File: assertion.m

package info (click to toggle)
mercury 0.10.1-3
  • links: PTS
  • area: main
  • in suites: woody
  • size: 21,984 kB
  • ctags: 11,923
  • sloc: objc: 187,634; ansic: 66,107; sh: 7,570; lisp: 1,568; cpp: 1,337; makefile: 614; perl: 511; awk: 274; asm: 252; exp: 32; xml: 12; fortran: 3; csh: 1
file content (897 lines) | stat: -rw-r--r-- 32,672 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
%-----------------------------------------------------------------------------%
% Copyright (C) 1999-2000 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% Module: assertion
%
% Main authors: petdr
%
% This module is an abstract interface to the assertion table.
% Note that this is a first design and will probably change
% substantially in the future.
%
%-----------------------------------------------------------------------------%

:- module (assertion).

:- interface.

:- import_module hlds_data, hlds_goal, hlds_module, hlds_pred, prog_data.
:- import_module io, std_util.

	%
	% assertion__goal
	%
	% Get the hlds_goal which represents the assertion.
	%
:- pred assertion__goal(assert_id::in, module_info::in, hlds_goal::out) is det.

	%
	% assertion__record_preds_used_in
	%
	% Record into the pred_info of each pred used in the assertion
	% the assert_id.
	%
:- pred assertion__record_preds_used_in(hlds_goal::in, assert_id::in,
		module_info::in, module_info::out) is det.

	% 
	% assertion__is_commutativity_assertion(Id, MI, Vs, CVs)
	%
	% Does the assertion represented by the assertion id, Id,
	% state the commutativity of a pred/func?
	% We extend the usual definition of commutativity to apply to
	% predicates or functions with more than two arguments as
	% follows by allowing extra arguments which must be invariant.
	% If so, this predicate returns (in CVs) the two variables which
	% can be swapped in order if it was a call to Vs.
	%
	% The assertion must be in a form similar to this
	% 	all [Is,A,B,C] ( p(Is,A,B,C) <=> p(Is,B,A,C) )
	% for the predicate to return true (note that the invariant
	% arguments, Is, can be any where providing they are in
	% identical locations on both sides of the equivalence).
	%
:- pred assertion__is_commutativity_assertion(assert_id::in, module_info::in,
		prog_vars::in, pair(prog_var)::out) is semidet.

	%
	%
	% assertion__is_associativity_assertion(Id, MI, Vs, CVs, OV)
	%
	% Does the assertion represented by the assertion id, Id,
	% state the associativity of a pred/func?
	% We extend the usual definition of associativity to apply to
	% predicates or functions with more than two arguments as
	% follows by allowing extra arguments which must be invariant.
	% If so, this predicate returns (in CVs) the two variables which
	% can be swapped in order if it was a call to Vs, and the
	% output variable, OV, related to these two variables (for the
	% case below it would be the variable in the same position as
	% AB, BC or ABC).
	%
	% The assertion must be in a form similar to this
	% 	all [Is,A,B,C,ABC] 
	% 	(
	% 	  some [AB] p(Is,A,B,AB), p(Is,AB,C,ABC)
	% 	<=>
	% 	  some [BC] p(Is,B,C,BC), p(Is,A,BC,ABC)
	% 	)
	% for the predicate to return true (note that the invariant
	% arguments, Is, can be any where providing they are in
	% identical locations on both sides of the equivalence).
	%
:- pred assertion__is_associativity_assertion(assert_id::in, module_info::in,
		prog_vars::in, pair(prog_var)::out, prog_var::out) is semidet.

	%
	% assertion__is_associativity_assertion(Id, MI, PId, Vs, SPair)
	%
	% Recognise assertions in the form
	% 	all [A,B,S0,S] 
	% 	(
	% 	  some [SA] p(A,S0,SA), p(B,SA,S)
	% 	<=>
	% 	  some [SB] p(B,S0,SB), p(A,SB,S)
	% 	)
	% and given the actual variables, Vs, to the call to p, return
	% the pair of variables which are state variables, SPair.
	%
:- pred assertion__is_update_assertion(assert_id::in, module_info::in,
		pred_id::in, prog_vars::in, pair(prog_var)::out) is semidet.

	%
	% assertion__is_construction_equivalence_assertion(Id, MI, C, P)
	%
	% Can a single construction unification whose functor is
	% determined by the cons_id, C, be expressed as a call
	% to the predid, P (with possibly some construction unifications
	% to initialise the arguments).
	%
	% The assertion will be in a form similar to
	% 	all [L,H,T] ( L = [H|T] <=> append([H], T, L) )
	%
:- pred assertion__is_construction_equivalence_assertion(assert_id::in,
		module_info::in, cons_id::in, pred_id::in) is semidet.

	%
	% assertion__in_interface_check
	%
	% Ensure that an assertion which is defined in an interface
	% doesn't refer to any constructors, functions and predicates
	% defined in the implementation of that module.
	%
:- pred assertion__in_interface_check(hlds_goal::in, pred_info::in,
		module_info::in, module_info::out,
		io__state::di, io__state::uo) is det.

%-----------------------------------------------------------------------------%

:- implementation.

:- import_module globals, goal_util, hlds_out.
:- import_module options, prog_out, prog_util, type_util.
:- import_module assoc_list, bool, list, map, require, set, std_util.

:- type subst == map(prog_var, prog_var).

%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%

assertion__is_commutativity_assertion(AssertId, Module, CallVars,
		CommutativeVars) :-
	assertion__goal(AssertId, Module, Goal),
	equivalent(Goal, P, Q),
	P = call(PredId, _, VarsP, _, _, _) - _,
	Q = call(PredId, _, VarsQ, _, _, _) - _,
	commutative_var_ordering(VarsP, VarsQ, CallVars, CommutativeVars).

	%
	% commutative_var_ordering(Ps, Qs, Vs, CommutativeVs)
	%
	% Check that the two list of variables are identical except that
	% the position of two variables has been swapped.
	% e.g [A,B,C] and [B,A,C] is true.
	% It also takes a list of variables, Vs, to a call and returns
	% the two variables in that list that can be swapped, ie [A,B].
	%
:- pred commutative_var_ordering(prog_vars::in, prog_vars::in,
		prog_vars::in, pair(prog_var)::out) is semidet.

commutative_var_ordering([P|Ps], [Q|Qs], [V|Vs], CommutativeVars) :-
	(
		P = Q
	->
		commutative_var_ordering(Ps, Qs, Vs, CommutativeVars)
	;
		commutative_var_ordering_2(P, Q, Ps, Qs, Vs, CallVarB),
		CommutativeVars = V - CallVarB
	).

:- pred commutative_var_ordering_2(prog_var::in, prog_var::in, prog_vars::in,
		prog_vars::in, prog_vars::in, prog_var::out) is semidet.

commutative_var_ordering_2(VarP, VarQ, [P|Ps], [Q|Qs], [V|Vs], CallVarB) :-
	(
		P = Q
	->
		commutative_var_ordering_2(VarP, VarQ, Ps, Qs, Vs, CallVarB)
	;
		CallVarB = V,
		P = VarQ,
		Q = VarP,
		Ps = Qs
	).

%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%

assertion__is_associativity_assertion(AssertId, Module, CallVars,
		AssociativeVars, OutputVar) :-
	assertion__goal(AssertId, Module, Goal - GoalInfo),
	equivalent(Goal - GoalInfo, P, Q),

	goal_info_get_nonlocals(GoalInfo, UniversiallyQuantifiedVars),

		% There may or may not be a some [] depending on whether
		% the user explicity qualified the call or not.
	(
		P = some(_, _, conj(PCalls0) - _) - _PGoalInfo,
		Q = some(_, _, conj(QCalls0) - _) - _QGoalInfo
	->
		PCalls = PCalls0,
		QCalls = QCalls0
	;
		P = conj(PCalls) - _PGoalInfo,
		Q = conj(QCalls) - _QGoalInfo
	),
		

	AssociativeVars - OutputVar =
			promise_only_solution(associative(PCalls, QCalls,
				UniversiallyQuantifiedVars, CallVars)).


	% associative(Ps, Qs, Us, R)
	%
	% If the assertion was in the form
	% 	all [Us] (some [] (Ps)) <=> (some [] (Qs))
	% try and rearrange the order of Ps and Qs so that the assertion
	% is in the standard from
	%
	% 	compose( A, B,  AB),		compose(B,  C,  BC),
	% 	compose(AB, C, ABC) 	<=>	compose(A, BC, ABC)

:- pred associative(hlds_goals::in, hlds_goals::in,
		set(prog_var)::in, prog_vars::in,
		pair(pair(prog_var), prog_var)::out) is cc_nondet.

associative(PCalls, QCalls, UniversiallyQuantifiedVars, CallVars,
		(CallVarA - CallVarB) - OutputVar) :-
	reorder(PCalls, QCalls, LHSCalls, RHSCalls),
	process_one_side(LHSCalls, UniversiallyQuantifiedVars, PredId,
			AB, PairsL, Vs),
	process_one_side(RHSCalls, UniversiallyQuantifiedVars, PredId,
			BC, PairsR, _),

		% If you read the predicate documentation, you will note
		% that for each pair of variables on the left hand side
		% there are an equivalent pair of variables on the right
		% hand side.  As the pairs of variables are not
		% symmetric, the call to list__perm will only succeed
		% once, if at all.
	assoc_list__from_corresponding_lists(PairsL, PairsR, Pairs),
	list__perm(Pairs, [(A - AB) - (B - A), (B - C) - (C - BC),
			(AB - ABC) - (BC - ABC)]),

	assoc_list__from_corresponding_lists(Vs, CallVars, AssocList),
	list__filter((pred(X-_Y::in) is semidet :- X = AB),
			AssocList, [_AB - OutputVar]),
	list__filter((pred(X-_Y::in) is semidet :- X = A),
			AssocList, [_A - CallVarA]),
	list__filter((pred(X-_Y::in) is semidet :- X = B),
			AssocList, [_B - CallVarB]).

	% reorder(Ps, Qs, Ls, Rs)
	%
	% Given both sides of the equivalence return another possible
	% ordering.

:- pred reorder(hlds_goals::in, hlds_goals::in,
		hlds_goals::out, hlds_goals::out) is nondet.

reorder(PCalls, QCalls, LHSCalls, RHSCalls) :-
	list__perm(PCalls, LHSCalls),
	list__perm(QCalls, RHSCalls).
reorder(PCalls, QCalls, LHSCalls, RHSCalls) :-
	list__perm(PCalls, RHSCalls),
	list__perm(QCalls, LHSCalls).

	% process_one_side(Gs, Us, L, Ps)
	% 
	% Given the list of goals, Gs, which are one side of a possible
	% associative equivalence, and the universally quantified
	% variables, Us, of the goals return L the existentially
	% quantified variable that links the two calls and Ps the list
	% of variables which are not invariants.
	%
	% ie for app(TypeInfo, X, Y, XY), app(TypeInfo, XY, Z, XYZ)
	% L <= XY and Ps <= [X - XY, Y - Z, XY - XYZ]

:- pred process_one_side(hlds_goals::in, set(prog_var)::in, pred_id::out,
		prog_var::out, assoc_list(prog_var)::out,
		prog_vars::out) is semidet.

process_one_side(Goals, UniversiallyQuantifiedVars, PredId,
		LinkingVar, Vars, VarsA) :-
	process_two_linked_calls(Goals, UniversiallyQuantifiedVars, PredId,
			LinkingVar, Vars0, VarsA),

		% Filter out all the invariant arguments, and then make
		% sure that their is only 3 arguments left.
	list__filter((pred(X-Y::in) is semidet :- not X = Y), Vars0, Vars),
	list__length(Vars, number_of_associative_vars).

:- func number_of_associative_vars = int.
number_of_associative_vars = 3.

%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%



	%
	% assertion__is_update_assertion(Id, MI, PId, Ss)
	%
	% is true iff the assertion, Id, is about a predicate, PId,
	% which takes some state as input and produces some state as
	% output and the same state is produced as input regardless of
	% the order that the state is updated.
	%
	% ie the promise should look something like this, note that A
	% and B could be vectors of variables.
	% :- promise all [A,B,SO,S]
	%	(
	%		(some [SA] (update(S0,A,SA), update(SA,B,S)))
	%	<=>
	%		(some [SB] (update(S0,B,SB), update(SB,A,S)))
	%	).
	%
assertion__is_update_assertion(AssertId, Module, _PredId, CallVars,
		StateA - StateB) :-
	assertion__goal(AssertId, Module, Goal - GoalInfo),

	equivalent(Goal - GoalInfo, P, Q),

	goal_info_get_nonlocals(GoalInfo, UniversiallyQuantifiedVars),

		% There may or may not be an explicit some [Vars] there,
		% as quantification now works correctly.
	(
		P = some(_, _, conj(PCalls0) - _) - _PGoalInfo,
		Q = some(_, _, conj(QCalls0) - _) - _QGoalInfo
	->
		PCalls = PCalls0,
		QCalls = QCalls0
	;
		P = conj(PCalls) - _PGoalInfo,
		Q = conj(QCalls) - _QGoalInfo
	),

	solutions(update(PCalls, QCalls, UniversiallyQuantifiedVars, CallVars),
			[StateA - StateB | _]).

	%
	% 	compose(S0, A, SA),		compose(SB, A, S),
	% 	compose(SA, B, S) 	<=>	compose(S0, B, SB)
	%
:- pred update(hlds_goals::in, hlds_goals::in, set(prog_var)::in,
		prog_vars::in, pair(prog_var)::out) is nondet.

update(PCalls, QCalls, UniversiallyQuantifiedVars, CallVars, StateA - StateB) :-
	reorder(PCalls, QCalls, LHSCalls, RHSCalls),
	process_two_linked_calls(LHSCalls, UniversiallyQuantifiedVars, PredId,
			SA, PairsL, Vs),
	process_two_linked_calls(RHSCalls, UniversiallyQuantifiedVars, PredId,
			SB, PairsR, _),

	assoc_list__from_corresponding_lists(PairsL, PairsR, Pairs0),
	list__filter((pred(X-Y::in) is semidet :- X \= Y), Pairs0, Pairs),
	list__length(Pairs) = 2,

		% If you read the predicate documentation, you will note
		% that for each pair of variables on the left hand side
		% there is an equivalent pair of variables on the right
		% hand side.  As the pairs of variables are not
		% symmetric, the call to list__perm will only succeed
		% once, if at all.
	list__perm(Pairs, [(S0 - SA) - (SB - S0), (SA - S) - (S - SB)]),

	assoc_list__from_corresponding_lists(Vs, CallVars, AssocList),
	list__filter((pred(X-_Y::in) is semidet :- X = S0),
			AssocList, [_S0 - StateA]),
	list__filter((pred(X-_Y::in) is semidet :- X = SA),
			AssocList, [_SA - StateB]).

%-----------------------------------------------------------------------------%

	%
	% process_two_linked_calls(Gs, UQVs, PId, LV, AL, VAs)
	%
	% is true iff the list of goals, Gs, with universally quantified
	% variables, UQVs, is two calls to the same predicate, PId, with
	% one variable that links them, LV.  AL will be the assoc list
	% that is the each variable from the first call with its
	% corresponding variable in the second call, and VAs are the
	% variables of the first call.
	%
:- pred process_two_linked_calls(hlds_goals::in, set(prog_var)::in,
		pred_id::out, prog_var::out,
		assoc_list(prog_var)::out, prog_vars::out) is semidet.

process_two_linked_calls(Goals, UniversiallyQuantifiedVars, PredId,
		LinkingVar, Vars, VarsA) :-
	Goals = [call(PredId, _, VarsA, _, _, _) - _,
			call(PredId, _, VarsB, _, _, _) - _],

		% Determine the linking variable, L.
		% By definition it must be existentially quantified and
		% a member of both variable lists.
	CommonVars = list_to_set(VarsA) `intersect` list_to_set(VarsB),
	set__singleton_set(CommonVars `difference` UniversiallyQuantifiedVars,
			LinkingVar),

		% Set up mapping between the variables in the two calls.
	assoc_list__from_corresponding_lists(VarsA, VarsB, Vars).


%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%

assertion__is_construction_equivalence_assertion(AssertId, Module,
		ConsId, PredId) :-
	assertion__goal(AssertId, Module, Goal),
	equivalent(Goal, P, Q),
	(
		single_construction(P, ConsId)
	->
		predicate_call(Q, PredId)
	;
		single_construction(Q, ConsId),
		predicate_call(P, PredId)
	).

	%
	% One side of the equivalence must be just the single
	% unification with the correct cons_id.
	% 
:- pred single_construction(hlds_goal::in, cons_id::in) is semidet.

single_construction(unify(_, UnifyRhs, _, _, _) - _,
		cons(QualifiedSymName, Arity)) :-
	UnifyRhs = functor(cons(UnqualifiedSymName, Arity), _),
	match_sym_name(UnqualifiedSymName, QualifiedSymName).

	%
	% The side containing the predicate call must be a single call
	% to the predicate with 0 or more construction unifications
	% which setup the arguments to the predicates.
	%
:- pred predicate_call(hlds_goal::in, pred_id::in) is semidet.

predicate_call(Goal, PredId) :-
	(
		Goal = conj(Goals) - _
	->
		list__member(Call, Goals),
		Call = call(PredId, _, _, _, _, _) - _,
		list__delete(Goals, Call, Unifications),
		P = (pred(G::in) is semidet :-
			not (
				G = unify(_, UnifyRhs, _, _, _) - _,
				UnifyRhs = functor(_, _)
			)
		),
		list__filter(P, Unifications, [])
	;
		Goal = call(PredId, _, _, _, _, _) - _
	).

%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%

assertion__goal(AssertId, Module, Goal) :-
	module_info_assertion_table(Module, AssertTable),
	assertion_table_lookup(AssertTable, AssertId, PredId),
	module_info_pred_info(Module, PredId, PredInfo),
	pred_info_clauses_info(PredInfo, ClausesInfo),
	clauses_info_clauses(ClausesInfo, Clauses),
	(
		Clauses = [clause(_ProcIds, Goal0, _Context)]
	->
		assertion__normalise_goal(Goal0, Goal)
	;
		error("assertion__goal: not an assertion")
	).

%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%

:- pred implies(hlds_goal::in, hlds_goal::out, hlds_goal::out) is semidet.

implies(Goal, P, Q) :-
		% Goal = (P => Q)
	Goal = not(conj(GoalList) - GI) - _,
	list__reverse(GoalList) = [NotQ | Ps],
	(
		Ps = [P0]
	->
		P = P0
	;
		P = conj(list__reverse(Ps)) - GI
	),
	NotQ = not(Q) - _.

:- pred equivalent(hlds_goal::in, hlds_goal::out, hlds_goal::out) is semidet.

equivalent(Goal, P, Q) :-
		% Goal = P <=> Q
	Goal = conj([A, B]) - _GoalInfo,
	map__init(Subst),
	implies(A, PA, QA),
	implies(B, QB, PB),
	equal_goals(PA, PB, Subst, _),
	equal_goals(QA, QB, Subst, _),
	P = PA,
	Q = QA.

%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%

	%
	% equal_goals(GA, GB)
	%
	% Do these two goals represent the same hlds_goal modulo
	% renaming.
	%
:- pred equal_goals(hlds_goal::in, hlds_goal::in,
		subst::in, subst::out) is semidet.

equal_goals(conj(GoalAs) - _, conj(GoalBs) - _, Subst0, Subst) :-
	equal_goals_list(GoalAs, GoalBs, Subst0, Subst).
equal_goals(call(PredId, _, VarsA, _, _, _) - _,
		call(PredId, _, VarsB, _, _, _) - _, Subst0, Subst) :-
	equal_vars(VarsA, VarsB, Subst0, Subst).
equal_goals(generic_call(Type, VarsA, _, _) - _,
		generic_call(Type, VarsB, _, _) - _, Subst0, Subst) :-
	equal_vars(VarsA, VarsB, Subst0, Subst).
equal_goals(switch(Var, CanFail, CasesA, _) - _,
		switch(Var, CanFail, CasesB, _) - _, Subst0, Subst) :-
	equal_goals_cases(CasesA, CasesB, Subst0, Subst).
equal_goals(unify(VarA, RHSA, _, _, _) - _, unify(VarB, RHSB, _, _, _) - _,
		Subst0, Subst) :-
	equal_vars([VarA], [VarB], Subst0, Subst1),
	equal_unification(RHSA, RHSB, Subst1, Subst).
equal_goals(disj(GoalAs, _) - _, disj(GoalBs, _) - _, Subst0, Subst) :-
	equal_goals_list(GoalAs, GoalBs, Subst0, Subst).
equal_goals(not(GoalA) - _, not(GoalB) - _, Subst0, Subst) :-
	equal_goals(GoalA, GoalB, Subst0, Subst).
equal_goals(some(VarsA, _, GoalA) - _, some(VarsB, _, GoalB) - _,
		Subst0, Subst) :-
	equal_vars(VarsA, VarsB, Subst0, Subst1),
	equal_goals(GoalA, GoalB, Subst1, Subst).
equal_goals(if_then_else(VarsA, IfA, ThenA, ElseA, _) - _,
		if_then_else(VarsB, IfB, ThenB, ElseB, _) - _, Subst0, Subst) :-
	equal_vars(VarsA, VarsB, Subst0, Subst1),
	equal_goals(IfA, IfB, Subst1, Subst2),
	equal_goals(ThenA, ThenB, Subst2, Subst3),
	equal_goals(ElseA, ElseB, Subst3, Subst).
equal_goals(pragma_foreign_code(Attribs, PredId, _, VarsA, _, _, _) - _,
		pragma_foreign_code(Attribs, PredId, _, VarsB, _, _, _) -
			_, Subst0, Subst) :-
	equal_vars(VarsA, VarsB, Subst0, Subst).
equal_goals(par_conj(GoalAs, _) - _, par_conj(GoalBs, _) - _, Subst0, Subst) :-
	equal_goals_list(GoalAs, GoalBs, Subst0, Subst).
equal_goals(bi_implication(LeftGoalA, RightGoalA) - _,
	    bi_implication(LeftGoalB, RightGoalB) - _, Subst0, Subst) :-
	equal_goals(LeftGoalA, LeftGoalB, Subst0, Subst1),
	equal_goals(RightGoalA, RightGoalB, Subst1, Subst).

:- pred equal_vars(prog_vars::in, prog_vars::in, subst::in,
		subst::out) is semidet.

equal_vars([], [], Subst, Subst).
equal_vars([VA | VAs], [VB | VBs], Subst0, Subst) :-
	(
		map__search(Subst0, VA, SubstVA)
	->
		SubstVA = VB,
		equal_vars(VAs, VBs, Subst0, Subst)
	;
		map__insert(Subst0, VA, VB, Subst1),
		equal_vars(VAs, VBs, Subst1, Subst)
	).

:- pred equal_unification(unify_rhs::in, unify_rhs::in, subst::in,
		subst::out) is semidet.

equal_unification(var(A), var(B), Subst0, Subst) :-
	equal_vars([A], [B], Subst0, Subst).
equal_unification(functor(ConsId, VarsA), functor(ConsId, VarsB),
		Subst0, Subst) :-
	equal_vars(VarsA, VarsB, Subst0, Subst).
equal_unification(lambda_goal(PredOrFunc, EvalMethod, FixModes, NLVarsA, LVarsA,
			Modes, Det, GoalA),
		lambda_goal(PredOrFunc, EvalMethod, FixModes, NLVarsB, LVarsB,
			Modes, Det, GoalB),
		Subst0, Subst) :-
	equal_vars(NLVarsA, NLVarsB, Subst0, Subst1),
	equal_vars(LVarsA, LVarsB, Subst1, Subst2),
	equal_goals(GoalA, GoalB, Subst2, Subst).


:- pred equal_goals_list(hlds_goals::in, hlds_goals::in, subst::in,
		subst::out) is semidet.

equal_goals_list([], [], Subst, Subst).
equal_goals_list([GoalA | GoalAs], [GoalB | GoalBs], Subst0, Subst) :-
	equal_goals(GoalA, GoalB, Subst0, Subst1),
	equal_goals_list(GoalAs, GoalBs, Subst1, Subst).

:- pred equal_goals_cases(list(case)::in, list(case)::in, subst::in,
		subst::out) is semidet.

equal_goals_cases([], [], Subst, Subst).
equal_goals_cases([CaseA | CaseAs], [CaseB | CaseBs], Subst0, Subst) :-
	CaseA = case(ConsId, GoalA),
	CaseB = case(ConsId, GoalB),
	equal_goals(GoalA, GoalB, Subst0, Subst1),
	equal_goals_cases(CaseAs, CaseBs, Subst1, Subst).

%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%

assertion__record_preds_used_in(Goal, AssertId, Module0, Module) :-
		% Explicit lambda expression needed since
		% goal_calls_pred_id has multiple modes.
	P = (pred(PredId::out) is nondet :- goal_calls_pred_id(Goal, PredId)),
	solutions(P, PredIds),
	list__foldl(update_pred_info(AssertId), PredIds, Module0, Module).

%-----------------------------------------------------------------------------%

	%
	% update_pred_info(Id, A, M0, M)
	%
	% Record in the pred_info pointed to by Id that that predicate
	% is used in the assertion pointed to by A.
	%
:- pred update_pred_info(assert_id::in, pred_id::in, module_info::in,
		module_info::out) is det.

update_pred_info(AssertId, PredId, Module0, Module) :-
	module_info_pred_info(Module0, PredId, PredInfo0),
	pred_info_get_assertions(PredInfo0, Assertions0),
	set__insert(Assertions0, AssertId, Assertions),
	pred_info_set_assertions(PredInfo0, Assertions, PredInfo),
	module_info_set_pred_info(Module0, PredId, PredInfo, Module).

%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%

	%
	% assertion__normalise_goal
	%
	% Place a hlds_goal into a standard form.  Currently all the
	% code does is replace conj([G]) with G.
	%
:- pred assertion__normalise_goal(hlds_goal::in, hlds_goal::out) is det.

assertion__normalise_goal(call(A,B,C,D,E,F) - GI, call(A,B,C,D,E,F) - GI).
assertion__normalise_goal(generic_call(A,B,C,D) - GI, generic_call(A,B,C,D)-GI).
assertion__normalise_goal(unify(A,B,C,D,E) - GI, unify(A,B,C,D,E) - GI).
assertion__normalise_goal(pragma_foreign_code(A,B,C,D,E,F,G) - GI,
		pragma_foreign_code(A,B,C,D,E,F,G) - GI).
assertion__normalise_goal(conj(Goals0) - GI, conj(Goals) - GI) :-
	assertion__normalise_conj(Goals0, Goals).
assertion__normalise_goal(switch(A,B,Case0s,D) - GI, switch(A,B,Cases,D)-GI) :-
	assertion__normalise_cases(Case0s, Cases).
assertion__normalise_goal(disj(Goal0s,B) - GI, disj(Goals,B) - GI) :-
	assertion__normalise_goals(Goal0s, Goals).
assertion__normalise_goal(not(Goal0) - GI, not(Goal) - GI) :-
	assertion__normalise_goal(Goal0, Goal).
assertion__normalise_goal(some(A,B,Goal0) - GI, some(A,B,Goal) - GI) :-
	assertion__normalise_goal(Goal0, Goal).
assertion__normalise_goal(if_then_else(A, If0, Then0, Else0, E) - GI,
		if_then_else(A, If, Then, Else, E) - GI) :-
	assertion__normalise_goal(If0, If),
	assertion__normalise_goal(Then0, Then),
	assertion__normalise_goal(Else0, Else).
assertion__normalise_goal(par_conj(Goal0s,B) - GI, par_conj(Goals,B) - GI) :-
	assertion__normalise_goals(Goal0s, Goals).
assertion__normalise_goal(bi_implication(LHS0, RHS0) - GI,
		bi_implication(LHS, RHS) - GI) :-
	assertion__normalise_goal(LHS0, LHS),
	assertion__normalise_goal(RHS0, RHS).

%-----------------------------------------------------------------------------%

:- pred assertion__normalise_conj(hlds_goals::in, hlds_goals::out) is det.

assertion__normalise_conj([], []).
assertion__normalise_conj([Goal0 | Goal0s], Goals) :-
	goal_to_conj_list(Goal0, ConjGoals),
	assertion__normalise_conj(Goal0s, Goal1s),
	list__append(ConjGoals, Goal1s, Goals).

:- pred assertion__normalise_cases(list(case)::in, list(case)::out) is det.

assertion__normalise_cases([], []).
assertion__normalise_cases([Case0 | Case0s], [Case | Cases]) :-
	Case0 = case(ConsId, Goal0),
	assertion__normalise_goal(Goal0, Goal),
	Case = case(ConsId, Goal),
	assertion__normalise_cases(Case0s, Cases).

:- pred assertion__normalise_goals(hlds_goals::in, hlds_goals::out) is det.

assertion__normalise_goals([], []).
assertion__normalise_goals([Goal0 | Goal0s], [Goal | Goals]) :-
	assertion__normalise_goal(Goal0, Goal),
	assertion__normalise_goals(Goal0s, Goals).
	
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%

assertion__in_interface_check(call(PredId,_,_,_,_,SymName) - GoalInfo,
		_PredInfo, Module0, Module) -->
	{ module_info_pred_info(Module0, PredId, CallPredInfo)  },
	{ pred_info_import_status(CallPredInfo, ImportStatus) },
	(
		{ is_defined_in_implementation_section(ImportStatus, yes) }
	->
		{ goal_info_get_context(GoalInfo, Context) },
		{ pred_info_get_is_pred_or_func(CallPredInfo, PredOrFunc) },
		{ pred_info_arity(CallPredInfo, Arity) },
		write_assertion_interface_error(Context,
				call(PredOrFunc, SymName, Arity),
				Module0, Module)
	;
		{ Module = Module0 }
	).
assertion__in_interface_check(generic_call(_,_,_,_) - _, _,
		Module, Module) --> [].
assertion__in_interface_check(unify(Var,RHS,_,_,_) - GoalInfo,
		PredInfo, Module0, Module) -->
	{ goal_info_get_context(GoalInfo, Context) },
	assertion__in_interface_check_unify_rhs(RHS, Var, Context,
			PredInfo, Module0, Module).
assertion__in_interface_check(pragma_foreign_code(_,PredId,_,_,_,_,_) - 
		GoalInfo, _PredInfo, Module0, Module) -->
	{ module_info_pred_info(Module0, PredId, PragmaPredInfo) },
	{ pred_info_import_status(PragmaPredInfo, ImportStatus) },
	(
		{ is_defined_in_implementation_section(ImportStatus, yes) }
	->
		{ goal_info_get_context(GoalInfo, Context) },
		{ pred_info_get_is_pred_or_func(PragmaPredInfo, PredOrFunc) },
		{ pred_info_name(PragmaPredInfo, Name) },
		{ SymName = unqualified(Name) },
		{ pred_info_arity(PragmaPredInfo, Arity) },
		write_assertion_interface_error(Context,
				call(PredOrFunc, SymName, Arity),
				Module0, Module)
	;
		{ Module = Module0 }
	).
assertion__in_interface_check(conj(Goals) - _, PredInfo, Module0, Module) -->
	assertion__in_interface_check_list(Goals, PredInfo, Module0, Module).
assertion__in_interface_check(switch(_,_,_,_) - _, _, _, _) -->
	{ error("assertion__in_interface_check: assertion contains switch.") }.
assertion__in_interface_check(disj(Goals,_) - _, PredInfo, Module0, Module) -->
	assertion__in_interface_check_list(Goals, PredInfo, Module0, Module).
assertion__in_interface_check(not(Goal) - _, PredInfo, Module0, Module) -->
	assertion__in_interface_check(Goal, PredInfo, Module0, Module).
assertion__in_interface_check(some(_,_,Goal) - _, PredInfo, Module0, Module) -->
	assertion__in_interface_check(Goal, PredInfo, Module0, Module).
assertion__in_interface_check(if_then_else(_, If, Then, Else, _) - _,
		PredInfo, Module0, Module) -->
	assertion__in_interface_check(If, PredInfo, Module0, Module1),
	assertion__in_interface_check(Then, PredInfo, Module1, Module2),
	assertion__in_interface_check(Else, PredInfo, Module2, Module).
assertion__in_interface_check(par_conj(Goals,_) - _, PredInfo,
		Module0, Module) -->
	assertion__in_interface_check_list(Goals, PredInfo, Module0, Module).
assertion__in_interface_check(bi_implication(LHS, RHS) - _, PredInfo,
		Module0, Module) -->
	assertion__in_interface_check(LHS, PredInfo, Module0, Module1),
	assertion__in_interface_check(RHS, PredInfo, Module1, Module).

%-----------------------------------------------------------------------------%

:- pred assertion__in_interface_check_unify_rhs(unify_rhs::in, prog_var::in,
		prog_context::in, pred_info::in, module_info::in,
		module_info::out, io__state::di, io__state::uo) is det.

assertion__in_interface_check_unify_rhs(var(_), _, _, _, Module, Module) --> [].
assertion__in_interface_check_unify_rhs(functor(ConsId, _), Var, Context,
		PredInfo, Module0, Module) -->
	{ pred_info_clauses_info(PredInfo, ClausesInfo) },
	{ clauses_info_vartypes(ClausesInfo, VarTypes) },
	{ map__lookup(VarTypes, Var, Type) },
	(
		{ type_to_type_id(Type, TypeId, _) }
	->
		{ module_info_types(Module0, Types) },
		{ map__lookup(Types, TypeId, TypeDefn) },
		{ hlds_data__get_type_defn_status(TypeDefn, TypeStatus) },
		(
			{ is_defined_in_implementation_section(TypeStatus,
					yes) }
		->
			write_assertion_interface_error(Context,
					cons(ConsId), Module0, Module)
		;
			{ Module = Module0 }
		)
	;
		{ error("assertion__in_interface_check_unify_rhs: type_to_type_id failed.") }
	).
assertion__in_interface_check_unify_rhs(lambda_goal(_,_,_,_,_,_,_,Goal),
		_Var, _Context, PredInfo, Module0, Module) -->
	assertion__in_interface_check(Goal, PredInfo, Module0, Module).

%-----------------------------------------------------------------------------%

:- pred assertion__in_interface_check_list(hlds_goals::in, pred_info::in,
		module_info::in, module_info::out,
		io__state::di, io__state::uo)is det.

assertion__in_interface_check_list([], _, Module, Module) --> [].
assertion__in_interface_check_list([Goal0 | Goal0s], PredInfo,
		Module0, Module) -->
	assertion__in_interface_check(Goal0, PredInfo, Module0, Module1),
	assertion__in_interface_check_list(Goal0s, PredInfo, Module1, Module).

%-----------------------------------------------------------------------------%

	%
	% is_defined_in_implementation_section
	%
	% Returns yes if the import_status indicates the item came form
	% the implementation section.
	%
:- pred is_defined_in_implementation_section(import_status::in,
		bool::out) is det.

is_defined_in_implementation_section(abstract_exported, yes).
is_defined_in_implementation_section(exported_to_submodules, yes).
is_defined_in_implementation_section(local, yes).
is_defined_in_implementation_section(imported(implementation), yes).
is_defined_in_implementation_section(external(implementation), yes).

is_defined_in_implementation_section(imported(interface), no).
is_defined_in_implementation_section(external(interface), no).
is_defined_in_implementation_section(opt_imported, no).
is_defined_in_implementation_section(abstract_imported, no).
is_defined_in_implementation_section(pseudo_imported, no).
is_defined_in_implementation_section(exported, no).
is_defined_in_implementation_section(pseudo_exported, no).

%-----------------------------------------------------------------------------%

:- type call_or_consid
	--->	call(pred_or_func, sym_name, arity)
	;	cons(cons_id).

:- pred write_assertion_interface_error(prog_context::in,
		call_or_consid::in, module_info::in, module_info::out,
		io__state::di, io__state::uo) is det.

write_assertion_interface_error(Context, Type, Module0, Module) -->
	{ module_info_incr_errors(Module0, Module) },
	{ module_info_name(Module, ModuleName) },
	prog_out__write_context(Context),
	io__write_string("In interface for module `"),
	prog_out__write_sym_name(ModuleName),
	io__write_string("':\n"),

	prog_out__write_context(Context),
	io__write_string("  error: exported promise refers to "),
	(
		{ Type = call(PredOrFunc, SymName, Arity) },
		hlds_out__write_simple_call_id(PredOrFunc, SymName, Arity),
		io__nl
	;
		{ Type = cons(ConsId) },
		io__write_string("constructor `"),
		hlds_out__write_cons_id(ConsId),
		io__write_string("'\n")
	),

	prog_out__write_context(Context),
	io__write_string("  which is defined in the implementation "),
	io__write_string("of module `"),
	prog_out__write_sym_name(ModuleName),
	io__write_string("'.\n"),

	globals__io_lookup_bool_option(verbose_errors, VerboseErrors),
	(
		{ VerboseErrors = yes }
	->
		prog_out__write_context(Context),
		io__write_string("  Either move the promise into the "),
		io__write_string("implementation section\n"),

		prog_out__write_context(Context),
		io__write_string("  or move the definition "),
		io__write_string("into the interface.\n")
	;
		[]
	).


%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%