1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
|
%-----------------------------------------------------------------------------%
% Copyright (C) 2000-2001 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% File: ml_optimize.m
% Main author: trd, fjh
% This module runs various optimizations on the MLDS.
%
% Currently the optimizations we do here are
% - turning tailcalls into loops;
% - converting assignments to local variables into variable initializers.
%
% Note that tailcall detection is done in ml_tailcall.m.
% It might be nice to move the detection here, and do both the
% loop transformation (in the case of self-tailcalls) and marking
% tailcalls at the same time.
%
% Ultimately this module should just consist of a skeleton to traverse
% the MLDS, and should call various optimization modules along the way.
%
% It would probably be a good idea to make each transformation optional.
% Previously the tailcall transformation depended on emit_c_loops, but
% this is a bit misleading given the documentation of emit_c_loops.
%-----------------------------------------------------------------------------%
:- module ml_optimize.
:- interface.
:- import_module mlds, io.
:- pred optimize(mlds, mlds, io__state, io__state).
:- mode optimize(in, out, di, uo) is det.
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module ml_util, ml_code_util.
:- import_module builtin_ops, globals, options, error_util.
:- import_module bool, list, require, std_util, string.
:- type opt_info --->
opt_info(
globals :: globals,
module_name :: mlds_module_name,
entity_name :: mlds__entity_name,
func_params :: mlds__func_params,
context :: mlds__context
).
% The label name we use for the top of the loop introduced by
% tailcall optimization.
:- func tailcall_loop_label_name = string.
tailcall_loop_label_name = "loop_top".
optimize(MLDS0, MLDS) -->
globals__io_get_globals(Globals),
{ MLDS0 = mlds(ModuleName, ForeignCode, Imports, Defns0) },
{ Defns = optimize_in_defns(Defns0, Globals,
mercury_module_name_to_mlds(ModuleName)) },
{ MLDS = mlds(ModuleName, ForeignCode, Imports, Defns) }.
:- func optimize_in_defns(mlds__defns, globals, mlds_module_name)
= mlds__defns.
optimize_in_defns(Defns, Globals, ModuleName) =
list__map(optimize_in_defn(ModuleName, Globals), Defns).
:- func optimize_in_defn(mlds_module_name, globals, mlds__defn) = mlds__defn.
optimize_in_defn(ModuleName, Globals, Defn0) = Defn :-
Defn0 = mlds__defn(Name, Context, Flags, DefnBody0),
(
DefnBody0 = mlds__function(PredProcId, Params, FuncBody0),
OptInfo = opt_info(Globals, ModuleName, Name, Params, Context),
FuncBody1 = optimize_func(OptInfo, FuncBody0),
FuncBody = optimize_in_maybe_statement(OptInfo, FuncBody1),
DefnBody = mlds__function(PredProcId, Params, FuncBody),
Defn = mlds__defn(Name, Context, Flags, DefnBody)
;
DefnBody0 = mlds__data(_, _),
Defn = Defn0
;
DefnBody0 = mlds__class(ClassDefn0),
ClassDefn0 = class_defn(Kind, Imports, BaseClasses, Implements,
MemberDefns0),
MemberDefns = optimize_in_defns(MemberDefns0, Globals,
ModuleName),
ClassDefn = class_defn(Kind, Imports, BaseClasses, Implements,
MemberDefns),
DefnBody = mlds__class(ClassDefn),
Defn = mlds__defn(Name, Context, Flags, DefnBody)
).
:- func optimize_in_maybe_statement(opt_info,
maybe(mlds__statement)) = maybe(mlds__statement).
optimize_in_maybe_statement(_, no) = no.
optimize_in_maybe_statement(OptInfo, yes(Statement0)) = yes(Statement) :-
Statement = optimize_in_statement(OptInfo, Statement0).
:- func optimize_in_statements(opt_info, list(mlds__statement)) =
list(mlds__statement).
optimize_in_statements(OptInfo, Statements) =
list__map(optimize_in_statement(OptInfo), Statements).
:- func optimize_in_statement(opt_info, mlds__statement) =
mlds__statement.
optimize_in_statement(OptInfo, statement(Stmt, Context)) =
statement(optimize_in_stmt(OptInfo ^ context := Context, Stmt),
Context).
:- func optimize_in_stmt(opt_info, mlds__stmt) = mlds__stmt.
optimize_in_stmt(OptInfo, Stmt0) = Stmt :-
(
Stmt0 = call(_, _, _, _, _, _),
Stmt = optimize_in_call_stmt(OptInfo, Stmt0)
;
Stmt0 = block(Defns0, Statements0),
convert_assignments_into_initializers(Defns0, Statements0,
OptInfo, Defns, Statements1),
Statements = optimize_in_statements(OptInfo, Statements1),
Stmt = block(Defns, Statements)
;
Stmt0 = while(Rval, Statement0, Once),
Stmt = while(Rval, optimize_in_statement(OptInfo,
Statement0), Once)
;
Stmt0 = if_then_else(Rval, Then, MaybeElse),
Stmt = if_then_else(Rval,
optimize_in_statement(OptInfo, Then),
maybe_apply(optimize_in_statement(OptInfo), MaybeElse))
;
Stmt0 = switch(Type, Rval, Range, Cases0, Default0),
Stmt = switch(Type, Rval, Range,
list__map(optimize_in_case(OptInfo), Cases0),
optimize_in_default(OptInfo, Default0))
;
Stmt0 = do_commit(_),
Stmt = Stmt0
;
Stmt0 = return(_),
Stmt = Stmt0
;
Stmt0 = try_commit(Ref, TryGoal, HandlerGoal),
Stmt = try_commit(Ref,
optimize_in_statement(OptInfo, TryGoal),
optimize_in_statement(OptInfo, HandlerGoal))
;
Stmt0 = label(_Label),
Stmt = Stmt0
;
Stmt0 = goto(_Label),
Stmt = Stmt0
;
Stmt0 = computed_goto(_Rval, _Label),
Stmt = Stmt0
;
Stmt0 = atomic(_Atomic),
Stmt = Stmt0
).
:- func optimize_in_case(opt_info, mlds__switch_case) = mlds__switch_case.
optimize_in_case(OptInfo, Conds - Statement0) = Conds - Statement :-
Statement = optimize_in_statement(OptInfo, Statement0).
:- func optimize_in_default(opt_info, mlds__switch_default) =
mlds__switch_default.
optimize_in_default(_OptInfo, default_is_unreachable) = default_is_unreachable.
optimize_in_default(_OptInfo, default_do_nothing) = default_do_nothing.
optimize_in_default(OptInfo, default_case(Statement0)) =
default_case(Statement) :-
Statement = optimize_in_statement(OptInfo, Statement0).
%-----------------------------------------------------------------------------%
:- func optimize_in_call_stmt(opt_info, mlds__stmt) = mlds__stmt.
optimize_in_call_stmt(OptInfo, Stmt0) = Stmt :-
% If we have a self-tailcall, assign to the arguments and
% then goto the top of the tailcall loop.
(
Stmt0 = call(_Signature, _FuncRval, _MaybeObject, CallArgs,
_Results, _IsTailCall),
can_optimize_tailcall(qual(OptInfo ^ module_name,
OptInfo ^ entity_name), Stmt0)
->
CommentStatement = statement(
atomic(comment("direct tailcall eliminated")),
OptInfo ^ context),
GotoStatement = statement(goto(tailcall_loop_label_name),
OptInfo ^ context),
OptInfo ^ func_params = mlds__func_params(FuncArgs, _RetTypes),
generate_assign_args(OptInfo, FuncArgs, CallArgs,
AssignStatements, AssignDefns),
AssignVarsStatement = statement(block(AssignDefns,
AssignStatements), OptInfo ^ context),
CallReplaceStatements = [
CommentStatement,
AssignVarsStatement,
GotoStatement
],
Stmt = block([], CallReplaceStatements)
;
Stmt = Stmt0
).
%----------------------------------------------------------------------------
% Assign the specified list of rvals to the arguments.
% This is used as part of tail recursion optimization (see above).
:- pred generate_assign_args(opt_info, mlds__arguments, list(mlds__rval),
list(mlds__statement), list(mlds__defn)).
:- mode generate_assign_args(in, in, in, out, out) is det.
generate_assign_args(_, [_|_], [], [], []) :-
error("generate_assign_args: length mismatch").
generate_assign_args(_, [], [_|_], [], []) :-
error("generate_assign_args: length mismatch").
generate_assign_args(_, [], [], [], []).
generate_assign_args(OptInfo,
[Name - Type | Rest], [Arg | Args], Statements, TempDefns) :-
(
%
% extract the variable name
%
Name = data(var(VarName))
->
QualVarName = qual(OptInfo ^ module_name, VarName),
(
%
% don't bother assigning a variable to itself
%
Arg = lval(var(QualVarName))
->
generate_assign_args(OptInfo, Rest, Args,
Statements, TempDefns)
;
% Declare a temporary variable, initialized it
% to the arg, recursively process the remaining
% args, and then assign the temporary to the
% parameter:
%
% SomeType argN__tmp_copy = new_argN_value;
% ...
% new_argN_value = argN_tmp_copy;
%
% The temporaries are needed for the case where
% we are e.g. assigning v1, v2 to v2, v1;
% they ensure that we don't try to reference the old
% value of a parameter after it has already been
% clobbered by the new value.
string__append(VarName, "__tmp_copy", TempName),
QualTempName = qual(OptInfo ^ module_name,
TempName),
Initializer = init_obj(Arg),
TempDefn = ml_gen_mlds_var_decl(var(TempName),
Type, Initializer, OptInfo ^ context),
Statement = statement(
atomic(assign(
var(QualVarName),
lval(var(QualTempName)))),
OptInfo ^ context),
generate_assign_args(OptInfo, Rest, Args, Statements0,
TempDefns0),
Statements = [Statement | Statements0],
TempDefns = [TempDefn | TempDefns0]
)
;
error("generate_assign_args: function param is not a var")
).
%----------------------------------------------------------------------------
:- func optimize_func(opt_info, maybe(mlds__statement))
= maybe(mlds__statement).
optimize_func(OptInfo, MaybeStatement) =
maybe_apply(optimize_func_stmt(OptInfo), MaybeStatement).
:- func optimize_func_stmt(opt_info,
mlds__statement) = (mlds__statement).
optimize_func_stmt(OptInfo, mlds__statement(Stmt0, Context)) =
mlds__statement(Stmt, Context) :-
% Tailcall optimization -- if we do a self tailcall, we
% can turn it into a loop.
(
stmt_contains_statement(Stmt0, Call),
Call = mlds__statement(CallStmt, _),
can_optimize_tailcall(
qual(OptInfo ^ module_name, OptInfo ^ entity_name),
CallStmt)
->
Comment = atomic(comment("tailcall optimized into a loop")),
Label = label(tailcall_loop_label_name),
Stmt = block([], [statement(Comment, Context),
statement(Label, Context),
statement(Stmt0, Context)])
;
Stmt = Stmt0
).
%-----------------------------------------------------------------------------%
%
% This code implements the --optimize-initializations option.
% It converts MLDS code using assignments, e.g.
%
% {
% int v1; // or any other type -- it doesn't have to be int
% int v2;
% int v3;
% int v4;
% int v5;
%
% v1 = 1;
% v2 = 2;
% v3 = 3;
% foo();
% v4 = 4;
% ...
% }
%
% into code that instead uses initializers, e.g.
%
% {
% int v1 = 1;
% int v2 = 2;
% int v3 = 3;
% int v4;
%
% foo();
% v4 = 4;
% ...
% }
%
% Note that if there are multiple initializations of the same
% variable, then we'll apply the optimization successively,
% replacing the existing initializers as we go, and keeping
% only the last, e.g.
%
% int v = 1;
% v = 2;
% v = 3;
% ...
%
% will get replaced with
%
% int v = 3;
% ...
%
% We need to watch out for some tricky cases that can't be safely optimized.
% If the RHS of the assignment refers to a variable which was declared after
% the variable whose initialization we're optimizing, e.g.
%
% int v1 = 1;
% int v2 = 0;
% v1 = v2 + 1; // RHS refers to variable declared after v1
%
% then we can't do the optimization because it would cause a forward reference
%
% int v1 = v2 + 1; // error -- v2 not declared yet!
% int v2 = 0;
%
% Likewise if the RHS refers to the variable itself
%
% int v1 = 1;
% v1 = v1 + 1;
%
% then we can't optimize it, because that would be bogus:
%
% int v1 = v1 + 1; // error -- v1 not initialized yet!
%
% Similarly, if the initializers of the variables that follow
% the one we're trying to optimize refer to it, e.g.
%
% int v1 = 1;
% int v2 = v1 + 1; // here v2 == 2
% v1 = 0;
% ...
%
% then we can't eliminate the assignment, because that would produce
% different results:
%
% int v1 = 0;
% int v2 = v1 + 1; // wrong -- v2 == 1
% ...
:- pred convert_assignments_into_initializers(mlds__defns, mlds__statements,
opt_info, mlds__defns, mlds__statements).
:- mode convert_assignments_into_initializers(in, in, in, out, out) is det.
convert_assignments_into_initializers(Defns0, Statements0, OptInfo,
Defns, Statements) :-
(
% Check if --optimize-initializations is enabled
globals__lookup_bool_option(OptInfo ^ globals,
optimize_initializations, yes),
% Check if the first statement in the block is
% an assignment to one of the variables declared in
% the block.
Statements0 = [AssignStatement | Statements1],
AssignStatement = statement(atomic(assign(LHS, RHS)), _),
LHS = var(ThisVar),
ThisVar = qual(Qualifier, VarName),
Qualifier = OptInfo ^ module_name,
list__takewhile(isnt(var_defn(VarName)), Defns0,
_PrecedingDefns, [_VarDefn | FollowingDefns]),
% We must check that the value being assigned
% doesn't refer to the variable itself, or to any
% of the variables which are declared after this one.
% We must also check that the initializers (if any)
% of the variables that follow this one don't
% refer to this variable.
\+ rval_contains_var(RHS, ThisVar),
\+ (
list__member(OtherDefn, FollowingDefns),
OtherDefn = mlds__defn(data(var(OtherVarName)),
_, _, data(_Type, OtherInitializer)),
( rval_contains_var(RHS, qual(Qualifier, OtherVarName))
; initializer_contains_var(OtherInitializer, ThisVar)
)
)
->
% Replace the assignment statement with an initializer
% on the variable declaration.
set_initializer(Defns0, VarName, RHS, Defns1),
% Now try to apply the same optimization again
convert_assignments_into_initializers(Defns1, Statements1,
OptInfo, Defns, Statements)
;
% No optimization possible -- leave the block unchanged.
Defns = Defns0,
Statements = Statements0
).
:- pred var_defn(var_name::in, mlds__defn::in) is semidet.
var_defn(VarName, Defn) :-
Defn = mlds__defn(data(var(VarName)), _, _, _).
% set_initializer(Defns0, VarName, Rval, Defns):
% Finds the first definition of the specified variable
% in Defns0, and replaces the initializer of that
% definition with init_obj(Rval).
%
:- pred set_initializer(mlds__defns, mlds__var_name, mlds__rval, mlds__defns).
:- mode set_initializer(in, in, in, out) is det.
set_initializer([], _, _, _) :-
unexpected(this_file, "set_initializer: var not found!").
set_initializer([Defn0 | Defns0], VarName, Rval, [Defn | Defns]) :-
Defn0 = mlds__defn(Name, Context, Flags, DefnBody0),
(
Name = data(var(VarName)),
DefnBody0 = mlds__data(Type, _OldInitializer)
->
DefnBody = mlds__data(Type, init_obj(Rval)),
Defn = mlds__defn(Name, Context, Flags, DefnBody),
Defns = Defns0
;
Defn = Defn0,
set_initializer(Defns0, VarName, Rval, Defns)
).
%-----------------------------------------------------------------------------%
% Maps T into V, inside a maybe .
:- func maybe_apply(func(T) = V, maybe(T)) = maybe(V).
maybe_apply(_, no) = no.
maybe_apply(F, yes(T)) = yes(F(T)).
%-----------------------------------------------------------------------------%
:- func this_file = string.
this_file = "ml_optimize.m".
:- end_module ml_optimize.
%-----------------------------------------------------------------------------%
|