1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
|
%-----------------------------------------------------------------------------%
% Copyright (C) 1999-2001 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% File: ml_code_gen.m
% Main author: fjh
% MLDS code generation -- convert from HLDS to MLDS.
% This module is an alternative to the original code generator.
% The original code generator compiles from HLDS to LLDS, generating
% very low-level code. This code generator instead compiles to MLDS,
% generating much higher-level code than the original code generator.
% One of the aims of the MLDS is to be able to generated human-readable
% code in languages like C or Java. This means that unlike the LLDS back-end,
% we do not want to rely on macros or conditional compilation. If the
% final code is going to depend on the setting of some compilation option,
% our philosophy is to reflect that change in the generated MLDS and C code
% where possible, rather than generating C code which calls macros that do
% different things in different grades. This is important both for
% readability of the generated code, and to make sure that we can easily
% adapt the MLDS code generator to target languages like Java that don't
% support macros or conditional compilation.
% A big challenge in generating MLDS code is handling nondeterminism.
% For nondeterministic procedures, we generate code using an explicit
% continuation passing style. Each nondeterministic procedures gets
% translated into a function which takes an extra parameter which is a
% function pointer that points to the success continuation. On success,
% the function calls its success continuation, and on failure it returns.
% To keep things easy, this pass generates code which may contain nested
% functions; if the target language doesn't support nested functions (or
% doesn't support them _efficiently_) then a later MLDS->MLDS simplification
% pass will convert it to a form that does not use nested functions.
% Note that when we take the address of a nested function, we only ever
% do two things with it: pass it as a continuation argument, or call it.
% The continuations are never returned and never stored inside heap objects
% or global variables. These conditions are sufficient to ensure that
% we never keep the address of a nested function after the containing
% functions has returned, so we won't get any dangling continuations.
%-----------------------------------------------------------------------------%
% CODE GENERATION SUMMARY
%-----------------------------------------------------------------------------%
%
% In each procedure, we declare a local variable `bool succeeded'.
% This is used to hold the success status of semidet sub-goals.
% Note that the comments below show local declarations for the
% `succeeded' variable in all the places where they would be
% needed if we were generating them locally, but currently
% we actually just generate a single `succeeded' variable for
% each procedure.
%
% The calling convention for sub-goals is as follows.
%
% model_det goal:
% On success, fall through.
% (May clobber `succeeded'.)
% model_semi goal:
% On success, set `succeeded' to TRUE and fall through.
% On failure, set `succeeded' to FALSE and fall through.
% multi/nondet goal:
% On success, call the current success continuation.
% On failure, fall through.
% (May clobber `succeeded' in either case.)
%
% In comments, we use the following notation to distinguish between
% these three.
%
% model_det goal:
% <do Goal>
% This means execute Goal (which must be model_det).
% model_semi goal:
% <succeeded = Goal>
% This means execute Goal, and set `succeeded' to
% TRUE if the goal succeeds and FALSE if it fails.
% model_non goal:
% <Goal && CONT()>
% This means execute Goal, calling the success
% continuation function CONT() if it succeeds,
% and falling through if it fails.
%
% The notation
%
% [situation]:
% <[construct]>
% ===>
% [code]
%
% means that in the situation described by [situation],
% for the the specified [construct] we will generate the specified [code].
% There is one other important thing which can be considered part of the
% calling convention for the code that we generate for each goal.
% If static ground term optimization is enabled, then for the terms
% marked as static by mark_static_terms.m, we will generate static consts.
% These static consts can refer to other static consts defined earlier.
% We need to be careful about the scopes of variables to ensure that
% for any term that mark_static_terms.m marks as static, the C constants
% representing the arguments of that term are in scope at the point
% where that term is constructed. Basically this means that
% all the static consts generated inside a goal must be hoist out to
% the top level scope for that goal, except for goal types where
% goal_expr_mark_static_terms (in mark_static_terms.m) returns the
% same static_info unchanged, i.e. branched goals and negations.
%
% Handling static constants also requires that the calls to ml_gen_goal
% for each subgoal must be done in the right order, so that the
% const_num_map in the ml_gen_info holds the right sequence numbers
% for the constants in scope.
%-----------------------------------------------------------------------------%
%
% Code for wrapping goals
%
% If a model_foo goal occurs in a model_bar context, where foo != bar,
% then we need to modify the code that we emit for the goal so that
% it conforms to the calling convenion expected for model_bar.
% det goal in semidet context:
% <succeeded = Goal>
% ===>
% <do Goal>
% succeeded = TRUE;
% det goal in nondet context:
% <Goal && SUCCEED()>
% ===>
% <do Goal>
% SUCCEED();
% semi goal in nondet context:
% <Goal && SUCCEED()>
% ===>
% bool succeeded;
%
% <succeeded = Goal>
% if (succeeded) SUCCEED();
%-----------------------------------------------------------------------------%
%
% Code for commits
%
% There's several different ways of handling commits:
% - using catch/throw
% - using setjmp/longjmp
% - using GCC's __builtin_setjmp/__builtin_longjmp
% - exiting nested functions via gotos to
% their containing functions
%
% The MLDS data structure abstracts away these differences
% using the `try_commit' and `do_commit' instructions.
% The comments below show the MLDS try_commit/do_commit version first,
% but for clarity I've also included sample code using each of the three
% different techniques.
%
% Note that if we're using GCC's __builtin_longjmp(),
% then it is important that the call to __builtin_longjmp() be
% put in its own function, to ensure that it is not in the same
% function as the __builtin_setjmp().
% The code generation schema below does that automatically.
% We will need to be careful with MLDS optimizations to
% ensure that we preserve that invariant, though.
% (Alternatively, we could just call a function that
% calls __builtin_longjmp() rather than calling it directly.
% But that would be a little less efficient.)
%
% If those methods turn out to be too inefficient,
% another alternative would be to change the generated
% code so that after every function call, it would check a flag,
% and if that flag was set, it would return.
% Then MR_DO_COMMIT would just set the flag and return.
% The flag could be in a global (or thread-local) variable,
% or it could be an additional value returned from each function.
% model_non in semi context: (using try_commit/do_commit)
% <succeeded = Goal>
% ===>
% MR_COMMIT_TYPE ref;
% void success() {
% MR_DO_COMMIT(ref);
% }
% MR_TRY_COMMIT(ref, {
% <Goal && success()>
% succeeded = FALSE;
% }, {
% succeeded = TRUE;
% })
% model_non in semi context: (using catch/throw)
% <succeeded = Goal>
% ===>
% void success() {
% throw COMMIT;
% }
% try {
% <Goal && success()>
% succeeded = FALSE;
% } catch (COMMIT) {
% succeeded = TRUE;
% }
% model_non in semi context: (using setjmp/longjmp)
% <succeeded = Goal>
% ===>
% jmp_buf buf;
% void success() {
% longjmp(buf, 1);
% }
% if (setjmp(buf)) {
% succeeded = TRUE;
% } else {
% <Goal && success()>
% succeeded = FALSE;
% }
% model_non in semi context: (using GNU C nested functions,
% GNU C local labels, and exiting
% the nested function by a goto
% to a label in the containing function)
% <succeeded = Goal>
% ===>
% __label__ commit;
% void success() {
% goto commit;
% }
% <Goal && success()>
% succeeded = FALSE;
% goto commit_done;
% commit:
% succeeded = TRUE;
% commit_done:
% ;
% model_non in det context: (using try_commit/do_commit)
% <do Goal>
% ===>
% MR_COMMIT_TYPE ref;
% void success() {
% MR_DO_COMMIT(ref);
% }
% MR_TRY_COMMIT(ref, {
% <Goal && success()>
% }, {})
% model_non in det context (using GNU C nested functions,
% GNU C local labels, and exiting
% the nested function by a goto
% to a label in the containing function)
% <do Goal>
% ===>
% __label__ done;
% void success() {
% goto done;
% }
% try {
% <Goal && success()>
% } catch (COMMIT) {}
% done: ;
% model_non in det context (using catch/throw):
% <do Goal>
% ===>
% void success() {
% throw COMMIT;
% }
% try {
% <Goal && success()>
% } catch (COMMIT) {}
% model_non in det context (using setjmp/longjmp):
% <do Goal>
% ===>
% jmp_buf buf;
% void success() {
% longjmp(buf, TRUE);
% }
% if (setjmp(buf) == 0) {
% <Goal && success()>
% }
% Note that for all of these versions, we must hoist any static declarations
% generated for <Goal> out to the top level; this is needed so that such
% declarations remain in scope for any following goals.
%-----------------------------------------------------------------------------%
%
% Code for empty conjunctions (`true')
%
% model_det goal:
% <do true>
% ===>
% /* fall through */
% model_semi goal:
% <succeeded = true>
% ===>
% succceeded = TRUE;
% model_non goal
% <true && CONT()>
% ===>
% CONT();
%-----------------------------------------------------------------------------%
%
% Code for non-empty conjunctions
%
% We need to handle the case where the first goal cannot succeed
% specially:
%
% at_most_zero Goal:
% <Goal, Goals>
% ===>
% <Goal>
%
% The remaining cases for conjunction all assume that the first
% goal's determinism is not `erroneous' or `failure'.
% If the first goal is model_det, it is straight-forward:
%
% model_det Goal:
% <Goal, Goals>
% ===>
% <do Goal>
% <Goals>
% If the first goal is model_semidet, then there are two cases:
% if the conj as a whole is semidet, things are simple, and
% if the conj as a whole is model_non, then we do the same as
% for the semidet case, except that we also (ought to) declare
% a local `succeeded' variable.
%
% model_semi Goal in model_semi conj:
% <succeeded = (Goal, Goals)>
% ===>
% <succeeded = Goal>;
% if (succeeded) {
% <Goals>;
% }
%
% model_semi Goal in model_non conj:
% <Goal && Goals>
% ===>
% bool succeeded;
%
% <succeeded = Goal>;
% if (succeeded) {
% <Goals>;
% }
%
% The actual code generation scheme we use is slightly
% different to that: we hoist any declarations generated
% for <Goals> to the outer scope, rather than keeping
% them inside the `if', so that they remain in
% scope for any later goals which follow this.
% This is needed for declarations of static consts.
% For model_non goals, there are a couple of different
% ways that we could generate code, depending on whether
% we are aiming to maximize readability, or whether we
% prefer to generate code that may be more efficient
% but is a little less readable. The more readable method
% puts the generated goals in the same order that
% they occur in the source code:
%
% model_non Goal (optimized for readability)
% <Goal, Goals>
% ===>
% entry_func() {
% <Goal && succ_func()>;
% }
% succ_func() {
% <Goals && SUCCEED()>;
% }
%
% entry_func();
%
% The more efficient method generates the goals in
% reverse order, so it's less readable, but it has fewer
% function calls and can make it easier for the C compiler
% to inline things:
%
% model_non Goal (optimized for efficiency):
% <Goal, Goals>
% ===>
% succ_func() {
% <Goals && SUCCEED()>;
% }
%
% <Goal && succ_func()>;
%
% The more efficient method is the one we actually use.
%
% Here's how those two methods look on longer
% conjunctions of nondet goals:
%
% model_non goals (optimized for readability):
% <Goal1, Goal2, Goal3, Goals>
% ===>
% label0_func() {
% <Goal1 && label1_func()>;
% }
% label1_func() {
% <Goal2 && label2_func()>;
% }
% label2_func() {
% <Goal3 && label3_func()>;
% }
% label3_func() {
% <Goals && SUCCEED()>;
% }
%
% label0_func();
%
% model_non goals (optimized for efficiency):
% <Goal1, Goal2, Goal3, Goals>
% ===>
% label1_func() {
% label2_func() {
% label3_func() {
% <Goals && SUCCEED()>;
% }
% <Goal3 && label3_func()>;
% }
% <Goal2 && label2_func()>;
% }
% <Goal1 && label1_func()>;
%
% Note that it might actually make more sense to generate
% conjunctions of nondet goals like this:
%
% model_non goals (optimized for efficiency, alternative version):
% <Goal1, Goal2, Goal3, Goals>
% ===>
% label3_func() {
% <Goals && SUCCEED()>;
% }
% label2_func() {
% <Goal3 && label3_func()>;
% }
% label1_func() {
% <Goal2 && label2_func()>;
% }
%
% <Goal1 && label1_func()>;
%
% This would avoid the undesirable deep nesting that we sometimes get
% with our current scheme. However, if we're eliminating nested
% functions, as is normally the case, then after the ml_elim_nested
% transformation all the functions and variables have been hoisted
% to the top level, so there is no difference between these two.
%
% As with semidet conjunctions, we hoist declarations
% out so that they remain in scope for any following goals.
% This is needed for declarations of static consts.
% However, we want to keep the declarations of non-static
% variables local, since accessing local variables is more
% efficient that accessing variables in the environment
% from a nested function. So we only hoist declarations
% of static constants.
%-----------------------------------------------------------------------------%
%
% Code for empty disjunctions (`fail')
%
% model_semi goal:
% <succeeded = fail>
% ===>
% succeeded = FALSE;
% model_non goal:
% <fail && CONT()>
% ===>
% /* fall through */
%-----------------------------------------------------------------------------%
%
% Code for non-empty disjunctions
%
% model_det disj:
% model_det Goal:
% <do (Goal ; Goals)>
% ===>
% <do Goal>
% /* <Goals> will never be reached */
% model_semi Goal:
% <do (Goal ; Goals)>
% ===>
% bool succeeded;
%
% <succeeded = Goal>;
% if (!succeeded) {
% <do Goals>;
% }
% model_semi disj:
% model_det Goal:
% <succeeded = (Goal ; Goals)>
% ===>
% bool succeeded;
%
% <do Goal>
% succeeded = TRUE
% /* <Goals> will never be reached */
% model_semi Goal:
% <succeeded = (Goal ; Goals)>
% ===>
% bool succeeded;
%
% <succeeded = Goal>;
% if (!succeeded) {
% <succeeded = Goals>;
% }
% model_non disj:
%
% model_det Goal:
% <(Goal ; Goals) && SUCCEED()>
% ===>
% <Goal>
% SUCCEED();
% <Goals && SUCCEED()>
%
% model_semi Goal:
% <(Goal ; Goals) && SUCCEED()>
% ===>
% bool succeeded;
%
% <succeeded = Goal>
% if (succeeded) SUCCEED();
% <Goals && SUCCEED()>
%
% model_non Goal:
% <(Goal ; Goals) && SUCCEED()>
% ===>
% <Goal && SUCCEED()>
% <Goals && SUCCEED()>
%-----------------------------------------------------------------------------%
%
% Code for if-then-else
%
% model_det Cond:
% <(Cond -> Then ; Else)>
% ===>
% <Cond>
% <Then>
% model_semi Cond:
% <(Cond -> Then ; Else)>
% ===>
% bool succeeded;
%
% <succeeded = Cond>
% if (succeeded) {
% <Then>
% } else {
% <Else>
% }
% /*
% ** XXX The following transformation does not do as good a job of GC
% ** as it could. Ideally we ought to ensure that stuff used only
% ** in the `Else' part will be reclaimed if a GC occurs during
% ** the `Then' part. But that is a bit tricky to achieve.
% */
%
% model_non Cond:
% <(Cond -> Then ; Else)>
% ===>
% bool cond_<N>;
%
% void then_func() {
% cond_<N> = TRUE;
% <Then>
% }
%
% cond_<N> = FALSE;
% <Cond && then_func()>
% if (!cond_<N>) {
% <Else>
% }
% except that we hoist any declarations generated
% for <Cond> to the top of the scope, so that they
% are in scope for the <Then> goal
% (this is needed for declarations of static consts)
%-----------------------------------------------------------------------------%
%
% Code for negation
%
% model_det negation
% <not(Goal)>
% ===>
% bool succeeded;
% <succeeded = Goal>
% /* now ignore the value of succeeded,
% which we know will be FALSE */
% model_semi negation, model_det Goal:
% <succeeded = not(Goal)>
% ===>
% <do Goal>
% succeeded = FALSE;
% model_semi negation, model_semi Goal:
% <succeeded = not(Goal)>
% ===>
% <succeeded = Goal>
% succeeded = !succeeded;
%-----------------------------------------------------------------------------%
%
% Code for deconstruction unifications
%
% det (cannot_fail) deconstruction:
% <succeeded = (X => f(A1, A2, ...))>
% ===>
% A1 = arg(X, f, 1); % extract arguments
% A2 = arg(X, f, 2);
% ...
% semidet (can_fail) deconstruction:
% <X => f(A1, A2, ...)>
% ===>
% <succeeded = (X => f(_, _, _, _))> % tag test
% if (succeeded) {
% A1 = arg(X, f, 1); % extract arguments
% A2 = arg(X, f, 2);
% ...
% }
%-----------------------------------------------------------------------------%
% This back-end is still not yet 100% complete.
%
% Done:
% - function prototypes
% - code generation for det, semidet, and nondet predicates/functions:
% - conjunctions
% - disjunctions
% - negation
% - if-then-else
% - predicate/function calls
% - higher-order calls
% - unifications
% - assignment
% - simple tests
% - constructions
% - deconstructions
% - switches
% - commits
% - `pragma c_code'
% - RTTI
% - high level data representation
% (i.e. generate MLDS type declarations for user-defined types)
%
% BUGS:
% - XXX parameter passing problem for abstract equivalence types
% that are defined as float (or anything which doesn't map to `Word')
%
% TODO:
% - XXX define compare & unify preds RTTI types
% - XXX need to generate correct layout information for closures
% so that tests/hard_coded/copy_pred works.
% - XXX fix ANSI/ISO C conformance of the generated code (i.e. port to lcc)
%
% UNIMPLEMENTED FEATURES:
% - test --det-copy-out
% - fix --gcc-nested-functions (need forward declarations for
% nested functions)
% - support debugging (with mdb)
% - support genuine parallel conjunction
% - support fact tables
% - support --split-c-files
% - support aditi
% - support trailing
% - support accurate GC
%
% POTENTIAL EFFICIENCY IMPROVEMENTS:
% - optimize unboxed float on DEC Alphas.
% - generate better code for switches:
% - optimize switches so that the recursive case comes first
% (see switch_gen.m).
% - apply the reverse tag test optimization
% for types with two functors (see unify_gen.m)
% - binary search switches
% - lookup switches
% - generate local declarations for the `succeeded' variable;
% this would help in nondet code, because it would avoid
% the need to access the outermost function's `succeeded'
% variable via the environment pointer
% (be careful about the interaction with setjmp(), though)
%-----------------------------------------------------------------------------%
:- module ml_code_gen.
:- interface.
:- import_module prog_data.
:- import_module hlds_module, hlds_goal.
:- import_module code_model.
:- import_module mlds, ml_code_util.
:- import_module io.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
% Generate MLDS code for an entire module.
%
:- pred ml_code_gen(module_info, mlds, io__state, io__state).
:- mode ml_code_gen(in, out, di, uo) is det.
% Generate MLDS code for the specified goal in the
% specified code model. Return the result as a single statement
% (which may be a block statement containing nested declarations).
%
:- pred ml_gen_goal(code_model, hlds_goal, mlds__statement,
ml_gen_info, ml_gen_info).
:- mode ml_gen_goal(in, in, out, in, out) is det.
% Generate MLDS code for the specified goal in the
% specified code model. Return the result as two lists,
% one containing the necessary declarations and the other
% containing the generated statements.
%
:- pred ml_gen_goal(code_model, hlds_goal, mlds__defns, mlds__statements,
ml_gen_info, ml_gen_info).
:- mode ml_gen_goal(in, in, out, out, in, out) is det.
% ml_gen_wrap_goal(OuterCodeModel, InnerCodeModel, Context,
% MLDS_Statements0, MLDS_Statements):
%
% OuterCodeModel is the code model expected by the
% context in which a goal is called. InnerCodeModel
% is the code model which the goal actually has.
% This predicate converts the code generated for
% the goal using InnerCodeModel into code that uses
% the calling convention appropriate for OuterCodeModel.
%
:- pred ml_gen_wrap_goal(code_model, code_model, prog_context,
mlds__statements, mlds__statements,
ml_gen_info, ml_gen_info).
:- mode ml_gen_wrap_goal(in, in, in, in, out, in, out) is det.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module ml_type_gen, ml_call_gen, ml_unify_gen, ml_switch_gen.
:- import_module ml_code_util.
:- import_module arg_info, llds, llds_out. % XXX needed for pragma foreign code
:- import_module export, foreign. % XXX needed for pragma foreign code
:- import_module hlds_pred, hlds_data.
:- import_module goal_util, type_util, mode_util, builtin_ops.
:- import_module passes_aux, modules.
:- import_module globals, options.
:- import_module assoc_list, bool, string, list, map.
:- import_module int, set, term, require, std_util.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
% Generate MLDS code for an entire module.
%
ml_code_gen(ModuleInfo, MLDS) -->
{ module_info_name(ModuleInfo, ModuleName) },
ml_gen_foreign_code(ModuleInfo, ForeignCode),
{ ml_gen_imports(ModuleInfo, Imports) },
ml_gen_defns(ModuleInfo, Defns),
{ MLDS = mlds(ModuleName, ForeignCode, Imports, Defns) }.
:- pred ml_gen_foreign_code(module_info, mlds__foreign_code,
io__state, io__state).
:- mode ml_gen_foreign_code(in, out, di, uo) is det.
ml_gen_foreign_code(ModuleInfo, MLDS_ForeignCode) -->
{ module_info_get_foreign_decl(ModuleInfo, ForeignDecls) },
{ module_info_get_foreign_body_code(ModuleInfo, ForeignBodys) },
globals__io_lookup_foreign_language_option(use_foreign_language,
UseForeignLanguage),
{ foreign__filter_decls(UseForeignLanguage, ForeignDecls,
WantedForeignDecls, _OtherForeignDecls) },
{ foreign__filter_bodys(UseForeignLanguage, ForeignBodys,
WantedForeignBodys, _OtherForeignBodys) },
{ ConvBody = (func(foreign_body_code(L, S, C)) =
user_foreign_code(L, S, C)) },
{ MLDSWantedForeignBodys = list__map(ConvBody, WantedForeignBodys) },
{ ml_gen_pragma_export(ModuleInfo, MLDS_PragmaExports) },
{ MLDS_ForeignCode = mlds__foreign_code(WantedForeignDecls,
MLDSWantedForeignBodys, MLDS_PragmaExports) }.
:- pred ml_gen_imports(module_info, mlds__imports).
:- mode ml_gen_imports(in, out) is det.
ml_gen_imports(ModuleInfo, MLDS_ImportList) :-
module_info_get_all_deps(ModuleInfo, AllImports),
MLDS_ImportList = list__map(mercury_module_name_to_mlds,
set__to_sorted_list(AllImports)).
:- pred ml_gen_defns(module_info, mlds__defns, io__state, io__state).
:- mode ml_gen_defns(in, out, di, uo) is det.
ml_gen_defns(ModuleInfo, MLDS_Defns) -->
ml_gen_types(ModuleInfo, MLDS_TypeDefns),
ml_gen_preds(ModuleInfo, MLDS_PredDefns),
{ MLDS_Defns = list__append(MLDS_TypeDefns, MLDS_PredDefns) }.
%-----------------------------------------------------------------------------%
%
% For each pragma export declaration we associate with it the
% information used to generate the function prototype for the MLDS
% entity.
%
:- pred ml_gen_pragma_export(module_info, list(mlds__pragma_export)).
:- mode ml_gen_pragma_export(in, out) is det.
ml_gen_pragma_export(ModuleInfo, MLDS_PragmaExports) :-
module_info_get_pragma_exported_procs(ModuleInfo, PragmaExports),
list__map(ml_gen_pragma_export_proc(ModuleInfo),
PragmaExports, MLDS_PragmaExports).
:- pred ml_gen_pragma_export_proc(module_info::in,
pragma_exported_proc::in, mlds__pragma_export::out) is det.
ml_gen_pragma_export_proc(ModuleInfo,
pragma_exported_proc(PredId, ProcId, C_Name, ProgContext),
ML_Defn) :-
ml_gen_proc_label(ModuleInfo, PredId, ProcId,
MLDS_Name, MLDS_ModuleName),
MLDS_FuncParams = ml_gen_proc_params(ModuleInfo, PredId, ProcId),
MLDS_Context = mlds__make_context(ProgContext),
ML_Defn = ml_pragma_export(C_Name, qual(MLDS_ModuleName, MLDS_Name),
MLDS_FuncParams, MLDS_Context).
%
% Test to see if the procedure is
% a model_det function whose function result has an output mode
% (whose type is not a dummy argument type like io__state),
% and if so, bind RetVar to the procedure's return value.
% These procedures need to handled specially: for such functions,
% we map the Mercury function result to an MLDS return value.
%
:- pred is_output_det_function(module_info, pred_id, proc_id, prog_var).
:- mode is_output_det_function(in, in, in, out) is semidet.
is_output_det_function(ModuleInfo, PredId, ProcId, RetArgVar) :-
module_info_pred_proc_info(ModuleInfo, PredId, ProcId, PredInfo,
ProcInfo),
pred_info_get_is_pred_or_func(PredInfo, function),
proc_info_interface_code_model(ProcInfo, model_det),
proc_info_argmodes(ProcInfo, Modes),
pred_info_arg_types(PredInfo, ArgTypes),
proc_info_headvars(ProcInfo, ArgVars),
modes_to_arg_modes(ModuleInfo, Modes, ArgTypes, ArgModes),
pred_args_to_func_args(ArgModes, _InputArgModes, RetArgMode),
pred_args_to_func_args(ArgTypes, _InputArgTypes, RetArgType),
pred_args_to_func_args(ArgVars, _InputArgVars, RetArgVar),
RetArgMode = top_out,
\+ type_util__is_dummy_argument_type(RetArgType).
%-----------------------------------------------------------------------------%
%
% Stuff to generate MLDS code for HLDS predicates & functions.
%
% Generate MLDS definitions for all the non-imported
% predicates (and functions) in the HLDS.
%
:- pred ml_gen_preds(module_info, mlds__defns, io__state, io__state).
:- mode ml_gen_preds(in, out, di, uo) is det.
ml_gen_preds(ModuleInfo, MLDS_PredDefns) -->
{ module_info_preds(ModuleInfo, PredTable) },
{ map__keys(PredTable, PredIds) },
{ MLDS_PredDefns0 = [] },
ml_gen_preds_2(ModuleInfo, PredIds, PredTable,
MLDS_PredDefns0, MLDS_PredDefns).
:- pred ml_gen_preds_2(module_info, list(pred_id), pred_table,
mlds__defns, mlds__defns, io__state, io__state).
:- mode ml_gen_preds_2(in, in, in, in, out, di, uo) is det.
ml_gen_preds_2(ModuleInfo, PredIds0, PredTable, MLDS_Defns0, MLDS_Defns) -->
(
{ PredIds0 = [PredId|PredIds] }
->
{ map__lookup(PredTable, PredId, PredInfo) },
{ pred_info_import_status(PredInfo, ImportStatus) },
( { ImportStatus = imported(_) } ->
{ MLDS_Defns1 = MLDS_Defns0 }
;
ml_gen_pred(ModuleInfo, PredId, PredInfo, ImportStatus,
MLDS_Defns0, MLDS_Defns1)
),
ml_gen_preds_2(ModuleInfo, PredIds, PredTable,
MLDS_Defns1, MLDS_Defns)
;
{ MLDS_Defns = MLDS_Defns0 }
).
% Generate MLDS definitions for all the non-imported
% procedures of a given predicate (or function).
%
:- pred ml_gen_pred(module_info, pred_id, pred_info, import_status,
mlds__defns, mlds__defns, io__state, io__state).
:- mode ml_gen_pred(in, in, in, in, in, out, di, uo) is det.
ml_gen_pred(ModuleInfo, PredId, PredInfo, ImportStatus,
MLDS_Defns0, MLDS_Defns) -->
( { ImportStatus = external(_) } ->
{ pred_info_procids(PredInfo, ProcIds) }
;
{ pred_info_non_imported_procids(PredInfo, ProcIds) }
),
( { ProcIds = [] } ->
{ MLDS_Defns = MLDS_Defns0 }
;
write_pred_progress_message("% Generating MLDS code for ",
PredId, ModuleInfo),
{ pred_info_procedures(PredInfo, ProcTable) },
{ ml_gen_procs(ProcIds, ModuleInfo, PredId, PredInfo,
ProcTable, MLDS_Defns0, MLDS_Defns) }
).
:- pred ml_gen_procs(list(proc_id), module_info, pred_id, pred_info,
proc_table, mlds__defns, mlds__defns).
:- mode ml_gen_procs(in, in, in, in, in, in, out) is det.
ml_gen_procs([], _, _, _, _) --> [].
ml_gen_procs([ProcId | ProcIds], ModuleInfo, PredId, PredInfo, ProcTable)
-->
{ map__lookup(ProcTable, ProcId, ProcInfo) },
ml_gen_proc(ModuleInfo, PredId, ProcId, PredInfo, ProcInfo),
ml_gen_procs(ProcIds, ModuleInfo, PredId, PredInfo, ProcTable).
%-----------------------------------------------------------------------------%
%
% Code for handling individual procedures
%
% Generate MLDS code for the specified procedure.
%
:- pred ml_gen_proc(module_info, pred_id, proc_id, pred_info, proc_info,
mlds__defns, mlds__defns).
:- mode ml_gen_proc(in, in, in, in, in, in, out) is det.
ml_gen_proc(ModuleInfo, PredId, ProcId, _PredInfo, ProcInfo, Defns0, Defns) :-
proc_info_context(ProcInfo, Context),
ml_gen_proc_label(ModuleInfo, PredId, ProcId, MLDS_Name, _ModuleName),
MLDS_Context = mlds__make_context(Context),
MLDS_DeclFlags = ml_gen_proc_decl_flags(ModuleInfo, PredId, ProcId),
ml_gen_proc_defn(ModuleInfo, PredId, ProcId,
MLDS_ProcDefnBody, ExtraDefns),
MLDS_ProcDefn = mlds__defn(MLDS_Name, MLDS_Context, MLDS_DeclFlags,
MLDS_ProcDefnBody),
Defns1 = list__append(ExtraDefns, [MLDS_ProcDefn | Defns0]),
ml_gen_maybe_add_table_var(ModuleInfo, PredId, ProcId, ProcInfo,
Defns1, Defns).
:- pred ml_gen_maybe_add_table_var(module_info, pred_id, proc_id, proc_info,
mlds__defns, mlds__defns).
:- mode ml_gen_maybe_add_table_var(in, in, in, in, in, out) is det.
ml_gen_maybe_add_table_var(ModuleInfo, PredId, ProcId, ProcInfo,
Defns0, Defns) :-
proc_info_eval_method(ProcInfo, EvalMethod),
(
eval_method_has_per_proc_tabling_pointer(EvalMethod) = yes
->
ml_gen_pred_label(ModuleInfo, PredId, ProcId,
MLDS_PredLabel, _MLDS_PredModule),
Var = tabling_pointer(MLDS_PredLabel - ProcId),
Type = mlds__generic_type,
Initializer = init_obj(const(null(Type))),
proc_info_context(ProcInfo, Context),
TablePointerVarDefn = ml_gen_mlds_var_decl(
Var, Type, Initializer, mlds__make_context(Context)),
Defns = [TablePointerVarDefn | Defns0]
;
Defns = Defns0
).
% Return the declaration flags appropriate for a procedure definition.
%
:- func ml_gen_proc_decl_flags(module_info, pred_id, proc_id)
= mlds__decl_flags.
ml_gen_proc_decl_flags(ModuleInfo, PredId, ProcId) = MLDS_DeclFlags :-
module_info_pred_info(ModuleInfo, PredId, PredInfo),
( procedure_is_exported(PredInfo, ProcId) ->
Access = public
;
Access = private
),
PerInstance = per_instance,
Virtuality = non_virtual,
Finality = overridable,
Constness = modifiable,
Abstractness = concrete,
MLDS_DeclFlags = init_decl_flags(Access, PerInstance,
Virtuality, Finality, Constness, Abstractness).
% Generate an MLDS definition for the specified procedure.
%
:- pred ml_gen_proc_defn(module_info, pred_id, proc_id, mlds__entity_defn,
mlds__defns).
:- mode ml_gen_proc_defn(in, in, in, out, out) is det.
ml_gen_proc_defn(ModuleInfo, PredId, ProcId, MLDS_ProcDefnBody, ExtraDefns) :-
module_info_pred_proc_info(ModuleInfo, PredId, ProcId,
PredInfo, ProcInfo),
pred_info_import_status(PredInfo, ImportStatus),
pred_info_arg_types(PredInfo, ArgTypes),
proc_info_interface_code_model(ProcInfo, CodeModel),
proc_info_headvars(ProcInfo, HeadVars),
proc_info_goal(ProcInfo, Goal0),
%
% The HLDS front-end sometimes over-estimates
% the set of non-locals. We need to restrict
% the set of non-locals for the top-level goal
% to just the headvars, because otherwise variables
% which occur in the top-level non-locals but which
% are not really non-local will not be declared.
%
Goal0 = GoalExpr - GoalInfo0,
goal_info_get_code_gen_nonlocals(GoalInfo0, NonLocals0),
set__list_to_set(HeadVars, HeadVarsSet),
set__intersect(HeadVarsSet, NonLocals0, NonLocals),
goal_info_set_code_gen_nonlocals(GoalInfo0, NonLocals, GoalInfo),
Goal = GoalExpr - GoalInfo,
goal_info_get_context(GoalInfo, Context),
MLDSGenInfo0 = ml_gen_info_init(ModuleInfo, PredId, ProcId),
MLDS_Params = ml_gen_proc_params(ModuleInfo, PredId, ProcId),
( ImportStatus = external(_) ->
%
% For Mercury procedures declared `:- external', we generate
% an MLDS definition for them with no function body.
% The MLDS -> target code pass can treat this accordingly,
% e.g. for C it outputs a function declaration with no
% corresponding definition, making sure that the function
% is declared as `extern' rather than `static'.
%
MaybeStatement = no,
ExtraDefns = []
;
% Set up the initial success continuation, if any.
% Also figure out which output variables are returned by
% value (rather than being passed by reference) and remove
% them from the byref_output_vars field in the ml_gen_info.
( CodeModel = model_non ->
ml_set_up_initial_succ_cont(ModuleInfo,
CopiedOutputVars, MLDSGenInfo0, MLDSGenInfo1)
;
(
is_output_det_function(ModuleInfo, PredId,
ProcId, ResultVar)
->
CopiedOutputVars = [ResultVar],
ml_gen_info_get_byref_output_vars(MLDSGenInfo0,
ByRefOutputVars0),
list__delete_all(ByRefOutputVars0,
ResultVar, ByRefOutputVars),
ml_gen_info_set_byref_output_vars(
ByRefOutputVars,
MLDSGenInfo0, MLDSGenInfo1)
;
CopiedOutputVars = [],
MLDSGenInfo1 = MLDSGenInfo0
)
),
% This would generate all the local variables at the top of
% the function:
% MLDS_LocalVars = ml_gen_all_local_var_decls(Goal,
% VarSet, VarTypes, HeadVars, ModuleInfo),
% But instead we now generate them locally for each goal.
% We just declare the `succeeded' var here, plus locals
% for any output arguments that are returned by value
% (e.g. if --nondet-copy-out is enabled, or for det function
% return values).
MLDS_Context = mlds__make_context(Context),
( CopiedOutputVars = [] ->
% optimize common case
OutputVarLocals = []
;
proc_info_varset(ProcInfo, VarSet),
proc_info_vartypes(ProcInfo, VarTypes),
% note that for headvars we must use the types from
% the procedure interface, not from the procedure body
HeadVarTypes = map__from_corresponding_lists(HeadVars,
ArgTypes),
OutputVarLocals = ml_gen_local_var_decls(VarSet,
map__overlay(VarTypes, HeadVarTypes),
MLDS_Context, ModuleInfo, CopiedOutputVars)
),
MLDS_LocalVars = [ml_gen_succeeded_var_decl(MLDS_Context) |
OutputVarLocals],
ml_gen_proc_body(CodeModel, HeadVars, ArgTypes,
CopiedOutputVars, Goal,
MLDS_Decls0, MLDS_Statements,
MLDSGenInfo1, MLDSGenInfo),
ml_gen_info_get_extra_defns(MLDSGenInfo, ExtraDefns),
MLDS_Decls = list__append(MLDS_LocalVars, MLDS_Decls0),
MLDS_Statement = ml_gen_block(MLDS_Decls, MLDS_Statements,
Context),
MaybeStatement = yes(MLDS_Statement)
),
MLDS_ProcDefnBody = mlds__function(yes(proc(PredId, ProcId)),
MLDS_Params, MaybeStatement).
:- pred ml_set_up_initial_succ_cont(module_info, list(prog_var),
ml_gen_info, ml_gen_info).
:- mode ml_set_up_initial_succ_cont(in, out, in, out) is det.
ml_set_up_initial_succ_cont(ModuleInfo, NondetCopiedOutputVars) -->
{ module_info_globals(ModuleInfo, Globals) },
{ globals__lookup_bool_option(Globals, nondet_copy_out,
NondetCopyOut) },
( { NondetCopyOut = yes } ->
% for --nondet-copy-out, we generate local variables
% for the output variables and then pass them to the
% continuation, rather than passing them by reference.
=(MLDSGenInfo0),
{ ml_gen_info_get_byref_output_vars(MLDSGenInfo0,
NondetCopiedOutputVars) },
ml_gen_info_set_byref_output_vars([])
;
{ NondetCopiedOutputVars = [] }
),
ml_gen_var_list(NondetCopiedOutputVars, OutputVarLvals),
ml_variable_types(NondetCopiedOutputVars, OutputVarTypes),
ml_initial_cont(OutputVarLvals, OutputVarTypes, InitialCont),
ml_gen_info_push_success_cont(InitialCont).
% Generate MLDS definitions for all the local variables in a function.
%
% Note that this function generates all the local variables at the
% top of the function. It might be a better idea to instead
% generate local declarations for all the variables used in
% each sub-goal.
%
:- func ml_gen_all_local_var_decls(hlds_goal, prog_varset,
map(prog_var, prog_type), list(prog_var), module_info) =
mlds__defns.
ml_gen_all_local_var_decls(Goal, VarSet, VarTypes, HeadVars, ModuleInfo) =
MLDS_LocalVars :-
Goal = _ - GoalInfo,
goal_info_get_context(GoalInfo, Context),
goal_util__goal_vars(Goal, AllVarsSet),
set__delete_list(AllVarsSet, HeadVars, LocalVarsSet),
set__to_sorted_list(LocalVarsSet, LocalVars),
MLDS_Context = mlds__make_context(Context),
MLDS_LocalVars0 = ml_gen_local_var_decls(VarSet, VarTypes,
MLDS_Context, ModuleInfo, LocalVars),
MLDS_SucceededVar = ml_gen_succeeded_var_decl(MLDS_Context),
MLDS_LocalVars = [MLDS_SucceededVar | MLDS_LocalVars0].
% Generate declarations for a list of local variables.
%
:- func ml_gen_local_var_decls(prog_varset, map(prog_var, prog_type),
mlds__context, module_info, prog_vars) = mlds__defns.
ml_gen_local_var_decls(VarSet, VarTypes, Context, ModuleInfo, Vars) =
LocalDecls :-
list__filter_map(ml_gen_local_var_decl(VarSet, VarTypes, Context,
ModuleInfo), Vars, LocalDecls).
% Generate a declaration for a local variable.
%
:- pred ml_gen_local_var_decl(prog_varset, map(prog_var, prog_type),
mlds__context, module_info, prog_var, mlds__defn).
:- mode ml_gen_local_var_decl(in, in, in, in, in, out) is semidet.
ml_gen_local_var_decl(VarSet, VarTypes, Context, ModuleInfo, Var, MLDS_Defn) :-
map__lookup(VarTypes, Var, Type),
not type_util__is_dummy_argument_type(Type),
VarName = ml_gen_var_name(VarSet, Var),
MLDS_Defn = ml_gen_var_decl(VarName, Type, Context, ModuleInfo).
% Generate the code for a procedure body.
%
:- pred ml_gen_proc_body(code_model, list(prog_var), list(prog_type),
list(prog_var), hlds_goal, mlds__defns, mlds__statements,
ml_gen_info, ml_gen_info).
:- mode ml_gen_proc_body(in, in, in, in, in, out, out, in, out) is det.
ml_gen_proc_body(CodeModel, HeadVars, ArgTypes, CopiedOutputVars, Goal,
MLDS_Decls, MLDS_Statements) -->
{ Goal = _ - GoalInfo },
{ goal_info_get_context(GoalInfo, Context) },
%
% First just generate the code for the procedure's goal.
%
{ DoGenGoal = ml_gen_goal(CodeModel, Goal) },
%
% In certain cases -- for example existentially typed procedures,
% or unification/compare procedures for equivalence types --
% the parameters types may not match the types of the head variables.
% In such cases, we need to box/unbox/cast them to the right type.
% We also grab the original (uncast) lvals for the copied output
% variables (if any) here, since for the return statement that
% we append below, we want the original vars, not their cast versions.
%
ml_gen_var_list(CopiedOutputVars, CopiedOutputVarOriginalLvals),
ml_gen_convert_headvars(HeadVars, ArgTypes, CopiedOutputVars, Context,
ConvDecls, ConvInputStatements, ConvOutputStatements),
(
{ ConvDecls = [] },
{ ConvInputStatements = [] },
{ ConvOutputStatements = [] }
->
% No boxing/unboxing/casting required.
DoGenGoal(MLDS_Decls, MLDS_Statements1)
;
% Boxing/unboxing/casting required.
% We need to convert the input arguments,
% generate the goal, convert the output arguments,
% and then succeeed.
{ DoConvOutputs = (pred(Decls::out, Statements::out, in, out)
is det -->
ml_gen_success(CodeModel, Context, SuccStatements),
{ Decls = [] },
{ Statements = list__append(ConvOutputStatements,
SuccStatements) }
) },
ml_combine_conj(CodeModel, Context,
DoGenGoal, DoConvOutputs,
MLDS_Decls0, MLDS_Statements0),
{ MLDS_Statements1 = list__append(ConvInputStatements,
MLDS_Statements0) },
{ MLDS_Decls = list__append(ConvDecls, MLDS_Decls0) }
),
%
% Finally append an appropriate `return' statement, if needed.
%
ml_append_return_statement(CodeModel, CopiedOutputVarOriginalLvals,
Context, MLDS_Statements1, MLDS_Statements).
%
% In certain cases -- for example existentially typed procedures,
% or unification/compare procedures for equivalence types --
% the parameter types may not match the types of the head variables.
% In such cases, we need to box/unbox/cast them to the right type.
% This procedure handles that.
%
:- pred ml_gen_convert_headvars(list(prog_var), list(prog_type),
list(prog_var), prog_context,
mlds__defns, mlds__statements, mlds__statements,
ml_gen_info, ml_gen_info).
:- mode ml_gen_convert_headvars(in, in, in, in, out, out, out, in, out) is det.
ml_gen_convert_headvars([], [], _, _, [], [], []) --> [].
ml_gen_convert_headvars([Var|Vars], [HeadType|HeadTypes], CopiedOutputVars,
Context, Decls, InputStatements, OutputStatements) -->
ml_variable_type(Var, BodyType),
(
%
% Check whether HeadType is the same as BodyType
% (modulo the term__contexts)
%
{ map__init(Subst0) },
{ type_unify(HeadType, BodyType, [], Subst0, Subst) },
{ map__is_empty(Subst) }
->
% just recursively process the remaining arguments
ml_gen_convert_headvars(Vars, HeadTypes, CopiedOutputVars,
Context, Decls, InputStatements, OutputStatements)
;
%
% generate the lval for the head variable
%
ml_gen_var_with_type(Var, HeadType, HeadVarLval),
%
% generate code to box or unbox that head variable,
% to convert its type from HeadType to BodyType
%
=(MLDSGenInfo),
{ ml_gen_info_get_varset(MLDSGenInfo, VarSet) },
{ VarName = ml_gen_var_name(VarSet, Var) },
ml_gen_box_or_unbox_lval(HeadType, BodyType, HeadVarLval,
VarName, Context, BodyLval, ConvDecls,
ConvInputStatements, ConvOutputStatements),
%
% Ensure that for any uses of this variable in the procedure
% body, we use the BodyLval (which has type BodyType)
% rather than the HeadVarLval (which has type HeadType).
%
ml_gen_info_set_var_lval(Var, BodyLval),
%
% Recursively process the remaining arguments
%
ml_gen_convert_headvars(Vars, HeadTypes, CopiedOutputVars,
Context, Decls1, InputStatements1, OutputStatements1),
%
% Add the code to convert this input or output.
%
=(MLDSGenInfo2),
{ ml_gen_info_get_byref_output_vars(MLDSGenInfo2,
ByRefOutputVars) },
{
( list__member(Var, ByRefOutputVars)
; list__member(Var, CopiedOutputVars)
)
->
InputStatements = InputStatements1,
OutputStatements = list__append(OutputStatements1,
ConvOutputStatements)
;
InputStatements = list__append(ConvInputStatements,
InputStatements1),
OutputStatements = OutputStatements1
},
{ list__append(ConvDecls, Decls1, Decls) }
).
ml_gen_convert_headvars([], [_|_], _, _, _, _, _) -->
{ error("ml_gen_convert_headvars: length mismatch") }.
ml_gen_convert_headvars([_|_], [], _, _, _, _, _) -->
{ error("ml_gen_convert_headvars: length mismatch") }.
%-----------------------------------------------------------------------------%
%
% Stuff to generate code for goals.
%
% Generate MLDS code for the specified goal in the
% specified code model. Return the result as a single statement
% (which may be a block statement containing nested declarations).
%
ml_gen_goal(CodeModel, Goal, MLDS_Statement) -->
ml_gen_goal(CodeModel, Goal, MLDS_Decls, MLDS_Statements),
{ Goal = _ - GoalInfo },
{ goal_info_get_context(GoalInfo, Context) },
{ MLDS_Statement = ml_gen_block(MLDS_Decls, MLDS_Statements,
Context) }.
% Generate MLDS code for the specified goal in the
% specified code model. Return the result as two lists,
% one containing the necessary declarations and the other
% containing the generated statements.
%
ml_gen_goal(CodeModel, Goal, MLDS_Decls, MLDS_Statements) -->
{ Goal = GoalExpr - GoalInfo },
%
% Generate the local variables for this goal.
% We need to declare any variables which
% are local to this goal (including its subgoals),
% but which are not local to a subgoal.
% (If they're local to a subgoal, they'll be declared
% when we generate code for that subgoal.)
{ Locals = goal_local_vars(Goal) },
{ SubGoalLocals = union_of_direct_subgoal_locals(Goal) },
{ set__difference(Locals, SubGoalLocals, VarsToDeclareHere) },
{ set__to_sorted_list(VarsToDeclareHere, VarsList) },
=(MLDSGenInfo),
{ ml_gen_info_get_varset(MLDSGenInfo, VarSet) },
{ ml_gen_info_get_var_types(MLDSGenInfo, VarTypes) },
{ ml_gen_info_get_module_info(MLDSGenInfo, ModuleInfo) },
{ VarDecls = ml_gen_local_var_decls(VarSet, VarTypes,
mlds__make_context(Context), ModuleInfo, VarsList) },
%
% Generate code for the goal in its own code model.
%
{ goal_info_get_context(GoalInfo, Context) },
{ goal_info_get_code_model(GoalInfo, GoalCodeModel) },
ml_gen_goal_expr(GoalExpr, GoalCodeModel, Context,
GoalDecls, GoalStatements0),
%
% Add whatever wrapper is needed to convert the goal's
% code model to the desired code model.
%
ml_gen_wrap_goal(CodeModel, GoalCodeModel, Context,
GoalStatements0, GoalStatements),
{ ml_join_decls(VarDecls, [], GoalDecls, GoalStatements, Context,
MLDS_Decls, MLDS_Statements) }.
% Return the set of variables which occur in the specified goal
% (including in its subgoals) and which are local to that goal.
:- func goal_local_vars(hlds_goal) = set(prog_var).
goal_local_vars(Goal) = LocalVars :-
% find all the variables in the goal
goal_util__goal_vars(Goal, GoalVars),
% delete the non-locals
Goal = _ - GoalInfo,
goal_info_get_code_gen_nonlocals(GoalInfo, NonLocalVars),
set__difference(GoalVars, NonLocalVars, LocalVars).
:- func union_of_direct_subgoal_locals(hlds_goal) = set(prog_var).
union_of_direct_subgoal_locals(Goal - _GoalInfo) =
promise_only_solution((pred(UnionOfSubGoalLocals::out) is cc_multi :-
set__init(EmptySet),
unsorted_aggregate(direct_subgoal(Goal),
union_subgoal_locals, EmptySet, UnionOfSubGoalLocals)
)).
:- pred union_subgoal_locals(hlds_goal, set(prog_var), set(prog_var)).
:- mode union_subgoal_locals(in, in, out) is det.
union_subgoal_locals(SubGoal, UnionOfSubGoalLocals0, UnionOfSubGoalLocals) :-
SubGoalLocals = goal_local_vars(SubGoal),
set__union(UnionOfSubGoalLocals0, SubGoalLocals, UnionOfSubGoalLocals).
% ml_gen_wrap_goal(OuterCodeModel, InnerCodeModel, Context,
% MLDS_Statements0, MLDS_Statements):
%
% OuterCodeModel is the code model expected by the
% context in which a goal is called. InnerCodeModel
% is the code model which the goal actually has.
% This predicate converts the code generated for
% the goal using InnerCodeModel into code that uses
% the calling convention appropriate for OuterCodeModel.
%
% If the inner and outer code models are equal,
% we don't need to do anything special.
ml_gen_wrap_goal(model_det, model_det, _,
MLDS_Statements, MLDS_Statements) --> [].
ml_gen_wrap_goal(model_semi, model_semi, _,
MLDS_Statements, MLDS_Statements) --> [].
ml_gen_wrap_goal(model_non, model_non, _,
MLDS_Statements, MLDS_Statements) --> [].
% If the inner code model is more precise than the outer code
% model, then we need to append some statements to convert
% the calling convention for the inner code model to that of
% the outer code model.
ml_gen_wrap_goal(model_semi, model_det, Context,
MLDS_Statements0, MLDS_Statements) -->
%
% det goal in semidet context:
% <succeeded = Goal>
% ===>
% <do Goal>
% succeeded = TRUE
%
ml_gen_set_success(const(true), Context, SetSuccessTrue),
{ MLDS_Statements = list__append(MLDS_Statements0, [SetSuccessTrue]) }.
ml_gen_wrap_goal(model_non, model_det, Context,
MLDS_Statements0, MLDS_Statements) -->
%
% det goal in nondet context:
% <Goal && SUCCEED()>
% ===>
% <do Goal>
% SUCCEED()
%
ml_gen_call_current_success_cont(Context, CallCont),
{ MLDS_Statements = list__append(MLDS_Statements0, [CallCont]) }.
ml_gen_wrap_goal(model_non, model_semi, Context,
MLDS_Statements0, MLDS_Statements) -->
%
% semi goal in nondet context:
% <Goal && SUCCEED()>
% ===>
% bool succeeded;
%
% <succeeded = Goal>
% if (succeeded) SUCCEED()
%
ml_gen_test_success(Succeeded),
ml_gen_call_current_success_cont(Context, CallCont),
{ IfStmt = if_then_else(Succeeded, CallCont, no) },
{ IfStatement = mlds__statement(IfStmt, mlds__make_context(Context)) },
{ MLDS_Statements = list__append(MLDS_Statements0, [IfStatement]) }.
% If the inner code model is less precise than the outer code model,
% then simplify.m is supposed to wrap the goal inside a `some'
% to indicate that a commit is needed.
ml_gen_wrap_goal(model_det, model_semi, _, _, _) -->
{ error("ml_gen_wrap_goal: code model mismatch -- semi in det") }.
ml_gen_wrap_goal(model_det, model_non, _, _, _) -->
{ error("ml_gen_wrap_goal: code model mismatch -- nondet in det") }.
ml_gen_wrap_goal(model_semi, model_non, _, _, _) -->
{ error("ml_gen_wrap_goal: code model mismatch -- nondet in semi") }.
% Generate code for a commit.
%
:- pred ml_gen_commit(hlds_goal, code_model, prog_context,
mlds__defns, mlds__statements,
ml_gen_info, ml_gen_info).
:- mode ml_gen_commit(in, in, in, out, out, in, out) is det.
ml_gen_commit(Goal, CodeModel, Context, MLDS_Decls, MLDS_Statements) -->
{ Goal = _ - GoalInfo },
{ goal_info_get_code_model(GoalInfo, GoalCodeModel) },
{ goal_info_get_context(GoalInfo, GoalContext) },
( { GoalCodeModel = model_non, CodeModel = model_semi } ->
% model_non in semi context: (using try_commit/do_commit)
% <succeeded = Goal>
% ===>
% bool succeeded;
% #ifdef NONDET_COPY_OUT
% <local var decls>
% #endif
% #ifdef PUT_COMMIT_IN_OWN_FUNC
% /*
% ** to avoid problems with setjmp() and non-volatile
% ** local variables, we need to put the call to
% ** setjmp() in its own nested function
% */
% void commit_func()
% {
% #endif
% MR_COMMIT_TYPE ref;
% void success() {
% MR_DO_COMMIT(ref);
% }
% MR_TRY_COMMIT(ref, {
% <Goal && success()>
% succeeded = FALSE;
% }, {
% #ifdef NONDET_COPY_OUT
% <copy local vars to output args>
% #endif
% succeeded = TRUE;
% })
% #ifdef PUT_COMMIT_IN_OWN_FUNC
% }
% commit_func();
% #endif
ml_gen_maybe_make_locals_for_output_args(GoalInfo,
LocalVarDecls, CopyLocalsToOutputArgs,
OrigVarLvalMap),
% generate the `success()' function
ml_gen_new_func_label(no, SuccessFuncLabel,
SuccessFuncLabelRval),
/* push nesting level */
{ MLDS_Context = mlds__make_context(Context) },
ml_gen_info_new_commit_label(CommitLabelNum),
{ string__format("commit_%d", [i(CommitLabelNum)],
CommitRef) },
ml_qualify_var(CommitRef, CommitRefLval),
{ CommitRefDecl = ml_gen_commit_var_decl(MLDS_Context,
CommitRef) },
{ DoCommitStmt = do_commit(lval(CommitRefLval)) },
{ DoCommitStatement = mlds__statement(DoCommitStmt,
MLDS_Context) },
/* pop nesting level */
ml_gen_nondet_label_func(SuccessFuncLabel, Context,
DoCommitStatement, SuccessFunc),
ml_get_env_ptr(EnvPtrRval),
{ SuccessCont = success_cont(SuccessFuncLabelRval,
EnvPtrRval, [], []) },
ml_gen_info_push_success_cont(SuccessCont),
ml_gen_goal(model_non, Goal, GoalDecls, GoalStatements),
% hoist any static constant declarations for Goal
% out to the top level
{ list__filter(ml_decl_is_static_const, GoalDecls,
GoalStaticDecls, GoalOtherDecls) },
{ GoalStatement = ml_gen_block(GoalOtherDecls,
GoalStatements, GoalContext) },
ml_gen_info_pop_success_cont,
ml_gen_set_success(const(false), Context, SetSuccessFalse),
ml_gen_set_success(const(true), Context, SetSuccessTrue),
{ TryCommitStmt = try_commit(CommitRefLval,
ml_gen_block([], [GoalStatement, SetSuccessFalse],
Context),
ml_gen_block([], list__append(CopyLocalsToOutputArgs,
[SetSuccessTrue]), Context)) },
{ TryCommitStatement = mlds__statement(TryCommitStmt,
MLDS_Context) },
{ CommitFuncLocalDecls = [CommitRefDecl, SuccessFunc |
GoalStaticDecls] },
maybe_put_commit_in_own_func(CommitFuncLocalDecls,
[TryCommitStatement], Context,
CommitFuncDecls, MLDS_Statements),
{ MLDS_Decls = LocalVarDecls ++ CommitFuncDecls },
ml_gen_info_set_var_lvals(OrigVarLvalMap)
; { GoalCodeModel = model_non, CodeModel = model_det } ->
% model_non in det context: (using try_commit/do_commit)
% <do Goal>
% ===>
% #ifdef NONDET_COPY_OUT
% <local var decls>
% #endif
% #ifdef PUT_COMMIT_IN_NESTED_FUNC
% /*
% ** to avoid problems with setjmp() and non-volatile
% ** local variables, we need to put the call to
% ** setjmp() in its own nested functions
% */
% void commit_func()
% {
% #endif
% MR_COMMIT_TYPE ref;
% void success() {
% MR_DO_COMMIT(ref);
% }
% MR_TRY_COMMIT(ref, {
% <Goal && success()>
% }, {
% #ifdef NONDET_COPY_OUT
% <copy local vars to output args>
% #endif
% })
% #ifdef PUT_COMMIT_IN_NESTED_FUNC
% }
% commit_func();
% #endif
ml_gen_maybe_make_locals_for_output_args(GoalInfo,
LocalVarDecls, CopyLocalsToOutputArgs,
OrigVarLvalMap),
% generate the `success()' function
ml_gen_new_func_label(no,
SuccessFuncLabel, SuccessFuncLabelRval),
/* push nesting level */
{ MLDS_Context = mlds__make_context(Context) },
ml_gen_info_new_commit_label(CommitLabelNum),
{ string__format("commit_%d", [i(CommitLabelNum)],
CommitRef) },
ml_qualify_var(CommitRef, CommitRefLval),
{ CommitRefDecl = ml_gen_commit_var_decl(MLDS_Context,
CommitRef) },
{ DoCommitStmt = do_commit(lval(CommitRefLval)) },
{ DoCommitStatement = mlds__statement(DoCommitStmt,
MLDS_Context) },
/* pop nesting level */
ml_gen_nondet_label_func(SuccessFuncLabel, Context,
DoCommitStatement, SuccessFunc),
ml_get_env_ptr(EnvPtrRval),
{ SuccessCont = success_cont(SuccessFuncLabelRval,
EnvPtrRval, [], []) },
ml_gen_info_push_success_cont(SuccessCont),
ml_gen_goal(model_non, Goal, GoalDecls, GoalStatements),
% hoist any static constant declarations for Goal
% out to the top level
{ list__filter(ml_decl_is_static_const, GoalDecls,
GoalStaticDecls, GoalOtherDecls) },
{ GoalStatement = ml_gen_block(GoalOtherDecls,
GoalStatements, GoalContext) },
ml_gen_info_pop_success_cont,
{ TryCommitStmt = try_commit(CommitRefLval, GoalStatement,
ml_gen_block([], CopyLocalsToOutputArgs, Context)) },
{ TryCommitStatement = mlds__statement(TryCommitStmt,
MLDS_Context) },
{ CommitFuncLocalDecls = [CommitRefDecl, SuccessFunc |
GoalStaticDecls] },
maybe_put_commit_in_own_func(CommitFuncLocalDecls,
[TryCommitStatement], Context,
CommitFuncDecls, MLDS_Statements),
{ MLDS_Decls = LocalVarDecls ++ CommitFuncDecls },
ml_gen_info_set_var_lvals(OrigVarLvalMap)
;
% no commit required
ml_gen_goal(CodeModel, Goal, MLDS_Decls, MLDS_Statements)
).
% maybe_put_commit_in_own_func(Defns0, Stmts0, Defns, Stmts):
% if the --put-commit-in-own-func option is set, put
% the commit in its own function. This is needed for
% the high-level C back-end, to handle problems with
% setjmp()/longjmp() clobbering non-volatile local variables.
%
% Detailed explanation:
% For the high-level C back-end, we implement commits using
% setjmp()/longjmp(). Unfortunately for us, ANSI/ISO C says
% that longjmp() is allowed to clobber the values of any
% non-volatile local variables in the function that called
% setjmp() which have been modified between the setjmp()
% and the longjmp().
%
% To avoid this, whenever we generate a commit, we put
% it in its own nested function, with the local variables
% (e.g. `succeeded', plus any outputs from the goal that
% we're committing over) remaining in the containing function.
% This ensures that none of the variables which get modified
% between the setjmp() and the longjmp() and which get
% referenced after the longjmp() are local variables in the
% function containing the setjmp().
%
% [The obvious alternative of declaring the local variables in
% the function containing setjmp() as `volatile' doesn't work,
% since the assignments to those output variables may be deep
% in some function called indirectly from the goal that we're
% committing across, and assigning to a volatile-qualified
% variable via a non-volatile pointer is undefined behaviour.
% The only way to make it work would be to be to declare
% *every* output argument that we pass by reference as
% `volatile T *'. But that would impose distributed fat and
% would make interoperability difficult.]
%
:- pred maybe_put_commit_in_own_func(mlds__defns, mlds__statements,
prog_context, mlds__defns, mlds__statements,
ml_gen_info, ml_gen_info).
:- mode maybe_put_commit_in_own_func(in, in, in, out, out, in, out) is det.
maybe_put_commit_in_own_func(CommitFuncLocalDecls, TryCommitStatements,
Context, MLDS_Decls, MLDS_Statements) -->
ml_gen_info_put_commit_in_own_func(PutCommitInOwnFunc),
( { PutCommitInOwnFunc = yes } ->
%
% Generate the `void commit_func() { ... }' wrapper
% around the main body that we generated above
%
ml_gen_new_func_label(no, CommitFuncLabel,
CommitFuncLabelRval),
/* push nesting level */
{ CommitFuncBody = ml_gen_block(CommitFuncLocalDecls,
TryCommitStatements, Context) },
/* pop nesting level */
ml_gen_nondet_label_func(CommitFuncLabel, Context,
CommitFuncBody, CommitFunc),
%
% Generate the call to `commit_func();'
%
ml_gen_info_use_gcc_nested_functions(UseNestedFuncs),
( { UseNestedFuncs = yes } ->
{ ArgRvals = [] },
{ ArgTypes = [] }
;
ml_get_env_ptr(EnvPtrRval),
{ ArgRvals = [EnvPtrRval] },
{ ArgTypes = [mlds__generic_env_ptr_type] }
),
{ RetTypes = [] },
{ Signature = mlds__func_signature(ArgTypes, RetTypes) },
{ CallOrTailcall = call },
{ CallStmt = call(Signature, CommitFuncLabelRval, no,
ArgRvals, [], CallOrTailcall) },
{ CallStatement = mlds__statement(CallStmt,
mlds__make_context(Context)) },
% Package it all up
{ MLDS_Statements = [CallStatement] },
{ MLDS_Decls = [CommitFunc] }
;
{ MLDS_Statements = TryCommitStatements },
{ MLDS_Decls = CommitFuncLocalDecls }
).
%
% In commits, you have model_non code called from a model_det or
% model_semi context. With --nondet-copy-out, when generating code
% for commits, if the context is a model_det or model_semi procedure
% with output arguments passed by reference, then we need to introduce
% local variables corresponding to those output arguments,
% and at the end of the commit we'll copy the local variables into
% the output arguments.
%
:- pred ml_gen_maybe_make_locals_for_output_args(hlds_goal_info, mlds__defns,
mlds__statements, map(prog_var, mlds__lval),
ml_gen_info, ml_gen_info).
:- mode ml_gen_maybe_make_locals_for_output_args(in, out, out, out, in, out)
is det.
ml_gen_maybe_make_locals_for_output_args(GoalInfo,
LocalVarDecls, CopyLocalsToOutputArgs, OrigVarLvalMap) -->
=(MLDSGenInfo0),
{ ml_gen_info_get_var_lvals(MLDSGenInfo0, OrigVarLvalMap) },
ml_gen_info_get_globals(Globals),
{ globals__lookup_bool_option(Globals, nondet_copy_out,
NondetCopyOut) },
( { NondetCopyOut = yes } ->
{ goal_info_get_context(GoalInfo, Context) },
{ goal_info_get_nonlocals(GoalInfo, NonLocals) },
{ ml_gen_info_get_byref_output_vars(MLDSGenInfo0,
ByRefOutputVars) },
{ VarsToCopy = set__intersect(set__list_to_set(ByRefOutputVars),
NonLocals) },
ml_gen_make_locals_for_output_args(
set__to_sorted_list(VarsToCopy), Context,
LocalVarDecls, CopyLocalsToOutputArgs)
;
{ LocalVarDecls = [] },
{ CopyLocalsToOutputArgs = [] }
).
:- pred ml_gen_make_locals_for_output_args(list(prog_var), prog_context,
mlds__defns, mlds__statements, ml_gen_info, ml_gen_info).
:- mode ml_gen_make_locals_for_output_args(in, in, out, out, in, out) is det.
ml_gen_make_locals_for_output_args([], _, [], []) --> [].
ml_gen_make_locals_for_output_args([Var | Vars], Context,
LocalDefns, Assigns) -->
ml_gen_make_locals_for_output_args(Vars, Context,
LocalDefns0, Assigns0),
ml_variable_type(Var, Type),
( { type_util__is_dummy_argument_type(Type) } ->
{ LocalDefns = LocalDefns0 },
{ Assigns = Assigns0 }
;
ml_gen_make_local_for_output_arg(Var, Type, Context,
LocalDefn, Assign),
{ LocalDefns = [LocalDefn | LocalDefns0] },
{ Assigns = [Assign | Assigns0] }
).
:- pred ml_gen_make_local_for_output_arg(prog_var, prog_type, prog_context,
mlds__defn, mlds__statement, ml_gen_info, ml_gen_info).
:- mode ml_gen_make_local_for_output_arg(in, in, in, out, out, in, out) is det.
ml_gen_make_local_for_output_arg(OutputVar, Type, Context,
LocalVarDefn, Assign) -->
%
% Look up the name of the output variable
%
=(MLDSGenInfo),
{ ml_gen_info_get_varset(MLDSGenInfo, VarSet) },
{ ml_gen_info_get_module_info(MLDSGenInfo, ModuleInfo) },
{ OutputVarName = ml_gen_var_name(VarSet, OutputVar) },
%
% Generate a declaration for a corresponding local variable.
%
{ string__append("local_", OutputVarName, LocalVarName) },
{ LocalVarDefn = ml_gen_var_decl(LocalVarName, Type,
mlds__make_context(Context), ModuleInfo) },
%
% Generate code to assign from the local var to the output var
%
ml_gen_var(OutputVar, OutputVarLval),
ml_qualify_var(LocalVarName, LocalVarLval),
{ Assign = ml_gen_assign(OutputVarLval, lval(LocalVarLval), Context) },
%
% Update the lval for this variable so that any references to it
% inside the commit refer to the local variable rather than
% to the output argument.
% (Note that we reset all the var lvals at the end of the commit.)
%
ml_gen_info_set_var_lval(OutputVar, LocalVarLval).
% Generate the declaration for the `commit' variable.
%
:- func ml_gen_commit_var_decl(mlds__context, mlds__var_name) = mlds__defn.
ml_gen_commit_var_decl(Context, VarName) =
ml_gen_mlds_var_decl(var(VarName), mlds__commit_type, Context).
% Generate MLDS code for the different kinds of HLDS goals.
%
:- pred ml_gen_goal_expr(hlds_goal_expr, code_model, prog_context,
mlds__defns, mlds__statements,
ml_gen_info, ml_gen_info).
:- mode ml_gen_goal_expr(in, in, in, out, out, in, out) is det.
ml_gen_goal_expr(switch(Var, CanFail, CasesList, _), CodeModel, Context,
MLDS_Decls, MLDS_Statements) -->
ml_gen_switch(Var, CanFail, CasesList, CodeModel, Context,
MLDS_Decls, MLDS_Statements).
ml_gen_goal_expr(some(_Vars, _CanRemove, Goal), CodeModel, Context,
MLDS_Decls, MLDS_Statements) -->
ml_gen_commit(Goal, CodeModel, Context, MLDS_Decls, MLDS_Statements).
ml_gen_goal_expr(if_then_else(_Vars, Cond, Then, Else, _),
CodeModel, Context, MLDS_Decls, MLDS_Statements) -->
ml_gen_ite(CodeModel, Cond, Then, Else, Context,
MLDS_Decls, MLDS_Statements).
ml_gen_goal_expr(not(Goal), CodeModel, Context,
MLDS_Decls, MLDS_Statements) -->
ml_gen_negation(Goal, CodeModel, Context, MLDS_Decls, MLDS_Statements).
ml_gen_goal_expr(conj(Goals), CodeModel, Context,
MLDS_Decls, MLDS_Statements) -->
ml_gen_conj(Goals, CodeModel, Context, MLDS_Decls, MLDS_Statements).
ml_gen_goal_expr(disj(Goals, _), CodeModel, Context,
MLDS_Decls, MLDS_Statements) -->
ml_gen_disj(Goals, CodeModel, Context, MLDS_Decls, MLDS_Statements).
ml_gen_goal_expr(par_conj(Goals, _SM), CodeModel, Context,
MLDS_Decls, MLDS_Statements) -->
%
% XXX currently we treat parallel conjunction the same as
% sequential conjunction -- parallelism is not yet implemented
%
ml_gen_conj(Goals, CodeModel, Context, MLDS_Decls, MLDS_Statements).
ml_gen_goal_expr(generic_call(GenericCall, Vars, Modes, Detism), CodeModel,
Context, MLDS_Decls, MLDS_Statements) -->
{ determinism_to_code_model(Detism, CallCodeModel) },
{ require(unify(CodeModel, CallCodeModel),
"ml_gen_generic_call: code model mismatch") },
ml_gen_generic_call(GenericCall, Vars, Modes, CodeModel, Context,
MLDS_Decls, MLDS_Statements).
ml_gen_goal_expr(call(PredId, ProcId, ArgVars, BuiltinState, _, PredName),
CodeModel, Context, MLDS_Decls, MLDS_Statements) -->
(
{ BuiltinState = not_builtin }
->
ml_gen_var_list(ArgVars, ArgLvals),
=(MLDSGenInfo),
{ ml_gen_info_get_varset(MLDSGenInfo, VarSet) },
{ ArgNames = ml_gen_var_names(VarSet, ArgVars) },
ml_variable_types(ArgVars, ActualArgTypes),
ml_gen_call(PredId, ProcId, ArgNames, ArgLvals, ActualArgTypes,
CodeModel, Context, MLDS_Decls, MLDS_Statements)
;
% For the MLDS back-end, we can't treat
% private_builtin:unsafe_type_cast as an
% ordinary builtin, since the code that
% builtin_ops__translate_builtin generates
% for it is not type-correct. Instead,
% we handle it separately here.
{ PredName = qualified(_, "unsafe_type_cast") }
->
ml_gen_var_list(ArgVars, ArgLvals),
ml_variable_types(ArgVars, ArgTypes),
(
{ ArgLvals = [SrcLval, DestLval] },
{ ArgTypes = [SrcType, DestType] }
->
ml_gen_box_or_unbox_rval(SrcType, DestType,
lval(SrcLval), CastRval),
{ Assign = ml_gen_assign(DestLval, CastRval,
Context) },
{ MLDS_Statements = [Assign] },
{ MLDS_Decls = [] }
;
{ error("wrong number of args for unsafe_type_cast") }
)
;
ml_gen_builtin(PredId, ProcId, ArgVars, CodeModel, Context,
MLDS_Decls, MLDS_Statements)
).
ml_gen_goal_expr(unify(_A, _B, _, Unification, _), CodeModel, Context,
MLDS_Decls, MLDS_Statements) -->
ml_gen_unification(Unification, CodeModel, Context,
MLDS_Decls, MLDS_Statements).
ml_gen_goal_expr(pragma_foreign_code(Attributes,
PredId, ProcId, ArgVars, ArgDatas, OrigArgTypes, PragmaImpl),
CodeModel, OuterContext, MLDS_Decls, MLDS_Statements) -->
(
{ PragmaImpl = ordinary(C_Code, _MaybeContext) },
ml_gen_ordinary_pragma_c_code(CodeModel, Attributes,
PredId, ProcId, ArgVars, ArgDatas, OrigArgTypes,
C_Code, OuterContext, MLDS_Decls, MLDS_Statements)
;
{ PragmaImpl = nondet(
LocalVarsDecls, LocalVarsContext,
FirstCode, FirstContext, LaterCode, LaterContext,
_Treatment, SharedCode, SharedContext) },
ml_gen_nondet_pragma_c_code(CodeModel, Attributes,
PredId, ProcId, ArgVars, ArgDatas, OrigArgTypes,
OuterContext, LocalVarsDecls, LocalVarsContext,
FirstCode, FirstContext, LaterCode, LaterContext,
SharedCode, SharedContext, MLDS_Decls, MLDS_Statements)
;
{ PragmaImpl = import(Name, HandleReturn, Vars, _Context) },
{ C_Code = string__append_list([HandleReturn, " ",
Name, "(", Vars, ");"]) },
ml_gen_ordinary_pragma_c_code(CodeModel, Attributes,
PredId, ProcId, ArgVars, ArgDatas, OrigArgTypes,
C_Code, OuterContext, MLDS_Decls, MLDS_Statements)
).
ml_gen_goal_expr(bi_implication(_, _), _, _, _, _) -->
% these should have been expanded out by now
{ error("ml_gen_goal_expr: unexpected bi_implication") }.
:- pred ml_gen_nondet_pragma_c_code(code_model, pragma_foreign_code_attributes,
pred_id, proc_id, list(prog_var),
list(maybe(pair(string, mode))), list(prog_type), prog_context,
string, maybe(prog_context), string, maybe(prog_context),
string, maybe(prog_context), string, maybe(prog_context),
mlds__defns, mlds__statements, ml_gen_info, ml_gen_info).
:- mode ml_gen_nondet_pragma_c_code(in, in, in, in, in, in, in, in,
in, in, in, in, in, in, in, in, out, out, in, out) is det.
% For model_non pragma c_code,
% we generate code of the following form:
%
% #define MR_PROC_LABEL <procedure name>
% <declaration of locals needed for boxing/unboxing>
% {
% <declaration of one local variable for each arg>
% struct {
% <user's local_vars decls>
% } MR_locals;
% bool MR_done = FALSE;
% bool MR_succeeded = FALSE;
%
% #define FAIL (MR_done = TRUE)
% #define SUCCEED (MR_succeeded = TRUE)
% #define SUCCEED_LAST (MR_succeeded = TRUE, \
% MR_done = TRUE)
% #define LOCALS (&MR_locals)
%
% <assign input args>
% <obtain global lock>
% <user's first_code C code>
% while (true) {
% <user's shared_code C code>
% <release global lock>
% if (MR_succeeded) {
% <assign output args>
% <boxing/unboxing of outputs>
% CONT();
% }
% if (MR_done) break;
% <obtain global lock>
% <user's later_code C code>
% }
%
% #undef FAIL
% #undef SUCCEED
% #undef SUCCEED_LAST
% #undef LOCALS
% }
% #undef MR_PROC_LABEL
%
% We insert a #define for MR_PROC_LABEL, so that the C code in
% the Mercury standard library that allocates memory manually
% can use MR_PROC_LABEL as the procname argument to
% incr_hp_msg(), for memory profiling. Hard-coding the procname
% argument in the C code would be wrong, since it wouldn't
% handle the case where the original pragma c_code procedure
% gets inlined and optimized away. Of course we also need to
% #undef it afterwards.
%
ml_gen_nondet_pragma_c_code(CodeModel, Attributes,
PredId, _ProcId, ArgVars, ArgDatas, OrigArgTypes, Context,
LocalVarsDecls, LocalVarsContext, FirstCode, FirstContext,
LaterCode, LaterContext, SharedCode, SharedContext,
MLDS_Decls, MLDS_Statements) -->
%
% Combine all the information about the each arg
%
{ ml_make_c_arg_list(ArgVars, ArgDatas, OrigArgTypes,
ArgList) },
%
% Generate <declaration of one local variable for each arg>
%
{ ml_gen_pragma_c_decls(ArgList, ArgDeclsList) },
%
% Generate definitions of the FAIL, SUCCEED, SUCCEED_LAST,
% and LOCALS macros
%
{ string__append_list([
" #define FAIL (MR_done = TRUE)\n",
" #define SUCCEED (MR_succeeded = TRUE)\n",
" #define SUCCEED_LAST (MR_succeeded = TRUE, MR_done = TRUE)\n",
" #define LOCALS (&MR_locals)\n"
], HashDefines) },
{ string__append_list([
" #undef FAIL\n",
" #undef SUCCEED\n",
" #undef SUCCEED_LAST\n",
" #undef LOCALS\n"
], HashUndefs) },
%
% Generate code to set the values of the input variables.
%
ml_gen_pragma_c_input_arg_list(ArgList, AssignInputsList),
%
% Generate code to assign the values of the output variables.
%
ml_gen_pragma_c_output_arg_list(ArgList, Context,
AssignOutputsList, ConvDecls, ConvStatements),
%
% Generate code fragments to obtain and release the global lock
%
{ thread_safe(Attributes, ThreadSafe) },
ml_gen_obtain_release_global_lock(ThreadSafe, PredId,
ObtainLock, ReleaseLock),
%
% Generate the MR_PROC_LABEL #define
%
ml_gen_hash_define_mr_proc_label(HashDefine),
%
% Put it all together
%
{ Starting_C_Code = list__condense([
[raw_target_code("{\n")],
HashDefine,
ArgDeclsList,
[raw_target_code("\tstruct {\n"),
user_target_code(LocalVarsDecls, LocalVarsContext),
raw_target_code("\n"),
raw_target_code("\t} MR_locals;\n"),
raw_target_code("\tbool MR_succeeded = FALSE;\n"),
raw_target_code("\tbool MR_done = FALSE;\n"),
raw_target_code("\n"),
raw_target_code(HashDefines),
raw_target_code("\n")],
AssignInputsList,
[raw_target_code(ObtainLock),
raw_target_code("\t{\n"),
user_target_code(FirstCode, FirstContext),
raw_target_code("\n\t;}\n"),
raw_target_code("\twhile (1) {\n"),
raw_target_code("\t\t{\n"),
user_target_code(SharedCode, SharedContext),
raw_target_code("\n\t\t;}\n"),
raw_target_code("#undef MR_PROC_LABEL\n"),
raw_target_code(ReleaseLock),
raw_target_code("\t\tif (MR_succeeded) {\n")],
AssignOutputsList
]) },
=(MLDSGenInfo),
{ ml_gen_info_get_module_info(MLDSGenInfo, ModuleInfo) },
{ module_info_globals(ModuleInfo, Globals) },
{ globals__lookup_string_option(Globals, target, Target) },
( { CodeModel = model_non } ->
% For IL code, we can't call continutations because
% there is no syntax for calling managed function
% pointers in managed C++. Instead we
% have to call back into IL and make the continuation
% call in IL. This is called an "indirect" success
% continuation call.
(
{ Target = "il" }
->
ml_gen_call_current_success_cont_indirectly(Context,
CallCont)
;
ml_gen_call_current_success_cont(Context, CallCont)
)
;
{ error("ml_gen_nondet_pragma_c_code: unexpected code model") }
),
{ Ending_C_Code = [
raw_target_code("\t\t}\n"),
raw_target_code("\t\tif (MR_done) break;\n"),
raw_target_code(ObtainLock),
raw_target_code("\t\t{\n"),
user_target_code(LaterCode, LaterContext),
raw_target_code("\n\t\t;}\n"),
raw_target_code("\t}\n"),
raw_target_code("\n"),
raw_target_code(HashUndefs),
raw_target_code("}\n")
] },
{ Starting_C_Code_Stmt = target_code(lang_C, Starting_C_Code) },
{ Starting_C_Code_Statement = mlds__statement(
atomic(Starting_C_Code_Stmt), mlds__make_context(Context)) },
{ Ending_C_Code_Stmt = target_code(lang_C, Ending_C_Code) },
{ Ending_C_Code_Statement = mlds__statement(
atomic(Ending_C_Code_Stmt), mlds__make_context(Context)) },
{ MLDS_Statements = list__condense([
[Starting_C_Code_Statement],
ConvStatements,
[CallCont,
Ending_C_Code_Statement]
]) },
{ MLDS_Decls = ConvDecls }.
:- pred ml_gen_ordinary_pragma_c_code(code_model,
pragma_foreign_code_attributes,
pred_id, proc_id, list(prog_var),
list(maybe(pair(string, mode))), list(prog_type),
string, prog_context,
mlds__defns, mlds__statements, ml_gen_info, ml_gen_info).
:- mode ml_gen_ordinary_pragma_c_code(in, in, in, in, in, in,
in, in, in, out, out, in, out) is det.
% For ordinary (not model_non) pragma c_code,
% we generate code of the following form:
%
% model_det pragma_c_code:
%
% #define MR_PROC_LABEL <procedure name>
% <declaration of locals needed for boxing/unboxing>
% {
% <declaration of one local variable for each arg>
%
% <assign input args>
% <obtain global lock>
% <c code>
% <boxing/unboxing of outputs>
% <release global lock>
% <assign output args>
% }
% #undef MR_PROC_LABEL
%
% model_semi pragma_c_code:
%
% #define MR_PROC_LABEL <procedure name>
% <declaration of locals needed for boxing/unboxing>
% {
% <declaration of one local variable for each arg>
% bool SUCCESS_INDICATOR;
%
% <assign input args>
% <obtain global lock>
% <c code>
% <release global lock>
% if (SUCCESS_INDICATOR) {
% <assign output args>
% <boxing/unboxing of outputs>
% }
%
% <succeeded> = SUCCESS_INDICATOR;
% }
% #undef MR_PROC_LABEL
%
% We insert a #define for MR_PROC_LABEL, so that the C code in
% the Mercury standard library that allocates memory manually
% can use MR_PROC_LABEL as the procname argument to
% incr_hp_msg(), for memory profiling. Hard-coding the procname
% argument in the C code would be wrong, since it wouldn't
% handle the case where the original pragma c_code procedure
% gets inlined and optimized away. Of course we also need to
% #undef it afterwards.
%
% Note that we generate this code directly as
% `target_code(lang_C, <string>)' instructions in the MLDS.
% It would probably be nicer to encode more of the structure
% in the MLDS, so that (a) we could do better MLDS optimization
% and (b) so that the generation of C code strings could be
% isolated in mlds_to_c.m. Also we will need to do something
% different for targets other than C, e.g. when compiling to
% Java.
%
ml_gen_ordinary_pragma_c_code(CodeModel, Attributes,
PredId, _ProcId, ArgVars, ArgDatas, OrigArgTypes,
C_Code, Context, MLDS_Decls, MLDS_Statements) -->
%
% Combine all the information about the each arg
%
{ ml_make_c_arg_list(ArgVars, ArgDatas, OrigArgTypes,
ArgList) },
%
% Generate <declaration of one local variable for each arg>
%
{ ml_gen_pragma_c_decls(ArgList, ArgDeclsList) },
%
% Generate code to set the values of the input variables.
%
ml_gen_pragma_c_input_arg_list(ArgList, AssignInputsList),
%
% Generate code to assign the values of the output variables.
%
ml_gen_pragma_c_output_arg_list(ArgList, Context,
AssignOutputsList, ConvDecls, ConvStatements),
%
% Generate code fragments to obtain and release the global lock
%
{ thread_safe(Attributes, ThreadSafe) },
ml_gen_obtain_release_global_lock(ThreadSafe, PredId,
ObtainLock, ReleaseLock),
%
% Generate the MR_PROC_LABEL #define
%
ml_gen_hash_define_mr_proc_label(HashDefine),
%
% Put it all together
%
( { CodeModel = model_det } ->
{ Starting_C_Code = list__condense([
[raw_target_code("{\n")],
HashDefine,
ArgDeclsList,
[raw_target_code("\n")],
AssignInputsList,
[raw_target_code(ObtainLock),
raw_target_code("\t\t{\n"),
user_target_code(C_Code, yes(Context)),
raw_target_code("\n\t\t;}\n"),
raw_target_code("#undef MR_PROC_LABEL\n"),
raw_target_code(ReleaseLock)],
AssignOutputsList
]) },
{ Ending_C_Code = [raw_target_code("}\n")] }
; { CodeModel = model_semi } ->
ml_success_lval(SucceededLval),
{ Starting_C_Code = list__condense([
[raw_target_code("{\n")],
HashDefine,
ArgDeclsList,
[raw_target_code("\tbool SUCCESS_INDICATOR;\n"),
raw_target_code("\n")],
AssignInputsList,
[raw_target_code(ObtainLock),
raw_target_code("\t\t{\n"),
user_target_code(C_Code, yes(Context)),
raw_target_code("\n\t\t;}\n"),
raw_target_code("#undef MR_PROC_LABEL\n"),
raw_target_code(ReleaseLock),
raw_target_code("\tif (SUCCESS_INDICATOR) {\n")],
AssignOutputsList
]) },
{ Ending_C_Code = [
raw_target_code("\t}\n"),
target_code_output(SucceededLval),
raw_target_code(" = SUCCESS_INDICATOR;\n"),
raw_target_code("}\n")
] }
;
{ error("ml_gen_ordinary_pragma_c_code: unexpected code model") }
),
{ Starting_C_Code_Stmt = target_code(lang_C, Starting_C_Code) },
{ Ending_C_Code_Stmt = target_code(lang_C, Ending_C_Code) },
{ Starting_C_Code_Statement = mlds__statement(
atomic(Starting_C_Code_Stmt), mlds__make_context(Context)) },
{ Ending_C_Code_Statement = mlds__statement(atomic(Ending_C_Code_Stmt),
mlds__make_context(Context)) },
{ MLDS_Statements = list__condense([
[Starting_C_Code_Statement],
ConvStatements,
[Ending_C_Code_Statement]
]) },
{ MLDS_Decls = ConvDecls }.
% Generate code fragments to obtain and release the global lock
% (this is used for ensuring thread safety in a concurrent
% implementation)
%
:- pred ml_gen_obtain_release_global_lock(thread_safe, pred_id,
string, string, ml_gen_info, ml_gen_info).
:- mode ml_gen_obtain_release_global_lock(in, in, out, out, in, out) is det.
ml_gen_obtain_release_global_lock(ThreadSafe, PredId,
ObtainLock, ReleaseLock) -->
=(MLDSGenInfo),
{ ml_gen_info_get_module_info(MLDSGenInfo, ModuleInfo) },
{ module_info_globals(ModuleInfo, Globals) },
{ globals__lookup_bool_option(Globals, parallel, Parallel) },
{
Parallel = yes,
ThreadSafe = not_thread_safe
->
module_info_pred_info(ModuleInfo, PredId, PredInfo),
pred_info_name(PredInfo, Name),
llds_out__quote_c_string(Name, MangledName),
string__append_list(["\tMR_OBTAIN_GLOBAL_LOCK(""",
MangledName, """);\n"], ObtainLock),
string__append_list(["\tMR_RELEASE_GLOBAL_LOCK(""",
MangledName, """);\n"], ReleaseLock)
;
ObtainLock = "",
ReleaseLock = ""
}.
:- pred ml_gen_hash_define_mr_proc_label(list(target_code_component)::out,
ml_gen_info::in, ml_gen_info::out) is det.
ml_gen_hash_define_mr_proc_label(HashDefine) -->
=(MLDSGenInfo),
{ ml_gen_info_get_module_info(MLDSGenInfo, ModuleInfo) },
% Note that we use the pred_id and proc_id of the current procedure,
% not the one that the pragma foreign_code originally came from.
% There may not be any function address for the latter, e.g. if it
% has been inlined and the original definition optimized away.
{ ml_gen_info_get_pred_id(MLDSGenInfo, PredId) },
{ ml_gen_info_get_proc_id(MLDSGenInfo, ProcId) },
{ ml_gen_proc_label(ModuleInfo, PredId, ProcId, MLDS_Name,
MLDS_Module) },
{ HashDefine = [raw_target_code("#define MR_PROC_LABEL "),
name(qual(MLDS_Module, MLDS_Name)),
raw_target_code("\n")] }.
%---------------------------------------------------------------------------%
%
% we gather all the information about each pragma_c argument
% together into this struct
%
:- type ml_c_arg
---> ml_c_arg(
prog_var,
maybe(pair(string, mode)), % name and mode
prog_type % original type before
% inlining/specialization
% (the actual type may be an instance
% of this type, if this type is
% polymorphic).
).
:- pred ml_make_c_arg_list(list(prog_var)::in,
list(maybe(pair(string, mode)))::in, list(prog_type)::in,
list(ml_c_arg)::out) is det.
ml_make_c_arg_list(Vars, ArgDatas, Types, ArgList) :-
( Vars = [], ArgDatas = [], Types = [] ->
ArgList = []
; Vars = [V|Vs], ArgDatas = [N|Ns], Types = [T|Ts] ->
Arg = ml_c_arg(V, N, T),
ml_make_c_arg_list(Vs, Ns, Ts, Args),
ArgList = [Arg | Args]
;
error("ml_code_gen:make_c_arg_list - length mismatch")
).
%---------------------------------------------------------------------------%
% ml_gen_pragma_c_decls generates C code to declare the arguments
% for a `pragma c_code' declaration.
%
:- pred ml_gen_pragma_c_decls(list(ml_c_arg)::in,
list(target_code_component)::out) is det.
ml_gen_pragma_c_decls([], []).
ml_gen_pragma_c_decls([Arg|Args], [Decl|Decls]) :-
ml_gen_pragma_c_decl(Arg, Decl),
ml_gen_pragma_c_decls(Args, Decls).
% ml_gen_pragma_c_decl generates C code to declare an argument
% of a `pragma c_code' declaration.
%
:- pred ml_gen_pragma_c_decl(ml_c_arg::in, target_code_component::out) is det.
ml_gen_pragma_c_decl(ml_c_arg(_Var, MaybeNameAndMode, Type), Decl) :-
(
MaybeNameAndMode = yes(ArgName - _Mode),
\+ var_is_singleton(ArgName)
->
export__type_to_type_string(Type, TypeString),
string__format("\t%s %s;\n", [s(TypeString), s(ArgName)],
DeclString)
;
% if the variable doesn't occur in the ArgNames list,
% it can't be used, so we just ignore it
DeclString = ""
),
Decl = raw_target_code(DeclString).
%-----------------------------------------------------------------------------%
% var_is_singleton determines whether or not a given pragma_c variable
% is singleton (i.e. starts with an underscore)
%
% Singleton vars should be ignored when generating the declarations for
% pragma_c arguments because:
%
% - they should not appear in the C code
% - they could clash with the system name space
%
:- pred var_is_singleton(string) is semidet.
:- mode var_is_singleton(in) is semidet.
var_is_singleton(Name) :-
string__first_char(Name, '_', _).
%-----------------------------------------------------------------------------%
:- pred ml_gen_pragma_c_input_arg_list(list(ml_c_arg)::in,
list(target_code_component)::out,
ml_gen_info::in, ml_gen_info::out) is det.
ml_gen_pragma_c_input_arg_list(ArgList, AssignInputs) -->
list__map_foldl(ml_gen_pragma_c_input_arg, ArgList, AssignInputsList),
{ list__condense(AssignInputsList, AssignInputs) }.
% ml_gen_pragma_c_input_arg generates C code to assign the value of an input
% arg for a `pragma c_code' declaration.
%
:- pred ml_gen_pragma_c_input_arg(ml_c_arg::in,
list(target_code_component)::out,
ml_gen_info::in, ml_gen_info::out) is det.
ml_gen_pragma_c_input_arg(ml_c_arg(Var, MaybeNameAndMode, OrigType),
AssignInput) -->
=(MLDSGenInfo),
{ ml_gen_info_get_module_info(MLDSGenInfo, ModuleInfo) },
(
{ MaybeNameAndMode = yes(ArgName - Mode) },
{ \+ var_is_singleton(ArgName) },
{ mode_to_arg_mode(ModuleInfo, Mode, OrigType, top_in) }
->
ml_variable_type(Var, VarType),
ml_gen_var(Var, VarLval),
( { type_util__is_dummy_argument_type(VarType) } ->
% The variable may not have been declared,
% so we need to generate a dummy value for it.
% Using `0' here is more efficient than
% using private_builtin__dummy_var, which is
% what ml_gen_var will have generated for this
% variable.
{ ArgRval = const(int_const(0)) }
;
ml_gen_box_or_unbox_rval(VarType, OrigType,
lval(VarLval), ArgRval)
),
{ module_info_globals(ModuleInfo, Globals) },
{ globals__lookup_bool_option(Globals, highlevel_data,
HighLevelData) },
{ HighLevelData = yes ->
% In general, the types used for the C interface
% are not the same as the types used by
% --high-level-data, so we always use a cast here.
% (Strictly speaking the cast is not needed for
% a few cases like `int', but it doesn't do any harm.)
export__type_to_type_string(OrigType, TypeString),
string__format("(%s)", [s(TypeString)], Cast)
;
% For --no-high-level-data, we only need to use
% a cast is for polymorphic types, which are
% `Word' in the C interface but `MR_Box' in the
% MLDS back-end.
( type_util__var(OrigType, _) ->
Cast = "(MR_Word) "
;
Cast = ""
)
},
{ string__format("\t%s = %s\n",
[s(ArgName), s(Cast)],
AssignToArgName) },
{ AssignInput = [
raw_target_code(AssignToArgName),
target_code_input(ArgRval),
raw_target_code(";\n")
] }
;
% if the variable doesn't occur in the ArgNames list,
% it can't be used, so we just ignore it
{ AssignInput = [] }
).
:- pred ml_gen_pragma_c_output_arg_list(list(ml_c_arg)::in, prog_context::in,
list(target_code_component)::out,
mlds__defns::out, mlds__statements::out,
ml_gen_info::in, ml_gen_info::out) is det.
ml_gen_pragma_c_output_arg_list([], _, [], [], []) --> [].
ml_gen_pragma_c_output_arg_list([C_Arg | C_Args], Context, Components,
ConvDecls, ConvStatements) -->
ml_gen_pragma_c_output_arg(C_Arg, Context, Components1,
ConvDecls1, ConvStatements1),
ml_gen_pragma_c_output_arg_list(C_Args, Context, Components2,
ConvDecls2, ConvStatements2),
{ Components = list__append(Components1, Components2) },
{ ConvDecls = list__append(ConvDecls1, ConvDecls2) },
{ ConvStatements = list__append(ConvStatements1, ConvStatements2) }.
% ml_gen_pragma_c_output_arg generates C code to assign the value of an output
% arg for a `pragma c_code' declaration.
%
:- pred ml_gen_pragma_c_output_arg(ml_c_arg::in, prog_context::in,
list(target_code_component)::out,
mlds__defns::out, mlds__statements::out,
ml_gen_info::in, ml_gen_info::out) is det.
ml_gen_pragma_c_output_arg(ml_c_arg(Var, MaybeNameAndMode, OrigType),
Context, AssignOutput, ConvDecls, ConvOutputStatements) -->
=(MLDSGenInfo),
{ ml_gen_info_get_module_info(MLDSGenInfo, ModuleInfo) },
(
{ MaybeNameAndMode = yes(ArgName - Mode) },
{ \+ var_is_singleton(ArgName) },
{ \+ type_util__is_dummy_argument_type(OrigType) },
{ mode_to_arg_mode(ModuleInfo, Mode, OrigType, top_out) }
->
ml_variable_type(Var, VarType),
ml_gen_var(Var, VarLval),
ml_gen_box_or_unbox_lval(VarType, OrigType, VarLval, ArgName,
Context, ArgLval, ConvDecls, _ConvInputStatements,
ConvOutputStatements),
{ module_info_globals(ModuleInfo, Globals) },
{ globals__lookup_bool_option(Globals, highlevel_data,
HighLevelData) },
{ HighLevelData = yes ->
% In general, the types used for the C interface
% are not the same as the types used by
% --high-level-data, so we always use a cast here.
% (Strictly speaking the cast is not needed for
% a few cases like `int', but it doesn't do any harm.)
% Note that we can't easily obtain the type string
% for the RHS of the assignment, so instead we
% cast the LHS.
export__type_to_type_string(OrigType, TypeString),
string__format("*(%s *)&", [s(TypeString)], LHS_Cast),
RHS_Cast = ""
;
% For --no-high-level-data, we only need to use
% a cast is for polymorphic types, which are
% `Word' in the C interface but `MR_Box' in the
% MLDS back-end.
( type_util__var(VarType, _) ->
RHS_Cast = "(MR_Box) "
;
RHS_Cast = ""
),
LHS_Cast = ""
},
{ string__format(" = %s%s;\n", [s(RHS_Cast), s(ArgName)],
AssignFromArgName) },
{ string__format("\t%s\n", [s(LHS_Cast)], AssignTo) },
{ AssignOutput = [
raw_target_code(AssignTo),
target_code_output(ArgLval),
raw_target_code(AssignFromArgName)
] }
;
% if the variable doesn't occur in the ArgNames list,
% it can't be used, so we just ignore it
{ AssignOutput = [] },
{ ConvDecls = [] },
{ ConvOutputStatements = [] }
).
%-----------------------------------------------------------------------------%
%
% Code for if-then-else
%
:- pred ml_gen_ite(code_model, hlds_goal, hlds_goal, hlds_goal, prog_context,
mlds__defns, mlds__statements, ml_gen_info, ml_gen_info).
:- mode ml_gen_ite(in, in, in, in, in, out, out, in, out) is det.
ml_gen_ite(CodeModel, Cond, Then, Else, Context,
MLDS_Decls, MLDS_Statements) -->
{ Cond = _ - CondGoalInfo },
{ goal_info_get_code_model(CondGoalInfo, CondCodeModel) },
(
% model_det Cond:
% <(Cond -> Then ; Else)>
% ===>
% <Cond>
% <Then>
{ CondCodeModel = model_det },
ml_gen_goal(model_det, Cond, CondStatement),
ml_gen_goal(CodeModel, Then, ThenStatement),
{ MLDS_Decls = [] },
{ MLDS_Statements = [CondStatement, ThenStatement] }
;
% model_semi cond:
% <(Cond -> Then ; Else)>
% ===>
% bool succeeded;
%
% <succeeded = Cond>
% if (succeeded) {
% <Then>
% } else {
% <Else>
% }
{ CondCodeModel = model_semi },
ml_gen_goal(model_semi, Cond, CondDecls, CondStatements),
ml_gen_test_success(Succeeded),
ml_gen_goal(CodeModel, Then, ThenStatement),
ml_gen_goal(CodeModel, Else, ElseStatement),
{ IfStmt = if_then_else(Succeeded, ThenStatement,
yes(ElseStatement)) },
{ IfStatement = mlds__statement(IfStmt,
mlds__make_context(Context)) },
{ MLDS_Decls = CondDecls },
{ MLDS_Statements = list__append(CondStatements,
[IfStatement]) }
;
% /*
% ** XXX The following transformation does not do as
% ** good a job of GC as it could. Ideally we ought
% ** to ensure that stuff used only in the `Else'
% ** part will be reclaimed if a GC occurs during
% ** the `Then' part. But that is a bit tricky to
% ** achieve.
% */
%
% model_non cond:
% <(Cond -> Then ; Else)>
% ===>
% bool cond_<N>;
%
% void then_func() {
% cond_<N> = TRUE;
% <Then>
% }
%
% cond_<N> = FALSE;
% <Cond && then_func()>
% if (!cond_<N>) {
% <Else>
% }
% except that we hoist any declarations generated
% for <Cond> to the top of the scope, so that they
% are in scope for the <Then> goal
% (this is needed for declarations of static consts)
{ CondCodeModel = model_non },
% generate the `cond_<N>' var and the code to initialize it to false
ml_gen_info_new_cond_var(CondVar),
{ MLDS_Context = mlds__make_context(Context) },
{ CondVarDecl = ml_gen_cond_var_decl(CondVar, MLDS_Context) },
ml_gen_set_cond_var(CondVar, const(false), Context,
SetCondFalse),
% allocate a name for the `then_func'
ml_gen_new_func_label(no, ThenFuncLabel, ThenFuncLabelRval),
% generate <Cond && then_func()>
ml_get_env_ptr(EnvPtrRval),
{ SuccessCont = success_cont(ThenFuncLabelRval, EnvPtrRval,
[], []) },
ml_gen_info_push_success_cont(SuccessCont),
ml_gen_goal(model_non, Cond, CondDecls, CondStatements),
ml_gen_info_pop_success_cont,
% generate the `then_func'
/* push nesting level */
{ Then = _ - ThenGoalInfo },
{ goal_info_get_context(ThenGoalInfo, ThenContext) },
ml_gen_set_cond_var(CondVar, const(true), ThenContext,
SetCondTrue),
ml_gen_goal(CodeModel, Then, ThenStatement),
{ ThenFuncBody = ml_gen_block([],
[SetCondTrue, ThenStatement], ThenContext) },
/* pop nesting level */
ml_gen_nondet_label_func(ThenFuncLabel, ThenContext,
ThenFuncBody, ThenFunc),
% generate `if (!cond_<N>) { <Else> }'
ml_gen_test_cond_var(CondVar, CondSucceeded),
ml_gen_goal(CodeModel, Else, ElseStatement),
{ IfStmt = if_then_else(unop(std_unop(not), CondSucceeded),
ElseStatement, no) },
{ IfStatement = mlds__statement(IfStmt, MLDS_Context) },
% package it all up in the right order
{ MLDS_Decls = list__append([CondVarDecl | CondDecls], [ThenFunc]) },
{ MLDS_Statements = list__append(
[SetCondFalse | CondStatements], [IfStatement]) }
).
%-----------------------------------------------------------------------------%
%
% Code for negation
%
:- pred ml_gen_negation(hlds_goal, code_model, prog_context,
mlds__defns, mlds__statements, ml_gen_info, ml_gen_info).
:- mode ml_gen_negation(in, in, in, out, out, in, out) is det.
ml_gen_negation(Cond, CodeModel, Context,
MLDS_Decls, MLDS_Statements) -->
{ Cond = _ - CondGoalInfo },
{ goal_info_get_code_model(CondGoalInfo, CondCodeModel) },
(
% model_det negation:
% <not(Goal)>
% ===>
% {
% bool succeeded;
% <succeeded = Goal>
% /* now ignore the value of succeeded,
% which we know will be FALSE */
% }
{ CodeModel = model_det },
ml_gen_goal(model_semi, Cond, MLDS_Decls, MLDS_Statements)
;
% model_semi negation, model_det goal:
% <succeeded = not(Goal)>
% ===>
% <do Goal>
% succeeded = FALSE;
{ CodeModel = model_semi, CondCodeModel = model_det },
ml_gen_goal(model_det, Cond, CondDecls, CondStatements),
ml_gen_set_success(const(false), Context, SetSuccessFalse),
{ MLDS_Decls = CondDecls },
{ MLDS_Statements = list__append(CondStatements,
[SetSuccessFalse]) }
;
% model_semi negation, model_semi goal:
% <succeeded = not(Goal)>
% ===>
% <succeeded = Goal>
% succeeded = !succeeded;
{ CodeModel = model_semi, CondCodeModel = model_semi },
ml_gen_goal(model_semi, Cond, CondDecls, CondStatements),
ml_gen_test_success(Succeeded),
ml_gen_set_success(unop(std_unop(not), Succeeded), Context,
InvertSuccess),
{ MLDS_Decls = CondDecls },
{ MLDS_Statements = list__append(CondStatements,
[InvertSuccess]) }
;
{ CodeModel = model_semi, CondCodeModel = model_non },
{ error("ml_gen_negation: nondet cond") }
;
{ CodeModel = model_non },
{ error("ml_gen_negation: nondet negation") }
).
%-----------------------------------------------------------------------------%
%
% Code for conjunctions
%
:- pred ml_gen_conj(hlds_goals, code_model, prog_context,
mlds__defns, mlds__statements, ml_gen_info, ml_gen_info).
:- mode ml_gen_conj(in, in, in, out, out, in, out) is det.
ml_gen_conj([], CodeModel, Context, [], MLDS_Statements) -->
ml_gen_success(CodeModel, Context, MLDS_Statements).
ml_gen_conj([SingleGoal], CodeModel, _Context,
MLDS_Decls, MLDS_Statements) -->
ml_gen_goal(CodeModel, SingleGoal, MLDS_Decls, MLDS_Statements).
ml_gen_conj([First | Rest], CodeModel, Context,
MLDS_Decls, MLDS_Statements) -->
{ Rest = [_ | _] },
{ First = _ - FirstGoalInfo },
{ goal_info_get_determinism(FirstGoalInfo, FirstDeterminism) },
( { determinism_components(FirstDeterminism, _, at_most_zero) } ->
% the `Rest' code is unreachable
ml_gen_goal(CodeModel, First, MLDS_Decls, MLDS_Statements)
;
{ determinism_to_code_model(FirstDeterminism, FirstCodeModel) },
{ DoGenFirst = ml_gen_goal(FirstCodeModel, First) },
{ DoGenRest = ml_gen_conj(Rest, CodeModel, Context) },
ml_combine_conj(FirstCodeModel, Context,
DoGenFirst, DoGenRest, MLDS_Decls, MLDS_Statements)
).
%-----------------------------------------------------------------------------%
%
% Code for disjunctions
%
:- pred ml_gen_disj(hlds_goals, code_model, prog_context,
mlds__defns, mlds__statements, ml_gen_info, ml_gen_info).
:- mode ml_gen_disj(in, in, in, out, out, in, out) is det.
%
% handle empty disjunctions (a.ka. `fail')
%
ml_gen_disj([], CodeModel, Context, [], Statements) -->
ml_gen_failure(CodeModel, Context, Statements).
%
% handle singleton disjunctions
% (the HLDS should not contain singleton disjunctions,
% but this code is needed to handle recursive calls to ml_gen_disj)
% Note that each arm of the model_non disjunction is placed into
% a block. This avoids a problem where ml_join_decls can create
% block nesting proportional to the size of the disjunction.
% The nesting can hit fixed limit problems in some C compilers.
%
ml_gen_disj([SingleGoal], CodeModel, Context, [], [MLDS_Statement]) -->
ml_gen_goal(CodeModel, SingleGoal, Goal_Decls, Goal_Statements),
{ MLDS_Statement = ml_gen_block(Goal_Decls, Goal_Statements,
Context) }.
ml_gen_disj([First | Rest], CodeModel, Context,
MLDS_Decls, MLDS_Statements) -->
{ Rest = [_ | _] },
( { CodeModel = model_non } ->
%
% model_non disj:
%
% <(Goal ; Goals) && SUCCEED()>
% ===>
% <Goal && SUCCEED()>
% <Goals && SUCCEED()>
%
ml_gen_goal(model_non, First, FirstDecls, FirstStatements),
ml_gen_disj(Rest, model_non, Context,
RestDecls, RestStatements),
(
{ RestDecls = [] }
->
{ FirstBlock = ml_gen_block(FirstDecls,
FirstStatements, Context) },
{ MLDS_Decls = [] },
{ MLDS_Statements = [FirstBlock | RestStatements] }
;
{ error("ml_gen_disj: RestDecls not empty.") }
)
; /* CodeModel is model_det or model_semi */
%
% model_det/model_semi disj:
%
% model_det goal:
% <Goal ; Goals>
% ===>
% <Goal>
% /* <Goals> will never be reached */
%
% model_semi goal:
% <Goal ; Goals>
% ===>
% {
% bool succeeded;
%
% <succeeded = Goal>;
% if (!succeeded) {
% <Goals>;
% }
% }
%
{ First = _ - FirstGoalInfo },
{ goal_info_get_code_model(FirstGoalInfo, FirstCodeModel) },
(
{ FirstCodeModel = model_det },
ml_gen_goal(model_det, First,
MLDS_Decls, MLDS_Statements)
;
{ FirstCodeModel = model_semi },
ml_gen_goal(model_semi, First,
FirstDecls, FirstStatements),
ml_gen_test_success(Succeeded),
ml_gen_disj(Rest, CodeModel, Context,
RestDecls, RestStatements),
{ RestStatement = ml_gen_block(RestDecls,
RestStatements, Context) },
{ IfStmt = if_then_else(unop(std_unop(not), Succeeded),
RestStatement, no) },
{ IfStatement = mlds__statement(IfStmt,
mlds__make_context(Context)) },
{ MLDS_Decls = FirstDecls },
{ MLDS_Statements = list__append(FirstStatements,
[IfStatement]) }
;
{ FirstCodeModel = model_non },
% simplify.m should get wrap commits around these
{ error("model_non disj in model_det disjunction") }
)
).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
|