)) {
							// Found a good MP table, done
							return;
				    }
				}
	   }
	}


   /* No MP table so far, try to find an ACPI MADT table
    * We try to use the MP table first since there is no way to distinguish
    * real cores from hyper-threads in the MADT */

   /* Search for the RSDP */
   rp = scan_for_rsdp(0xE0000, 0x20000);
   if (rp == NULL) {
        /* Search the BIOS ESDS area */
        unsigned int address = *(unsigned short *)0x40E;
        address <<= 4;
				if (address) {
       		rp = scan_for_rsdp(address, 0x400);
        }
   }
    
   if (rp == NULL) {
		/* RSDP not found, give up */
		return;
   }

   /* Found the RSDP, now get either the RSDT or XSDT */
   if (rp->revision >= 2) {
			rt = (rsdt_t *)rp->xrsdt[0];
			
			if (rt == 0) {
				return;
			}
			// Validate the XSDT 
			if (*(unsigned int *)rt != XSDTSignature) {
				return;
			}
			if ( checksum((unsigned char*)rt, rt->length) != 0) {
				return;
			}
			
    } else {
			rt = (rsdt_t *)rp->rsdt;
			if (rt == 0) {
				return;
			}
			/* Validate the RSDT */
			if (*(unsigned int *)rt != RSDTSignature) {
				return;
			}
			if ( checksum((unsigned char*)rt, rt->length) != 0) {
				return;
			}
    }

    /* Scan the RSDT or XSDT for a pointer to the MADT */
    tab_ptr = ((uint8_t*)rt) + sizeof(rsdt_t);
    tab_end = ((uint8_t*)rt) + rt->length;

    while (tab_ptr < tab_end) {

		uiptr = *((unsigned int *)tab_ptr);
		ptr = (unsigned int *)uiptr;

			/* Check for the MADT signature */
			if (ptr && *ptr == MADTSignature) {
		    /* Found it, now parse it */
		    if (parse_madt((uintptr_t)ptr)) {
					return;
		    }
			}
      tab_ptr += 4;
    }
}
	
unsigned my_apic_id()
{
   return (APIC[APICR_ID][0]) >> 24;
}

void smp_ap_booted(unsigned cpu_num) 
{
   AP[cpu_num].started = TRUE;
}

void smp_boot_ap(unsigned cpu_num)
{
   unsigned timeout;

   boot_ap(cpu_num);
   timeout = 0;
   do {
      delay(1000 / DELAY_FACTOR);
      timeout++;
   } while (!AP[cpu_num].started && timeout < 100000 / DELAY_FACTOR);

   if (!AP[cpu_num].started) {
      cprint(LINE_STATUS+3, 0, "SMP: Boot timeout for");
      dprint(LINE_STATUS+3, COL_MID, cpu_num,2,1);
      cprint(LINE_STATUS+3, 26, "Turning off SMP");
   }
}

unsigned smp_my_cpu_num()
{
   unsigned apicid = my_apic_id();
   unsigned i;

   for (i = 0; i < MAX_CPUS; i++) {
      if (apicid == cpu_num_to_apic_id[i]) {
	 break;
      }
   }
   if (i == MAX_CPUS) {
      i = 0;
   }
   return i;
}

/* A set of simple functions used to preserve assigned CPU ordinals since
 * they are lost after relocation (the stack is reloaded).
 */
int num_to_ord[MAX_CPUS];
void smp_set_ordinal(int me, int ord)
{
	num_to_ord[me] = ord;
}

int smp_my_ord_num(int me)
{
	return num_to_ord[me];
}

int smp_ord_to_cpu(int me)
{
	int i;
	for (i=0; i<MAX_CPUS; i++) {
		if (num_to_ord[i] == me) return i;
	}
	return -1;
}