1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
|
%-----------------------------------------------------------------------------%
% Copyright (C) 1999-2000 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% Module: assertion
%
% Main authors: petdr
%
% This module is an abstract interface to the assertion table.
% Note that this is a first design and will probably change
% substantially in the future.
%
%-----------------------------------------------------------------------------%
:- module (assertion).
:- interface.
:- import_module hlds_data, hlds_goal, hlds_module, hlds_pred, prog_data.
:- import_module io, std_util.
%
% assertion__goal
%
% Get the hlds_goal which represents the assertion.
%
:- pred assertion__goal(assert_id::in, module_info::in, hlds_goal::out) is det.
%
% assertion__record_preds_used_in
%
% Record into the pred_info of each pred used in the assertion
% the assert_id.
%
:- pred assertion__record_preds_used_in(hlds_goal::in, assert_id::in,
module_info::in, module_info::out) is det.
%
% assertion__is_commutativity_assertion(Id, MI, Vs, CVs)
%
% Does the assertion represented by the assertion id, Id,
% state the commutativity of a pred/func?
% We extend the usual definition of commutativity to apply to
% predicates or functions with more than two arguments as
% follows by allowing extra arguments which must be invariant.
% If so, this predicate returns (in CVs) the two variables which
% can be swapped in order if it was a call to Vs.
%
% The assertion must be in a form similar to this
% all [Is,A,B,C] ( p(Is,A,B,C) <=> p(Is,B,A,C) )
% for the predicate to return true (note that the invariant
% arguments, Is, can be any where providing they are in
% identical locations on both sides of the equivalence).
%
:- pred assertion__is_commutativity_assertion(assert_id::in, module_info::in,
prog_vars::in, pair(prog_var)::out) is semidet.
%
%
% assertion__is_associativity_assertion(Id, MI, Vs, CVs, OV)
%
% Does the assertion represented by the assertion id, Id,
% state the associativity of a pred/func?
% We extend the usual definition of associativity to apply to
% predicates or functions with more than two arguments as
% follows by allowing extra arguments which must be invariant.
% If so, this predicate returns (in CVs) the two variables which
% can be swapped in order if it was a call to Vs, and the
% output variable, OV, related to these two variables (for the
% case below it would be the variable in the same position as
% AB, BC or ABC).
%
% The assertion must be in a form similar to this
% all [Is,A,B,C,ABC]
% (
% some [AB] p(Is,A,B,AB), p(Is,AB,C,ABC)
% <=>
% some [BC] p(Is,B,C,BC), p(Is,A,BC,ABC)
% )
% for the predicate to return true (note that the invariant
% arguments, Is, can be any where providing they are in
% identical locations on both sides of the equivalence).
%
:- pred assertion__is_associativity_assertion(assert_id::in, module_info::in,
prog_vars::in, pair(prog_var)::out, prog_var::out) is semidet.
%
% assertion__is_associativity_assertion(Id, MI, PId, Vs, SPair)
%
% Recognise assertions in the form
% all [A,B,S0,S]
% (
% some [SA] p(A,S0,SA), p(B,SA,S)
% <=>
% some [SB] p(B,S0,SB), p(A,SB,S)
% )
% and given the actual variables, Vs, to the call to p, return
% the pair of variables which are state variables, SPair.
%
:- pred assertion__is_update_assertion(assert_id::in, module_info::in,
pred_id::in, prog_vars::in, pair(prog_var)::out) is semidet.
%
% assertion__is_construction_equivalence_assertion(Id, MI, C, P)
%
% Can a single construction unification whose functor is
% determined by the cons_id, C, be expressed as a call
% to the predid, P (with possibly some construction unifications
% to initialise the arguments).
%
% The assertion will be in a form similar to
% all [L,H,T] ( L = [H|T] <=> append([H], T, L) )
%
:- pred assertion__is_construction_equivalence_assertion(assert_id::in,
module_info::in, cons_id::in, pred_id::in) is semidet.
%
% assertion__in_interface_check
%
% Ensure that an assertion which is defined in an interface
% doesn't refer to any constructors, functions and predicates
% defined in the implementation of that module.
%
:- pred assertion__in_interface_check(hlds_goal::in, pred_info::in,
module_info::in, module_info::out,
io__state::di, io__state::uo) is det.
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module globals, goal_util, hlds_out.
:- import_module options, prog_out, prog_util, type_util.
:- import_module assoc_list, bool, list, map, require, set, std_util.
:- type subst == map(prog_var, prog_var).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
assertion__is_commutativity_assertion(AssertId, Module, CallVars,
CommutativeVars) :-
assertion__goal(AssertId, Module, Goal),
equivalent(Goal, P, Q),
P = call(PredId, _, VarsP, _, _, _) - _,
Q = call(PredId, _, VarsQ, _, _, _) - _,
commutative_var_ordering(VarsP, VarsQ, CallVars, CommutativeVars).
%
% commutative_var_ordering(Ps, Qs, Vs, CommutativeVs)
%
% Check that the two list of variables are identical except that
% the position of two variables has been swapped.
% e.g [A,B,C] and [B,A,C] is true.
% It also takes a list of variables, Vs, to a call and returns
% the two variables in that list that can be swapped, ie [A,B].
%
:- pred commutative_var_ordering(prog_vars::in, prog_vars::in,
prog_vars::in, pair(prog_var)::out) is semidet.
commutative_var_ordering([P|Ps], [Q|Qs], [V|Vs], CommutativeVars) :-
(
P = Q
->
commutative_var_ordering(Ps, Qs, Vs, CommutativeVars)
;
commutative_var_ordering_2(P, Q, Ps, Qs, Vs, CallVarB),
CommutativeVars = V - CallVarB
).
:- pred commutative_var_ordering_2(prog_var::in, prog_var::in, prog_vars::in,
prog_vars::in, prog_vars::in, prog_var::out) is semidet.
commutative_var_ordering_2(VarP, VarQ, [P|Ps], [Q|Qs], [V|Vs], CallVarB) :-
(
P = Q
->
commutative_var_ordering_2(VarP, VarQ, Ps, Qs, Vs, CallVarB)
;
CallVarB = V,
P = VarQ,
Q = VarP,
Ps = Qs
).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
assertion__is_associativity_assertion(AssertId, Module, CallVars,
AssociativeVars, OutputVar) :-
assertion__goal(AssertId, Module, Goal - GoalInfo),
equivalent(Goal - GoalInfo, P, Q),
goal_info_get_nonlocals(GoalInfo, UniversiallyQuantifiedVars),
% There may or may not be a some [] depending on whether
% the user explicity qualified the call or not.
(
P = some(_, _, conj(PCalls0) - _) - _PGoalInfo,
Q = some(_, _, conj(QCalls0) - _) - _QGoalInfo
->
PCalls = PCalls0,
QCalls = QCalls0
;
P = conj(PCalls) - _PGoalInfo,
Q = conj(QCalls) - _QGoalInfo
),
AssociativeVars - OutputVar =
promise_only_solution(associative(PCalls, QCalls,
UniversiallyQuantifiedVars, CallVars)).
% associative(Ps, Qs, Us, R)
%
% If the assertion was in the form
% all [Us] (some [] (Ps)) <=> (some [] (Qs))
% try and rearrange the order of Ps and Qs so that the assertion
% is in the standard from
%
% compose( A, B, AB), compose(B, C, BC),
% compose(AB, C, ABC) <=> compose(A, BC, ABC)
:- pred associative(hlds_goals::in, hlds_goals::in,
set(prog_var)::in, prog_vars::in,
pair(pair(prog_var), prog_var)::out) is cc_nondet.
associative(PCalls, QCalls, UniversiallyQuantifiedVars, CallVars,
(CallVarA - CallVarB) - OutputVar) :-
reorder(PCalls, QCalls, LHSCalls, RHSCalls),
process_one_side(LHSCalls, UniversiallyQuantifiedVars, PredId,
AB, PairsL, Vs),
process_one_side(RHSCalls, UniversiallyQuantifiedVars, PredId,
BC, PairsR, _),
% If you read the predicate documentation, you will note
% that for each pair of variables on the left hand side
% there are an equivalent pair of variables on the right
% hand side. As the pairs of variables are not
% symmetric, the call to list__perm will only succeed
% once, if at all.
assoc_list__from_corresponding_lists(PairsL, PairsR, Pairs),
list__perm(Pairs, [(A - AB) - (B - A), (B - C) - (C - BC),
(AB - ABC) - (BC - ABC)]),
assoc_list__from_corresponding_lists(Vs, CallVars, AssocList),
list__filter((pred(X-_Y::in) is semidet :- X = AB),
AssocList, [_AB - OutputVar]),
list__filter((pred(X-_Y::in) is semidet :- X = A),
AssocList, [_A - CallVarA]),
list__filter((pred(X-_Y::in) is semidet :- X = B),
AssocList, [_B - CallVarB]).
% reorder(Ps, Qs, Ls, Rs)
%
% Given both sides of the equivalence return another possible
% ordering.
:- pred reorder(hlds_goals::in, hlds_goals::in,
hlds_goals::out, hlds_goals::out) is nondet.
reorder(PCalls, QCalls, LHSCalls, RHSCalls) :-
list__perm(PCalls, LHSCalls),
list__perm(QCalls, RHSCalls).
reorder(PCalls, QCalls, LHSCalls, RHSCalls) :-
list__perm(PCalls, RHSCalls),
list__perm(QCalls, LHSCalls).
% process_one_side(Gs, Us, L, Ps)
%
% Given the list of goals, Gs, which are one side of a possible
% associative equivalence, and the universally quantified
% variables, Us, of the goals return L the existentially
% quantified variable that links the two calls and Ps the list
% of variables which are not invariants.
%
% ie for app(TypeInfo, X, Y, XY), app(TypeInfo, XY, Z, XYZ)
% L <= XY and Ps <= [X - XY, Y - Z, XY - XYZ]
:- pred process_one_side(hlds_goals::in, set(prog_var)::in, pred_id::out,
prog_var::out, assoc_list(prog_var)::out,
prog_vars::out) is semidet.
process_one_side(Goals, UniversiallyQuantifiedVars, PredId,
LinkingVar, Vars, VarsA) :-
process_two_linked_calls(Goals, UniversiallyQuantifiedVars, PredId,
LinkingVar, Vars0, VarsA),
% Filter out all the invariant arguments, and then make
% sure that their is only 3 arguments left.
list__filter((pred(X-Y::in) is semidet :- not X = Y), Vars0, Vars),
list__length(Vars, number_of_associative_vars).
:- func number_of_associative_vars = int.
number_of_associative_vars = 3.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
%
% assertion__is_update_assertion(Id, MI, PId, Ss)
%
% is true iff the assertion, Id, is about a predicate, PId,
% which takes some state as input and produces some state as
% output and the same state is produced as input regardless of
% the order that the state is updated.
%
% ie the promise should look something like this, note that A
% and B could be vectors of variables.
% :- promise all [A,B,SO,S]
% (
% (some [SA] (update(S0,A,SA), update(SA,B,S)))
% <=>
% (some [SB] (update(S0,B,SB), update(SB,A,S)))
% ).
%
assertion__is_update_assertion(AssertId, Module, _PredId, CallVars,
StateA - StateB) :-
assertion__goal(AssertId, Module, Goal - GoalInfo),
equivalent(Goal - GoalInfo, P, Q),
goal_info_get_nonlocals(GoalInfo, UniversiallyQuantifiedVars),
% There may or may not be an explicit some [Vars] there,
% as quantification now works correctly.
(
P = some(_, _, conj(PCalls0) - _) - _PGoalInfo,
Q = some(_, _, conj(QCalls0) - _) - _QGoalInfo
->
PCalls = PCalls0,
QCalls = QCalls0
;
P = conj(PCalls) - _PGoalInfo,
Q = conj(QCalls) - _QGoalInfo
),
solutions(update(PCalls, QCalls, UniversiallyQuantifiedVars, CallVars),
[StateA - StateB | _]).
%
% compose(S0, A, SA), compose(SB, A, S),
% compose(SA, B, S) <=> compose(S0, B, SB)
%
:- pred update(hlds_goals::in, hlds_goals::in, set(prog_var)::in,
prog_vars::in, pair(prog_var)::out) is nondet.
update(PCalls, QCalls, UniversiallyQuantifiedVars, CallVars, StateA - StateB) :-
reorder(PCalls, QCalls, LHSCalls, RHSCalls),
process_two_linked_calls(LHSCalls, UniversiallyQuantifiedVars, PredId,
SA, PairsL, Vs),
process_two_linked_calls(RHSCalls, UniversiallyQuantifiedVars, PredId,
SB, PairsR, _),
assoc_list__from_corresponding_lists(PairsL, PairsR, Pairs0),
list__filter((pred(X-Y::in) is semidet :- X \= Y), Pairs0, Pairs),
list__length(Pairs) = 2,
% If you read the predicate documentation, you will note
% that for each pair of variables on the left hand side
% there is an equivalent pair of variables on the right
% hand side. As the pairs of variables are not
% symmetric, the call to list__perm will only succeed
% once, if at all.
list__perm(Pairs, [(S0 - SA) - (SB - S0), (SA - S) - (S - SB)]),
assoc_list__from_corresponding_lists(Vs, CallVars, AssocList),
list__filter((pred(X-_Y::in) is semidet :- X = S0),
AssocList, [_S0 - StateA]),
list__filter((pred(X-_Y::in) is semidet :- X = SA),
AssocList, [_SA - StateB]).
%-----------------------------------------------------------------------------%
%
% process_two_linked_calls(Gs, UQVs, PId, LV, AL, VAs)
%
% is true iff the list of goals, Gs, with universally quantified
% variables, UQVs, is two calls to the same predicate, PId, with
% one variable that links them, LV. AL will be the assoc list
% that is the each variable from the first call with its
% corresponding variable in the second call, and VAs are the
% variables of the first call.
%
:- pred process_two_linked_calls(hlds_goals::in, set(prog_var)::in,
pred_id::out, prog_var::out,
assoc_list(prog_var)::out, prog_vars::out) is semidet.
process_two_linked_calls(Goals, UniversiallyQuantifiedVars, PredId,
LinkingVar, Vars, VarsA) :-
Goals = [call(PredId, _, VarsA, _, _, _) - _,
call(PredId, _, VarsB, _, _, _) - _],
% Determine the linking variable, L.
% By definition it must be existentially quantified and
% a member of both variable lists.
CommonVars = list_to_set(VarsA) `intersect` list_to_set(VarsB),
set__singleton_set(CommonVars `difference` UniversiallyQuantifiedVars,
LinkingVar),
% Set up mapping between the variables in the two calls.
assoc_list__from_corresponding_lists(VarsA, VarsB, Vars).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
assertion__is_construction_equivalence_assertion(AssertId, Module,
ConsId, PredId) :-
assertion__goal(AssertId, Module, Goal),
equivalent(Goal, P, Q),
(
single_construction(P, ConsId)
->
predicate_call(Q, PredId)
;
single_construction(Q, ConsId),
predicate_call(P, PredId)
).
%
% One side of the equivalence must be just the single
% unification with the correct cons_id.
%
:- pred single_construction(hlds_goal::in, cons_id::in) is semidet.
single_construction(unify(_, UnifyRhs, _, _, _) - _,
cons(QualifiedSymName, Arity)) :-
UnifyRhs = functor(cons(UnqualifiedSymName, Arity), _),
match_sym_name(UnqualifiedSymName, QualifiedSymName).
%
% The side containing the predicate call must be a single call
% to the predicate with 0 or more construction unifications
% which setup the arguments to the predicates.
%
:- pred predicate_call(hlds_goal::in, pred_id::in) is semidet.
predicate_call(Goal, PredId) :-
(
Goal = conj(Goals) - _
->
list__member(Call, Goals),
Call = call(PredId, _, _, _, _, _) - _,
list__delete(Goals, Call, Unifications),
P = (pred(G::in) is semidet :-
not (
G = unify(_, UnifyRhs, _, _, _) - _,
UnifyRhs = functor(_, _)
)
),
list__filter(P, Unifications, [])
;
Goal = call(PredId, _, _, _, _, _) - _
).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
assertion__goal(AssertId, Module, Goal) :-
module_info_assertion_table(Module, AssertTable),
assertion_table_lookup(AssertTable, AssertId, PredId),
module_info_pred_info(Module, PredId, PredInfo),
pred_info_clauses_info(PredInfo, ClausesInfo),
clauses_info_clauses(ClausesInfo, Clauses),
(
Clauses = [clause(_ProcIds, Goal0, _Context)]
->
assertion__normalise_goal(Goal0, Goal)
;
error("assertion__goal: not an assertion")
).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- pred implies(hlds_goal::in, hlds_goal::out, hlds_goal::out) is semidet.
implies(Goal, P, Q) :-
% Goal = (P => Q)
Goal = not(conj(GoalList) - GI) - _,
list__reverse(GoalList) = [NotQ | Ps],
(
Ps = [P0]
->
P = P0
;
P = conj(list__reverse(Ps)) - GI
),
NotQ = not(Q) - _.
:- pred equivalent(hlds_goal::in, hlds_goal::out, hlds_goal::out) is semidet.
equivalent(Goal, P, Q) :-
% Goal = P <=> Q
Goal = conj([A, B]) - _GoalInfo,
map__init(Subst),
implies(A, PA, QA),
implies(B, QB, PB),
equal_goals(PA, PB, Subst, _),
equal_goals(QA, QB, Subst, _),
P = PA,
Q = QA.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
%
% equal_goals(GA, GB)
%
% Do these two goals represent the same hlds_goal modulo
% renaming.
%
:- pred equal_goals(hlds_goal::in, hlds_goal::in,
subst::in, subst::out) is semidet.
equal_goals(conj(GoalAs) - _, conj(GoalBs) - _, Subst0, Subst) :-
equal_goals_list(GoalAs, GoalBs, Subst0, Subst).
equal_goals(call(PredId, _, VarsA, _, _, _) - _,
call(PredId, _, VarsB, _, _, _) - _, Subst0, Subst) :-
equal_vars(VarsA, VarsB, Subst0, Subst).
equal_goals(generic_call(Type, VarsA, _, _) - _,
generic_call(Type, VarsB, _, _) - _, Subst0, Subst) :-
equal_vars(VarsA, VarsB, Subst0, Subst).
equal_goals(switch(Var, CanFail, CasesA, _) - _,
switch(Var, CanFail, CasesB, _) - _, Subst0, Subst) :-
equal_goals_cases(CasesA, CasesB, Subst0, Subst).
equal_goals(unify(VarA, RHSA, _, _, _) - _, unify(VarB, RHSB, _, _, _) - _,
Subst0, Subst) :-
equal_vars([VarA], [VarB], Subst0, Subst1),
equal_unification(RHSA, RHSB, Subst1, Subst).
equal_goals(disj(GoalAs, _) - _, disj(GoalBs, _) - _, Subst0, Subst) :-
equal_goals_list(GoalAs, GoalBs, Subst0, Subst).
equal_goals(not(GoalA) - _, not(GoalB) - _, Subst0, Subst) :-
equal_goals(GoalA, GoalB, Subst0, Subst).
equal_goals(some(VarsA, _, GoalA) - _, some(VarsB, _, GoalB) - _,
Subst0, Subst) :-
equal_vars(VarsA, VarsB, Subst0, Subst1),
equal_goals(GoalA, GoalB, Subst1, Subst).
equal_goals(if_then_else(VarsA, IfA, ThenA, ElseA, _) - _,
if_then_else(VarsB, IfB, ThenB, ElseB, _) - _, Subst0, Subst) :-
equal_vars(VarsA, VarsB, Subst0, Subst1),
equal_goals(IfA, IfB, Subst1, Subst2),
equal_goals(ThenA, ThenB, Subst2, Subst3),
equal_goals(ElseA, ElseB, Subst3, Subst).
equal_goals(pragma_foreign_code(Attribs, PredId, _, VarsA, _, _, _) - _,
pragma_foreign_code(Attribs, PredId, _, VarsB, _, _, _) -
_, Subst0, Subst) :-
equal_vars(VarsA, VarsB, Subst0, Subst).
equal_goals(par_conj(GoalAs, _) - _, par_conj(GoalBs, _) - _, Subst0, Subst) :-
equal_goals_list(GoalAs, GoalBs, Subst0, Subst).
equal_goals(bi_implication(LeftGoalA, RightGoalA) - _,
bi_implication(LeftGoalB, RightGoalB) - _, Subst0, Subst) :-
equal_goals(LeftGoalA, LeftGoalB, Subst0, Subst1),
equal_goals(RightGoalA, RightGoalB, Subst1, Subst).
:- pred equal_vars(prog_vars::in, prog_vars::in, subst::in,
subst::out) is semidet.
equal_vars([], [], Subst, Subst).
equal_vars([VA | VAs], [VB | VBs], Subst0, Subst) :-
(
map__search(Subst0, VA, SubstVA)
->
SubstVA = VB,
equal_vars(VAs, VBs, Subst0, Subst)
;
map__insert(Subst0, VA, VB, Subst1),
equal_vars(VAs, VBs, Subst1, Subst)
).
:- pred equal_unification(unify_rhs::in, unify_rhs::in, subst::in,
subst::out) is semidet.
equal_unification(var(A), var(B), Subst0, Subst) :-
equal_vars([A], [B], Subst0, Subst).
equal_unification(functor(ConsId, VarsA), functor(ConsId, VarsB),
Subst0, Subst) :-
equal_vars(VarsA, VarsB, Subst0, Subst).
equal_unification(lambda_goal(PredOrFunc, EvalMethod, FixModes, NLVarsA, LVarsA,
Modes, Det, GoalA),
lambda_goal(PredOrFunc, EvalMethod, FixModes, NLVarsB, LVarsB,
Modes, Det, GoalB),
Subst0, Subst) :-
equal_vars(NLVarsA, NLVarsB, Subst0, Subst1),
equal_vars(LVarsA, LVarsB, Subst1, Subst2),
equal_goals(GoalA, GoalB, Subst2, Subst).
:- pred equal_goals_list(hlds_goals::in, hlds_goals::in, subst::in,
subst::out) is semidet.
equal_goals_list([], [], Subst, Subst).
equal_goals_list([GoalA | GoalAs], [GoalB | GoalBs], Subst0, Subst) :-
equal_goals(GoalA, GoalB, Subst0, Subst1),
equal_goals_list(GoalAs, GoalBs, Subst1, Subst).
:- pred equal_goals_cases(list(case)::in, list(case)::in, subst::in,
subst::out) is semidet.
equal_goals_cases([], [], Subst, Subst).
equal_goals_cases([CaseA | CaseAs], [CaseB | CaseBs], Subst0, Subst) :-
CaseA = case(ConsId, GoalA),
CaseB = case(ConsId, GoalB),
equal_goals(GoalA, GoalB, Subst0, Subst1),
equal_goals_cases(CaseAs, CaseBs, Subst1, Subst).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
assertion__record_preds_used_in(Goal, AssertId, Module0, Module) :-
% Explicit lambda expression needed since
% goal_calls_pred_id has multiple modes.
P = (pred(PredId::out) is nondet :- goal_calls_pred_id(Goal, PredId)),
solutions(P, PredIds),
list__foldl(update_pred_info(AssertId), PredIds, Module0, Module).
%-----------------------------------------------------------------------------%
%
% update_pred_info(Id, A, M0, M)
%
% Record in the pred_info pointed to by Id that that predicate
% is used in the assertion pointed to by A.
%
:- pred update_pred_info(assert_id::in, pred_id::in, module_info::in,
module_info::out) is det.
update_pred_info(AssertId, PredId, Module0, Module) :-
module_info_pred_info(Module0, PredId, PredInfo0),
pred_info_get_assertions(PredInfo0, Assertions0),
set__insert(Assertions0, AssertId, Assertions),
pred_info_set_assertions(PredInfo0, Assertions, PredInfo),
module_info_set_pred_info(Module0, PredId, PredInfo, Module).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
%
% assertion__normalise_goal
%
% Place a hlds_goal into a standard form. Currently all the
% code does is replace conj([G]) with G.
%
:- pred assertion__normalise_goal(hlds_goal::in, hlds_goal::out) is det.
assertion__normalise_goal(call(A,B,C,D,E,F) - GI, call(A,B,C,D,E,F) - GI).
assertion__normalise_goal(generic_call(A,B,C,D) - GI, generic_call(A,B,C,D)-GI).
assertion__normalise_goal(unify(A,B,C,D,E) - GI, unify(A,B,C,D,E) - GI).
assertion__normalise_goal(pragma_foreign_code(A,B,C,D,E,F,G) - GI,
pragma_foreign_code(A,B,C,D,E,F,G) - GI).
assertion__normalise_goal(conj(Goals0) - GI, conj(Goals) - GI) :-
assertion__normalise_conj(Goals0, Goals).
assertion__normalise_goal(switch(A,B,Case0s,D) - GI, switch(A,B,Cases,D)-GI) :-
assertion__normalise_cases(Case0s, Cases).
assertion__normalise_goal(disj(Goal0s,B) - GI, disj(Goals,B) - GI) :-
assertion__normalise_goals(Goal0s, Goals).
assertion__normalise_goal(not(Goal0) - GI, not(Goal) - GI) :-
assertion__normalise_goal(Goal0, Goal).
assertion__normalise_goal(some(A,B,Goal0) - GI, some(A,B,Goal) - GI) :-
assertion__normalise_goal(Goal0, Goal).
assertion__normalise_goal(if_then_else(A, If0, Then0, Else0, E) - GI,
if_then_else(A, If, Then, Else, E) - GI) :-
assertion__normalise_goal(If0, If),
assertion__normalise_goal(Then0, Then),
assertion__normalise_goal(Else0, Else).
assertion__normalise_goal(par_conj(Goal0s,B) - GI, par_conj(Goals,B) - GI) :-
assertion__normalise_goals(Goal0s, Goals).
assertion__normalise_goal(bi_implication(LHS0, RHS0) - GI,
bi_implication(LHS, RHS) - GI) :-
assertion__normalise_goal(LHS0, LHS),
assertion__normalise_goal(RHS0, RHS).
%-----------------------------------------------------------------------------%
:- pred assertion__normalise_conj(hlds_goals::in, hlds_goals::out) is det.
assertion__normalise_conj([], []).
assertion__normalise_conj([Goal0 | Goal0s], Goals) :-
goal_to_conj_list(Goal0, ConjGoals),
assertion__normalise_conj(Goal0s, Goal1s),
list__append(ConjGoals, Goal1s, Goals).
:- pred assertion__normalise_cases(list(case)::in, list(case)::out) is det.
assertion__normalise_cases([], []).
assertion__normalise_cases([Case0 | Case0s], [Case | Cases]) :-
Case0 = case(ConsId, Goal0),
assertion__normalise_goal(Goal0, Goal),
Case = case(ConsId, Goal),
assertion__normalise_cases(Case0s, Cases).
:- pred assertion__normalise_goals(hlds_goals::in, hlds_goals::out) is det.
assertion__normalise_goals([], []).
assertion__normalise_goals([Goal0 | Goal0s], [Goal | Goals]) :-
assertion__normalise_goal(Goal0, Goal),
assertion__normalise_goals(Goal0s, Goals).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
assertion__in_interface_check(call(PredId,_,_,_,_,SymName) - GoalInfo,
_PredInfo, Module0, Module) -->
{ module_info_pred_info(Module0, PredId, CallPredInfo) },
{ pred_info_import_status(CallPredInfo, ImportStatus) },
(
{ is_defined_in_implementation_section(ImportStatus, yes) }
->
{ goal_info_get_context(GoalInfo, Context) },
{ pred_info_get_is_pred_or_func(CallPredInfo, PredOrFunc) },
{ pred_info_arity(CallPredInfo, Arity) },
write_assertion_interface_error(Context,
call(PredOrFunc, SymName, Arity),
Module0, Module)
;
{ Module = Module0 }
).
assertion__in_interface_check(generic_call(_,_,_,_) - _, _,
Module, Module) --> [].
assertion__in_interface_check(unify(Var,RHS,_,_,_) - GoalInfo,
PredInfo, Module0, Module) -->
{ goal_info_get_context(GoalInfo, Context) },
assertion__in_interface_check_unify_rhs(RHS, Var, Context,
PredInfo, Module0, Module).
assertion__in_interface_check(pragma_foreign_code(_,PredId,_,_,_,_,_) -
GoalInfo, _PredInfo, Module0, Module) -->
{ module_info_pred_info(Module0, PredId, PragmaPredInfo) },
{ pred_info_import_status(PragmaPredInfo, ImportStatus) },
(
{ is_defined_in_implementation_section(ImportStatus, yes) }
->
{ goal_info_get_context(GoalInfo, Context) },
{ pred_info_get_is_pred_or_func(PragmaPredInfo, PredOrFunc) },
{ pred_info_name(PragmaPredInfo, Name) },
{ SymName = unqualified(Name) },
{ pred_info_arity(PragmaPredInfo, Arity) },
write_assertion_interface_error(Context,
call(PredOrFunc, SymName, Arity),
Module0, Module)
;
{ Module = Module0 }
).
assertion__in_interface_check(conj(Goals) - _, PredInfo, Module0, Module) -->
assertion__in_interface_check_list(Goals, PredInfo, Module0, Module).
assertion__in_interface_check(switch(_,_,_,_) - _, _, _, _) -->
{ error("assertion__in_interface_check: assertion contains switch.") }.
assertion__in_interface_check(disj(Goals,_) - _, PredInfo, Module0, Module) -->
assertion__in_interface_check_list(Goals, PredInfo, Module0, Module).
assertion__in_interface_check(not(Goal) - _, PredInfo, Module0, Module) -->
assertion__in_interface_check(Goal, PredInfo, Module0, Module).
assertion__in_interface_check(some(_,_,Goal) - _, PredInfo, Module0, Module) -->
assertion__in_interface_check(Goal, PredInfo, Module0, Module).
assertion__in_interface_check(if_then_else(_, If, Then, Else, _) - _,
PredInfo, Module0, Module) -->
assertion__in_interface_check(If, PredInfo, Module0, Module1),
assertion__in_interface_check(Then, PredInfo, Module1, Module2),
assertion__in_interface_check(Else, PredInfo, Module2, Module).
assertion__in_interface_check(par_conj(Goals,_) - _, PredInfo,
Module0, Module) -->
assertion__in_interface_check_list(Goals, PredInfo, Module0, Module).
assertion__in_interface_check(bi_implication(LHS, RHS) - _, PredInfo,
Module0, Module) -->
assertion__in_interface_check(LHS, PredInfo, Module0, Module1),
assertion__in_interface_check(RHS, PredInfo, Module1, Module).
%-----------------------------------------------------------------------------%
:- pred assertion__in_interface_check_unify_rhs(unify_rhs::in, prog_var::in,
prog_context::in, pred_info::in, module_info::in,
module_info::out, io__state::di, io__state::uo) is det.
assertion__in_interface_check_unify_rhs(var(_), _, _, _, Module, Module) --> [].
assertion__in_interface_check_unify_rhs(functor(ConsId, _), Var, Context,
PredInfo, Module0, Module) -->
{ pred_info_clauses_info(PredInfo, ClausesInfo) },
{ clauses_info_vartypes(ClausesInfo, VarTypes) },
{ map__lookup(VarTypes, Var, Type) },
(
{ type_to_type_id(Type, TypeId, _) }
->
{ module_info_types(Module0, Types) },
{ map__lookup(Types, TypeId, TypeDefn) },
{ hlds_data__get_type_defn_status(TypeDefn, TypeStatus) },
(
{ is_defined_in_implementation_section(TypeStatus,
yes) }
->
write_assertion_interface_error(Context,
cons(ConsId), Module0, Module)
;
{ Module = Module0 }
)
;
{ error("assertion__in_interface_check_unify_rhs: type_to_type_id failed.") }
).
assertion__in_interface_check_unify_rhs(lambda_goal(_,_,_,_,_,_,_,Goal),
_Var, _Context, PredInfo, Module0, Module) -->
assertion__in_interface_check(Goal, PredInfo, Module0, Module).
%-----------------------------------------------------------------------------%
:- pred assertion__in_interface_check_list(hlds_goals::in, pred_info::in,
module_info::in, module_info::out,
io__state::di, io__state::uo)is det.
assertion__in_interface_check_list([], _, Module, Module) --> [].
assertion__in_interface_check_list([Goal0 | Goal0s], PredInfo,
Module0, Module) -->
assertion__in_interface_check(Goal0, PredInfo, Module0, Module1),
assertion__in_interface_check_list(Goal0s, PredInfo, Module1, Module).
%-----------------------------------------------------------------------------%
%
% is_defined_in_implementation_section
%
% Returns yes if the import_status indicates the item came form
% the implementation section.
%
:- pred is_defined_in_implementation_section(import_status::in,
bool::out) is det.
is_defined_in_implementation_section(abstract_exported, yes).
is_defined_in_implementation_section(exported_to_submodules, yes).
is_defined_in_implementation_section(local, yes).
is_defined_in_implementation_section(imported(implementation), yes).
is_defined_in_implementation_section(external(implementation), yes).
is_defined_in_implementation_section(imported(interface), no).
is_defined_in_implementation_section(external(interface), no).
is_defined_in_implementation_section(opt_imported, no).
is_defined_in_implementation_section(abstract_imported, no).
is_defined_in_implementation_section(pseudo_imported, no).
is_defined_in_implementation_section(exported, no).
is_defined_in_implementation_section(pseudo_exported, no).
%-----------------------------------------------------------------------------%
:- type call_or_consid
---> call(pred_or_func, sym_name, arity)
; cons(cons_id).
:- pred write_assertion_interface_error(prog_context::in,
call_or_consid::in, module_info::in, module_info::out,
io__state::di, io__state::uo) is det.
write_assertion_interface_error(Context, Type, Module0, Module) -->
{ module_info_incr_errors(Module0, Module) },
{ module_info_name(Module, ModuleName) },
prog_out__write_context(Context),
io__write_string("In interface for module `"),
prog_out__write_sym_name(ModuleName),
io__write_string("':\n"),
prog_out__write_context(Context),
io__write_string(" error: exported promise refers to "),
(
{ Type = call(PredOrFunc, SymName, Arity) },
hlds_out__write_simple_call_id(PredOrFunc, SymName, Arity),
io__nl
;
{ Type = cons(ConsId) },
io__write_string("constructor `"),
hlds_out__write_cons_id(ConsId),
io__write_string("'\n")
),
prog_out__write_context(Context),
io__write_string(" which is defined in the implementation "),
io__write_string("of module `"),
prog_out__write_sym_name(ModuleName),
io__write_string("'.\n"),
globals__io_lookup_bool_option(verbose_errors, VerboseErrors),
(
{ VerboseErrors = yes }
->
prog_out__write_context(Context),
io__write_string(" Either move the promise into the "),
io__write_string("implementation section\n"),
prog_out__write_context(Context),
io__write_string(" or move the definition "),
io__write_string("into the interface.\n")
;
[]
).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
|