1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
|
%-----------------------------------------------------------------------------%
% Copyright (C) 1999-2000 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% File: ml_call_gen.m
% Main author: fjh
% This module is part of the MLDS code generator.
% It handles code generation of procedures calls,
% calls to builtins, and other closely related stuff.
%-----------------------------------------------------------------------------%
:- module ml_call_gen.
:- interface.
:- import_module prog_data.
:- import_module hlds_pred, hlds_goal.
:- import_module code_model.
:- import_module mlds, ml_code_util.
:- import_module list.
% Generate MLDS code for an HLDS generic_call goal.
% This includes boxing/unboxing the arguments if necessary.
:- pred ml_gen_generic_call(generic_call, list(prog_var), list(mode),
code_model, prog_context, mlds__defns, mlds__statements,
ml_gen_info, ml_gen_info).
:- mode ml_gen_generic_call(in, in, in, in, in, out, out, in, out) is det.
%
% Generate MLDS code for an HLDS procedure call, making sure to
% box/unbox the arguments if necessary.
%
:- pred ml_gen_call(pred_id, proc_id, list(var_name), list(mlds__lval),
list(prog_data__type), code_model, prog_context,
mlds__defns, mlds__statements, ml_gen_info, ml_gen_info).
:- mode ml_gen_call(in, in, in, in, in, in, in, out, out, in, out) is det.
%
% Generate MLDS code for a call to a builtin procedure.
%
:- pred ml_gen_builtin(pred_id, proc_id, list(prog_var), code_model,
prog_context, mlds__defns, mlds__statements,
ml_gen_info, ml_gen_info).
:- mode ml_gen_builtin(in, in, in, in, in, out, out, in, out) is det.
%
% Generate an rval containing the address of the specified procedure.
%
:- pred ml_gen_proc_addr_rval(pred_id, proc_id, mlds__rval,
ml_gen_info, ml_gen_info).
:- mode ml_gen_proc_addr_rval(in, in, out, in, out) is det.
% Given a source type and a destination type,
% and given an source rval holding a value of the source type,
% produce an rval that converts the source rval to the destination type.
%
:- pred ml_gen_box_or_unbox_rval(prog_type, prog_type, mlds__rval, mlds__rval,
ml_gen_info, ml_gen_info).
:- mode ml_gen_box_or_unbox_rval(in, in, in, out, in, out) is det.
% ml_gen_box_or_unbox_lval(CallerType, CalleeType, VarLval, VarName,
% Context,
% ArgLval, ConvDecls, ConvInputStatements, ConvOutputStatements):
%
% This is like `ml_gen_box_or_unbox_rval', except that it
% works on lvals rather than rvals.
% Given a source type and a destination type,
% a source lval holding a value of the source type,
% and a name to base the name of the local temporary variable on,
% this procedure produces an lval of the destination type,
% the declaration for the local temporary used (if any),
% code to assign from the source lval (suitable converted)
% to the destination lval, and code to assign from the
% destination lval (suitable converted) to the source lval.
%
:- pred ml_gen_box_or_unbox_lval(prog_type, prog_type, mlds__lval, var_name,
prog_context, mlds__lval, mlds__defns, mlds__statements,
mlds__statements, ml_gen_info, ml_gen_info).
:- mode ml_gen_box_or_unbox_lval(in, in, in, in, in, out, out, out, out,
in, out) is det.
% Generate the appropriate MLDS type for a continuation function
% for a nondet procedure whose output arguments have the
% specified types.
%
%
:- pred ml_gen_cont_params(list(mlds__type), mlds__func_params,
ml_gen_info, ml_gen_info).
:- mode ml_gen_cont_params(in, out, in, out) is det.
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module hlds_module.
:- import_module builtin_ops.
:- import_module type_util, mode_util, error_util.
:- import_module options, globals.
:- import_module bool, int, string, std_util, term, varset, require, map.
%-----------------------------------------------------------------------------%
%
% Code for procedure calls
%
%
% Generate MLDS code for an HLDS generic_call goal.
% This includes boxing/unboxing the arguments if necessary.
%
% XXX For typeclass method calls, we do some unnecessary
% boxing/unboxing of the arguments.
%
ml_gen_generic_call(GenericCall, ArgVars, ArgModes, CodeModel, Context,
MLDS_Decls, MLDS_Statements) -->
%
% allocate some fresh type variables to use as the Mercury types
% of the boxed arguments
%
{ NumArgs = list__length(ArgVars) },
{ varset__init(TypeVarSet0) },
{ varset__new_vars(TypeVarSet0, NumArgs, ArgTypeVars,
_TypeVarSet) },
{ term__var_list_to_term_list(ArgTypeVars, BoxedArgTypes) },
%
% create the boxed parameter types for the called function
%
=(MLDSGenInfo),
{ ml_gen_info_get_module_info(MLDSGenInfo, ModuleInfo) },
{ ml_gen_info_get_varset(MLDSGenInfo, VarSet) },
{ ArgNames = ml_gen_var_names(VarSet, ArgVars) },
{ PredOrFunc = generic_call_pred_or_func(GenericCall) },
{ Params0 = ml_gen_params(ModuleInfo, ArgNames,
BoxedArgTypes, ArgModes, PredOrFunc, CodeModel) },
%
% insert the `closure_arg' parameter
%
{ ClosureArgType = mlds__generic_type },
{ ClosureArg = data(var("closure_arg")) - ClosureArgType },
{ Params0 = mlds__func_params(ArgParams0, RetParam) },
{ Params = mlds__func_params([ClosureArg | ArgParams0], RetParam) },
{ Signature = mlds__get_func_signature(Params) },
%
% compute the function address
%
(
{ GenericCall = higher_order(ClosureVar, _PredOrFunc,
_Arity) },
ml_gen_var(ClosureVar, ClosureLval),
{ FieldId = offset(const(int_const(1))) },
% XXX are these types right?
{ FuncLval = field(yes(0), lval(ClosureLval), FieldId,
mlds__generic_type, ClosureArgType) },
{ FuncType = mlds__func_type(Params) },
{ FuncRval = unop(unbox(FuncType), lval(FuncLval)) }
;
{ GenericCall = class_method(TypeClassInfoVar, MethodNum,
_ClassId, _PredName) },
%
% create the lval for the typeclass_info,
% which is also the closure in this case
%
ml_gen_var(TypeClassInfoVar, TypeClassInfoLval),
{ ClosureLval = TypeClassInfoLval },
%
% extract the base_typeclass_info from the typeclass_info
%
{ BaseTypeclassInfoFieldId =
offset(const(int_const(0))) },
{ BaseTypeclassInfoLval = field(yes(0),
lval(TypeClassInfoLval), BaseTypeclassInfoFieldId,
mlds__generic_type, ClosureArgType) },
%
% extract the method address from the base_typeclass_info
%
{ Offset = ml_base_typeclass_info_method_offset },
{ MethodFieldNum = MethodNum + Offset },
{ MethodFieldId = offset(const(int_const(MethodFieldNum))) },
{ FuncLval = field(yes(0), lval(BaseTypeclassInfoLval),
MethodFieldId,
mlds__generic_type, mlds__generic_type) },
{ FuncType = mlds__func_type(Params) },
{ FuncRval = unop(unbox(FuncType), lval(FuncLval)) }
;
{ GenericCall = aditi_builtin(_, _) },
{ sorry(this_file, "Aditi builtins") }
),
%
% Assign the function address rval to a new local variable.
% This makes the generated code slightly more readable.
% More importantly, this is also necessary when using a
% non-standard calling convention with GNU C, since GNU C
% (2.95.2) ignores the function attributes on function
% pointer types in casts.
%
ml_gen_info_new_conv_var(ConvVarNum),
{ string__format("func_%d", [i(ConvVarNum)],
FuncVarName) },
{ FuncVarDecl = ml_gen_mlds_var_decl(var(FuncVarName), FuncType,
mlds__make_context(Context)) },
ml_qualify_var(FuncVarName, FuncVarLval),
{ AssignFuncVar = ml_gen_assign(FuncVarLval, FuncRval, Context) },
{ FuncVarRval = lval(FuncVarLval) },
%
% Generate code to box/unbox the arguments
% and compute the list of properly converted rvals/lvals
% to pass as the function call's arguments and return values
%
ml_gen_var_list(ArgVars, ArgLvals),
ml_variable_types(ArgVars, ActualArgTypes),
ml_gen_arg_list(ArgNames, ArgLvals, ActualArgTypes, BoxedArgTypes,
ArgModes, PredOrFunc, CodeModel, Context,
InputRvals, OutputLvals, OutputTypes,
ConvArgDecls, ConvOutputStatements),
{ ClosureRval = unop(unbox(ClosureArgType), lval(ClosureLval)) },
%
% Prepare to generate the call, passing the closure as the first
% argument.
% (We can't actually generate the call yet, since it might be nondet,
% and we don't yet know what its success continuation will be;
% instead for now we just construct a higher-order term `DoGenCall',
% which when called will generate it.)
%
{ ObjectRval = no },
{ DoGenCall = ml_gen_mlds_call(Signature, ObjectRval, FuncVarRval,
[ClosureRval | InputRvals], OutputLvals, OutputTypes,
CodeModel, Context) },
( { ConvArgDecls = [], ConvOutputStatements = [] } ->
DoGenCall(MLDS_Decls0, MLDS_Statements0)
;
%
% Construct a closure to generate code to
% convert the output arguments and then succeed
%
{ DoGenConvOutputAndSucceed = (
pred(COAS_Decls::out, COAS_Statements::out, in, out)
is det -->
{ COAS_Decls = [] },
ml_gen_success(CodeModel, Context,
SucceedStmts),
{ COAS_Statements = list__append(
ConvOutputStatements, SucceedStmts) }
) },
%
% Conjoin the code generated by the two closures that we
% computed above. `ml_combine_conj' will generate whatever
% kind of sequence is necessary for this code model.
%
ml_combine_conj(CodeModel, Context,
DoGenCall, DoGenConvOutputAndSucceed,
CallAndConvOutputDecls, CallAndConvOutputStatements),
{ MLDS_Decls0 = ConvArgDecls ++ CallAndConvOutputDecls },
{ MLDS_Statements0 = CallAndConvOutputStatements }
),
{ MLDS_Decls = [FuncVarDecl | MLDS_Decls0] },
{ MLDS_Statements = [AssignFuncVar | MLDS_Statements0] }.
%
% Generate code for the various parts that are needed for
% a procedure call: declarations of variables needed for
% boxing/unboxing output arguments,
% a closure to generate code to call the function
% with the input arguments appropriate boxed,
% and code to unbox/box the return values.
%
% For example, if the callee is declared as
%
% :- some [T2]
% pred callee(float::in, T1::in, float::out, T2::out, ...).
%
% then for a call `callee(Arg1, Arg2, Arg3, Arg4, ...)'
% with arguments of types `U1, float, U2, float, ...',
% we generate the following fragments:
%
% /* declarations of variables needed for boxing/unboxing */
% Float conv_Arg3;
% MR_Box conv_Arg4;
% ...
%
% /* code to call the function */
% func(unbox(Arg1), box(Arg2), &boxed_Arg3, &unboxed_Arg4);
%
% /* code to box/unbox the output arguments */
% *Arg3 = unbox(boxed_Arg3);
% *Arg4 = box(unboxed_Arg4);
% ...
%
% Note that of course in general not every argument will need
% to be boxed/unboxed; for those where no conversion is required,
% we just pass the original argument unchanged.
%
ml_gen_call(PredId, ProcId, ArgNames, ArgLvals, ActualArgTypes, CodeModel,
Context, MLDS_Decls, MLDS_Statements) -->
%
% Compute the function signature
%
{ Params = ml_gen_proc_params(ModuleInfo, PredId, ProcId) },
{ Signature = mlds__get_func_signature(Params) },
%
% Compute the function address
%
ml_gen_proc_addr_rval(PredId, ProcId, FuncRval),
%
% Compute the callee's Mercury argument types and modes
%
=(MLDSGenInfo),
{ ml_gen_info_get_module_info(MLDSGenInfo, ModuleInfo) },
{ module_info_pred_proc_info(ModuleInfo, PredId, ProcId,
PredInfo, ProcInfo) },
{ pred_info_get_is_pred_or_func(PredInfo, PredOrFunc) },
{ pred_info_arg_types(PredInfo, PredArgTypes) },
{ proc_info_argmodes(ProcInfo, ArgModes) },
%
% Generate code to box/unbox the arguments
% and compute the list of properly converted rvals/lvals
% to pass as the function call's arguments and return values
%
ml_gen_arg_list(ArgNames, ArgLvals, ActualArgTypes, PredArgTypes,
ArgModes, PredOrFunc, CodeModel, Context,
InputRvals, OutputLvals, OutputTypes,
ConvArgDecls, ConvOutputStatements),
%
% Construct a closure to generate the call
% (We can't actually generate the call yet, since it might be nondet,
% and we don't yet know what its success continuation will be;
% that's why for now we just construct a closure `DoGenCall'
% to generate it.)
%
{ ObjectRval = no },
{ DoGenCall = ml_gen_mlds_call(Signature, ObjectRval, FuncRval,
InputRvals, OutputLvals, OutputTypes, CodeModel, Context) },
( { ConvArgDecls = [], ConvOutputStatements = [] } ->
DoGenCall(MLDS_Decls, MLDS_Statements)
;
%
% Construct a closure to generate code to
% convert the output arguments and then succeed
%
{ DoGenConvOutputAndSucceed = (
pred(COAS_Decls::out, COAS_Statements::out, in, out)
is det -->
{ COAS_Decls = [] },
ml_gen_success(CodeModel, Context,
SucceedStmts),
{ COAS_Statements = list__append(
ConvOutputStatements, SucceedStmts) }
) },
%
% Conjoin the code generated by the two closures that we
% computed above. `ml_combine_conj' will generate whatever
% kind of sequence is necessary for this code model.
%
ml_combine_conj(CodeModel, Context,
DoGenCall, DoGenConvOutputAndSucceed,
CallAndConvOutputDecls, CallAndConvOutputStatements),
{ MLDS_Decls = list__append(ConvArgDecls,
CallAndConvOutputDecls) },
{ MLDS_Statements = CallAndConvOutputStatements }
).
%
% This generates a call in the specified code model.
% This is a lower-level routine called by both ml_gen_call
% and ml_gen_generic_call.
%
:- pred ml_gen_mlds_call(mlds__func_signature, maybe(mlds__rval), mlds__rval,
list(mlds__rval), list(mlds__lval), list(mlds__type),
code_model, prog_context, mlds__defns, mlds__statements,
ml_gen_info, ml_gen_info).
:- mode ml_gen_mlds_call(in, in, in, in, in, in, in, in, out, out, in, out)
is det.
ml_gen_mlds_call(Signature, ObjectRval, FuncRval, ArgRvals0, RetLvals0,
RetTypes0, CodeModel, Context, MLDS_Decls, MLDS_Statements) -->
%
% append the extra arguments or return val for this code_model
%
(
{ CodeModel = model_non },
% create a new success continuation, if necessary
ml_gen_success_cont(RetTypes0, RetLvals0, Context,
Cont, ContDecls),
% append the success continuation to the ordinary arguments
{ Cont = success_cont(FuncPtrRval, EnvPtrRval, _, _) },
ml_gen_info_use_gcc_nested_functions(UseNestedFuncs),
( { UseNestedFuncs = yes } ->
{ ArgRvals = list__append(ArgRvals0, [FuncPtrRval]) }
;
{ ArgRvals = list__append(ArgRvals0,
[FuncPtrRval, EnvPtrRval]) }
),
% for --nondet-copy-out, the output arguments will be
% passed to the continuation rather than being returned
ml_gen_info_get_globals(Globals),
{ globals__lookup_bool_option(Globals, nondet_copy_out,
NondetCopyOut) },
( { NondetCopyOut = yes } ->
{ RetLvals = [] }
;
{ RetLvals = RetLvals0 }
),
{ MLDS_Decls = ContDecls }
;
{ CodeModel = model_semi },
% return a bool indicating whether or not it succeeded
ml_success_lval(Success),
{ ArgRvals = ArgRvals0 },
{ RetLvals = list__append([Success], RetLvals0) },
{ MLDS_Decls = [] }
;
{ CodeModel = model_det },
{ ArgRvals = ArgRvals0 },
{ RetLvals = RetLvals0 },
{ MLDS_Decls = [] }
),
%
% build the MLDS call statement
%
{ CallOrTailcall = call },
{ MLDS_Stmt = call(Signature, FuncRval, ObjectRval, ArgRvals, RetLvals,
CallOrTailcall) },
{ MLDS_Statement = mlds__statement(MLDS_Stmt,
mlds__make_context(Context)) },
{ MLDS_Statements = [MLDS_Statement] }.
:- pred ml_gen_success_cont(list(mlds__type), list(mlds__lval), prog_context,
success_cont, mlds__defns, ml_gen_info, ml_gen_info).
:- mode ml_gen_success_cont(in, in, in, out, out, in, out) is det.
ml_gen_success_cont(OutputArgTypes, OutputArgLvals, Context,
Cont, ContDecls) -->
ml_gen_info_current_success_cont(CurrentCont),
{ CurrentCont = success_cont(_FuncPtrRval, _EnvPtrRval,
CurrentContArgTypes, CurrentContArgLvals) },
(
%
% As an optimization, check if the parameters expected by
% the current continuation are the same as the ones
% expected by the new continuation that we're generating;
% if so, we can just use the current continuation rather
% than creating a new one.
%
{ CurrentContArgTypes = OutputArgTypes },
{ CurrentContArgLvals = OutputArgLvals }
->
{ Cont = CurrentCont },
{ ContDecls = [] }
;
%
% Create a new continuation function
% that just copies the outputs to locals
% and then calls the original current continuation
%
ml_gen_cont_params(OutputArgTypes, Params),
ml_gen_new_func_label(yes(Params),
ContFuncLabel, ContFuncLabelRval),
/* push nesting level */
ml_gen_copy_args_to_locals(OutputArgLvals, Context,
CopyDecls, CopyStatements),
ml_gen_call_current_success_cont(Context, CallCont),
{ CopyStatement = ml_gen_block(CopyDecls,
list__append(CopyStatements, [CallCont]), Context) },
/* pop nesting level */
ml_gen_label_func(ContFuncLabel, Params, Context,
CopyStatement, ContFuncDefn),
{ ContDecls = [ContFuncDefn] },
ml_get_env_ptr(EnvPtrRval),
{ NewSuccessCont = success_cont(ContFuncLabelRval,
EnvPtrRval, OutputArgTypes, OutputArgLvals) },
ml_gen_info_push_success_cont(NewSuccessCont),
{ Cont = NewSuccessCont }
).
ml_gen_cont_params(OutputArgTypes, Params) -->
ml_gen_cont_params_2(OutputArgTypes, 1, Args0),
ml_gen_info_use_gcc_nested_functions(UseNestedFuncs),
( { UseNestedFuncs = yes } ->
{ Args = Args0 }
;
ml_declare_env_ptr_arg(EnvPtrArg),
{ Args = list__append(Args0, [EnvPtrArg]) }
),
{ Params = mlds__func_params(Args, []) }.
:- pred ml_gen_cont_params_2(list(mlds__type), int, mlds__arguments,
ml_gen_info, ml_gen_info).
:- mode ml_gen_cont_params_2(in, in, out, in, out) is det.
ml_gen_cont_params_2([], _, []) --> [].
ml_gen_cont_params_2([Type | Types], ArgNum, [Argument | Arguments]) -->
{ ArgName = ml_gen_arg_name(ArgNum) },
{ Argument = data(var(ArgName)) - Type },
ml_gen_cont_params_2(Types, ArgNum + 1, Arguments).
:- pred ml_gen_copy_args_to_locals(list(mlds__lval), prog_context,
mlds__defns, mlds__statements, ml_gen_info, ml_gen_info).
:- mode ml_gen_copy_args_to_locals(in, in, out, out, in, out) is det.
ml_gen_copy_args_to_locals(ArgLvals, Context, CopyDecls, CopyStatements) -->
{ CopyDecls = [] },
ml_gen_copy_args_to_locals_2(ArgLvals, 1, Context, CopyStatements).
:- pred ml_gen_copy_args_to_locals_2(list(mlds__lval), int, prog_context,
mlds__statements, ml_gen_info, ml_gen_info).
:- mode ml_gen_copy_args_to_locals_2(in, in, in, out, in, out) is det.
ml_gen_copy_args_to_locals_2([], _, _, []) --> [].
ml_gen_copy_args_to_locals_2([LocalLval | LocalLvals], ArgNum, Context,
[Statement | Statements]) -->
{ ArgName = ml_gen_arg_name(ArgNum) },
ml_qualify_var(ArgName, ArgLval),
{ Statement = ml_gen_assign(LocalLval, lval(ArgLval), Context) },
ml_gen_copy_args_to_locals_2(LocalLvals, ArgNum + 1, Context,
Statements).
:- func ml_gen_arg_name(int) = string.
ml_gen_arg_name(ArgNum) = ArgName :-
string__format("arg%d", [i(ArgNum)], ArgName).
%
% Generate an rval containing the address of the specified procedure
%
ml_gen_proc_addr_rval(PredId, ProcId, CodeAddrRval) -->
=(MLDSGenInfo),
{ ml_gen_info_get_module_info(MLDSGenInfo, ModuleInfo) },
{ ml_gen_pred_label(ModuleInfo, PredId, ProcId,
PredLabel, PredModule) },
{ Params = ml_gen_proc_params(ModuleInfo, PredId, ProcId) },
{ Signature = mlds__get_func_signature(Params) },
{ QualifiedProcLabel = qual(PredModule, PredLabel - ProcId) },
{ CodeAddrRval = const(code_addr_const(proc(QualifiedProcLabel,
Signature))) }.
%
% Generate rvals and lvals for the arguments of a procedure call
%
:- pred ml_gen_arg_list(list(var_name), list(mlds__lval), list(prog_type),
list(prog_type), list(mode), pred_or_func, code_model,
prog_context, list(mlds__rval), list(mlds__lval),
list(mlds__type), mlds__defns, mlds__statements,
ml_gen_info, ml_gen_info).
:- mode ml_gen_arg_list(in, in, in, in, in, in, in, in, out, out, out, out, out,
in, out) is det.
ml_gen_arg_list(VarNames, VarLvals, CallerTypes, CalleeTypes, Modes,
PredOrFunc, CodeModel, Context,
InputRvals, OutputLvals, OutputTypes,
ConvDecls, ConvOutputStatements) -->
(
{ VarNames = [] },
{ VarLvals = [] },
{ CallerTypes = [] },
{ CalleeTypes = [] },
{ Modes = [] }
->
{ InputRvals = [] },
{ OutputLvals = [] },
{ OutputTypes = [] },
{ ConvDecls = [] },
{ ConvOutputStatements = [] }
;
{ VarNames = [VarName | VarNames1] },
{ VarLvals = [VarLval | VarLvals1] },
{ CallerTypes = [CallerType | CallerTypes1] },
{ CalleeTypes = [CalleeType | CalleeTypes1] },
{ Modes = [Mode | Modes1] }
->
ml_gen_arg_list(VarNames1, VarLvals1,
CallerTypes1, CalleeTypes1, Modes1,
PredOrFunc, CodeModel, Context,
InputRvals1, OutputLvals1, OutputTypes1,
ConvDecls1, ConvOutputStatements1),
=(MLDSGenInfo),
{ ml_gen_info_get_module_info(MLDSGenInfo, ModuleInfo) },
{ mode_to_arg_mode(ModuleInfo, Mode, CalleeType, ArgMode) },
(
{ type_util__is_dummy_argument_type(CalleeType) }
->
%
% exclude arguments of type io__state etc.
%
{ InputRvals = InputRvals1 },
{ OutputLvals = OutputLvals1 },
{ OutputTypes = OutputTypes1 },
{ ConvDecls = ConvDecls1 },
{ ConvOutputStatements = ConvOutputStatements1 }
; { ArgMode = top_in } ->
%
% it's an input argument
%
{ type_util__is_dummy_argument_type(CallerType) ->
% The variable may not have been declared,
% so we need to generate a dummy value for it.
% Using `0' here is more efficient than
% using private_builtin__dummy_var, which is
% what ml_gen_var will have generated for this
% variable.
VarRval = const(int_const(0))
;
VarRval = lval(VarLval)
},
ml_gen_box_or_unbox_rval(CallerType, CalleeType,
VarRval, ArgRval),
{ InputRvals = [ArgRval | InputRvals1] },
{ OutputLvals = OutputLvals1 },
{ OutputTypes = OutputTypes1 },
{ ConvDecls = ConvDecls1 },
{ ConvOutputStatements = ConvOutputStatements1 }
;
%
% it's an output argument
%
ml_gen_box_or_unbox_lval(CallerType, CalleeType,
VarLval, VarName, Context, ArgLval,
ThisArgConvDecls, _ThisArgConvInput,
ThisArgConvOutput),
{ ConvDecls = list__append(ThisArgConvDecls,
ConvDecls1) },
{ ConvOutputStatements = list__append(
ThisArgConvOutput, ConvOutputStatements1) },
ml_gen_info_get_globals(Globals),
{ CopyOut = get_copy_out_option(Globals, CodeModel) },
(
(
%
% if the target language allows
% multiple return values, then use them
%
{ CopyOut = yes }
;
%
% if this is the result argument
% of a model_det function, and it has
% an output mode, then return it as a
% value
%
{ VarNames1 = [] },
{ CodeModel = model_det },
{ PredOrFunc = function },
{ ArgMode = top_out }
)
->
{ InputRvals = InputRvals1 },
{ OutputLvals = [ArgLval | OutputLvals1] },
ml_gen_type(CalleeType, OutputType),
{ OutputTypes = [OutputType | OutputTypes1] }
;
%
% otherwise use the traditional C style
% of passing the address of the output value
%
{ InputRvals = [ml_gen_mem_addr(ArgLval)
| InputRvals1] },
{ OutputLvals = OutputLvals1 },
{ OutputTypes = OutputTypes1 }
)
)
;
{ error("ml_gen_arg_list: length mismatch") }
).
% ml_gen_mem_addr(Lval) returns a value equal to &Lval.
% For the case where Lval = *Rval, for some Rval,
% we optimize &*Rval to just Rval.
:- func ml_gen_mem_addr(mlds__lval) = mlds__rval.
ml_gen_mem_addr(Lval) =
(if Lval = mem_ref(Rval, _) then Rval else mem_addr(Lval)).
% Convert VarRval, of type SourceType,
% to ArgRval, of type DestType.
ml_gen_box_or_unbox_rval(SourceType, DestType, VarRval, ArgRval) -->
(
%
% if converting from polymorphic type to concrete type,
% then unbox
%
{ SourceType = term__variable(_) },
{ DestType = term__functor(_, _, _) }
->
ml_gen_type(DestType, MLDS_DestType),
{ ArgRval = unop(unbox(MLDS_DestType), VarRval) }
;
%
% if converting from concrete type to polymorphic type,
% then box
%
{ SourceType = term__functor(_, _, _) },
{ DestType = term__variable(_) }
->
ml_gen_type(SourceType, MLDS_SourceType),
{ ArgRval = unop(box(MLDS_SourceType), VarRval) }
;
%
% if converting to float, cast to mlds__generic_type
% and then unbox
%
{ DestType = term__functor(term__atom("float"), [], _) },
{ SourceType \= term__functor(term__atom("float"), [], _) }
->
ml_gen_type(DestType, MLDS_DestType),
{ ArgRval = unop(unbox(MLDS_DestType),
unop(cast(mlds__generic_type), VarRval)) }
;
%
% if converting from float, box and then cast the result
%
{ SourceType = term__functor(term__atom("float"), [], _) },
{ DestType \= term__functor(term__atom("float"), [], _) }
->
ml_gen_type(SourceType, MLDS_SourceType),
ml_gen_type(DestType, MLDS_DestType),
{ ArgRval = unop(cast(MLDS_DestType),
unop(box(MLDS_SourceType), VarRval)) }
;
%
% if converting from one concrete type to a different
% one, then cast
%
% This is needed to handle construction/deconstruction
% unifications for no_tag types.
%
{ \+ type_util__type_unify(SourceType, DestType,
[], map__init, _) }
->
ml_gen_type(DestType, MLDS_DestType),
{ ArgRval = unop(cast(MLDS_DestType), VarRval) }
;
%
% otherwise leave unchanged
%
{ ArgRval = VarRval }
).
ml_gen_box_or_unbox_lval(CallerType, CalleeType, VarLval, VarName, Context,
ArgLval, ConvDecls, ConvInputStatements, ConvOutputStatements)
-->
%
% First see if we can just convert the lval as an rval;
% if no boxing/unboxing is required, then ml_box_or_unbox_rval
% will return its argument unchanged, and so we're done.
%
ml_gen_box_or_unbox_rval(CalleeType, CallerType, lval(VarLval),
BoxedRval),
(
{ BoxedRval = lval(VarLval) }
->
{ ArgLval = VarLval },
{ ConvDecls = [] },
{ ConvInputStatements = [] },
{ ConvOutputStatements = [] }
;
%
% If that didn't work, then we need to declare a fresh variable
% to use as the arg, and to generate statements to box/unbox
% that fresh arg variable and assign it to/from the output argument
% whose address we were passed.
%
% generate a declaration for the fresh variable
ml_gen_info_new_conv_var(ConvVarNum),
{ string__format("conv%d_%s", [i(ConvVarNum), s(VarName)],
ArgVarName) },
=(Info),
{ ml_gen_info_get_module_info(Info, ModuleInfo) },
{ ArgVarDecl = ml_gen_var_decl(ArgVarName, CalleeType,
mlds__make_context(Context), ModuleInfo) },
{ ConvDecls = [ArgVarDecl] },
% create the lval for the variable and use it for the
% argument lval
ml_qualify_var(ArgVarName, ArgLval),
( { type_util__is_dummy_argument_type(CallerType) } ->
% if it is a dummy argument type (e.g. io__state),
% then we don't need to bother assigning it
{ ConvInputStatements = [] },
{ ConvOutputStatements = [] }
;
%
% generate statements to box/unbox the fresh variable
% and assign it to/from the output argument whose
% address we were passed.
%
% assign to the freshly generated arg variable
ml_gen_box_or_unbox_rval(CallerType, CalleeType,
lval(VarLval), ConvertedVarRval),
{ AssignInputStatement = ml_gen_assign(ArgLval,
ConvertedVarRval, Context) },
{ ConvInputStatements = [AssignInputStatement] },
% assign from the freshly generated arg variable
ml_gen_box_or_unbox_rval(CalleeType, CallerType,
lval(ArgLval), ConvertedArgRval),
{ AssignOutputStatement = ml_gen_assign(VarLval,
ConvertedArgRval, Context) },
{ ConvOutputStatements = [AssignOutputStatement] }
)
).
%-----------------------------------------------------------------------------%
%
% Code for builtins
%
%
% Generate MLDS code for a call to a builtin procedure.
%
ml_gen_builtin(PredId, ProcId, ArgVars, CodeModel, Context,
MLDS_Decls, MLDS_Statements) -->
ml_gen_var_list(ArgVars, ArgLvals),
=(Info),
{ ml_gen_info_get_module_info(Info, ModuleInfo) },
{ predicate_module(ModuleInfo, PredId, ModuleName) },
{ predicate_name(ModuleInfo, PredId, PredName) },
{
builtin_ops__translate_builtin(ModuleName, PredName,
ProcId, ArgLvals, SimpleCode0)
->
SimpleCode = SimpleCode0
;
error("ml_gen_builtin: unknown builtin predicate")
},
(
{ CodeModel = model_det },
(
{ SimpleCode = assign(Lval, SimpleExpr) }
->
{ Rval = ml_gen_simple_expr(SimpleExpr) },
{ MLDS_Statement = ml_gen_assign(Lval, Rval,
Context) }
;
{ error("Malformed det builtin predicate") }
)
;
{ CodeModel = model_semi },
(
{ SimpleCode = test(SimpleTest) }
->
{ TestRval = ml_gen_simple_expr(SimpleTest) },
ml_gen_set_success(TestRval, Context, MLDS_Statement)
;
{ error("Malformed semi builtin predicate") }
)
;
{ CodeModel = model_non },
{ error("Nondet builtin predicate") }
),
{ MLDS_Statements = [MLDS_Statement] },
{ MLDS_Decls = [] }.
:- func ml_gen_simple_expr(simple_expr(mlds__lval)) = mlds__rval.
ml_gen_simple_expr(leaf(Lval)) = lval(Lval).
ml_gen_simple_expr(int_const(Int)) = const(int_const(Int)).
ml_gen_simple_expr(float_const(Float)) = const(float_const(Float)).
ml_gen_simple_expr(unary(Op, Expr)) = unop(std_unop(Op), ml_gen_simple_expr(Expr)).
ml_gen_simple_expr(binary(Op, Expr1, Expr2)) =
binop(Op, ml_gen_simple_expr(Expr1), ml_gen_simple_expr(Expr2)).
:- func this_file = string.
this_file = "ml_call_gen.m".
:- end_module ml_call_gen.
|