1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
|
%-----------------------------------------------------------------------------%
% Copyright (C) 1999-2001 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% mlds_to_gcc - Convert MLDS to the GCC back-end representation.
% Main author: fjh.
% Note that this does *not* compile to GNU C -- instead it
% actually generates GCC's internal "Tree" representation,
% and then invokes the GCC back-end to compile it to assembler,
% without going via an external file.
%
% Code using the C interface, however, does get compiled to C; this module
% invokes mlds_to_c.m to do that. We split off all the parts of the MLDS
% for `c_code'/`foreign_code' declarations, `c_header_code'/`foreign_decl'
% declarations, `export' declarations, and procedures defined with
% `c_code'/`foreign_proc', and pass them to mlds_to_c.m. That will generate
% a `<module>.c' file for this module; mercury_compile.m will invoke the C
% compiler to compile that to `<module>__c_code.o'. The remainding parts
% of the MLDS, which don't contain any foreign code, we handle normally,
% converting them to GCC trees and passing them to the GCC back-end
% to generate an assembler file. Calls to procedures defined using
% `c_code'/`foreign_proc' will end up calling the functions defined in
% `<module>__c_code.o'. This works because the calling convention that
% is used for the MLDS->C back-end is the same as (i.e. binary compatible
% with) the calling convention that we use here in the MLDS->GCC back-end.
%
% Currently this back-end supports grade hlc.gc only.
%
% Trailing will probably work too, but since trailing
% is currently implemented using the C interface,
% it will end up compiling everything via C.
% See also gcc/mercury/README.
% TODO:
% Fix configuration issues:
% - document installation procedure better
% (there is some documentation in gcc/mercury/README,
% but probably there should also be something in the INSTALL
% file in the Mercury distribution)
% - set up nightly tests
% - test more
%
% Fix unimplemented standard Mercury features:
% - support nested modules
% (They can be compiled using `gcc', but compiling them
% with `mmc' doesn't work, see the XXX comment below.
% Also Mmake support is broken.)
% - support modules containing foreign_decls but no
% foreign_procs or foreign code
%
% Implement implementation-specific features that are supported
% by other Mercury back-ends:
% - support --high-level-data (enum types, pred types, user_type)
% - support --profiling and --heap-profiling
% - support --nondet-copy-out
% - support --gcc-nested-functions (probably not worth it)
% - pragma foreign_code(asm, ...)
%
% Implement implementation-specific features that are supported
% by other gcc front-ends:
% - generate gcc trees rather than expanding as we go
% This should probably wait until the GCC back-end
% has a language-independent representation for switches.
% - support gdb (hard!):
% - improve accuracy of line numbers (e.g. for decls).
% - make variable names match what's in the original source
% - use nested functions or something like that to hide
% from the user the environment struct stuff that we
% generate for nondet code
% - teach gdb to demangle Mercury symbol names
% - extend gdb to print Mercury data structures better
% - extend gdb to print Mercury stacks better
% - extend gdb to support mdb's `retry' command
% ...
%
% Improve efficiency of generated code:
% - implement annotation in gcc tree to force tailcalls
% - improve code for switches with default_is_unreachable.
% (We already do a reasonably good job, so this is a low priority.)
% One way would be to implement computed_goto and unsigned_le,
% and change target_supports_computed_goto_2(asm) in ml_switch_gen.m
% to `yes'.
%
% Improve efficiency of compilation:
% - improve symbol table handling
%
% See also the TODO list in ml_code_gen.m.
%-----------------------------------------------------------------------------%
:- module mlds_to_gcc.
:- interface.
:- import_module mlds, bool.
:- use_module io.
% The bool returned is `yes' iff the module contained C code.
% In that case, we will have output a separate C file which needs
% to be compiled with the C compiler.
%
% XXX Currently the only foreign language we handle is C.
% To make it work properly we'd need to change the
% `ContainsCCode' boolean that we return to instead be a list
% of the foreign languages used, so that mercury_compile.m
% will know which foreign language files have been generated
% which foreign language compilers it needs to invoke,
% and which object files to link into the executable.
:- pred mlds_to_gcc__compile_to_asm(mlds__mlds, bool, io__state, io__state).
:- mode mlds_to_gcc__compile_to_asm(in, out, di, uo) is det.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- use_module gcc.
% XXX some of these imports might be unused
:- import_module ml_util.
:- import_module mlds_to_c. % to handle C foreign_code
:- import_module llds_out. % XXX needed for llds_out__name_mangle,
% llds_out__sym_name_mangle,
% llds_out__make_base_typeclass_info_name,
:- import_module rtti. % for rtti__addr_to_string.
:- import_module ml_code_util. % for ml_gen_mlds_var_decl, which is used by
% the code that handles derived classes
:- import_module hlds_pred. % for proc_id_to_int and invalid_pred_id
:- import_module globals, options, passes_aux.
:- import_module builtin_ops, modules.
:- import_module prog_data, prog_out, prog_util, type_util, error_util.
:- import_module pseudo_type_info.
:- import_module bool, int, string, library, list, map.
:- import_module assoc_list, term, std_util, require.
%-----------------------------------------------------------------------------%
mlds_to_gcc__compile_to_asm(MLDS, ContainsCCode) -->
%
% There's two possible cases, depending on who defined main().
%
% 1. GCC main():
% gcc/toplev.c gets control first.
%
% In this case, by the time we get to here
% (mlds_to_gcc.m), the GCC back-end has already
% been initialized. We can go ahead and generate
% the GCC tree and RTL. When we return back to
% main/2 in mercury_compile, and that returns,
% the gcc back-end will continue on and will
% generate the asm file.
%
% Note that mercury_compile.m can't invoke the
% assembler to produce an object file, since
% the assembler won't get produced until
% after main/2 has exited! Instead, the gcc
% driver program (`gcc') will invoke the assembler.
%
% 2. Mercury main():
% mercury_compile.m gets control first.
%
% When we get here (mlds_to_gcc.m), the gcc back-end
% has not been initialized.
% We need to save the MLDS in a global variable,
% and then invoke the GCC toplev_main() here.
% This will start the GCC back-end, which will
% eventually call MC_continue_frontend().
% Eventually MC_continue_frontend() will
% return and the gcc back-end will continue.
%
% It's OK for mercury_compile.m to invoke the assembler.
%
% XXX For programs with nested modules,
% we'll end up calling the gcc back-end
% more than once; this will probably crash.
%
in_gcc(InGCC),
( { InGCC = yes } ->
mlds_to_gcc__compile_to_gcc(MLDS, ContainsCCode)
;
set_global_mlds(MLDS),
{ MLDS = mlds(ModuleName, _, _, _) },
do_call_gcc_backend(ModuleName, Result),
( { Result \= 0 } ->
io__set_exit_status(1)
;
[]
),
get_global_contains_c_code(ContainsCCode)
).
:- pred do_call_gcc_backend(mlds__mercury_module_name::in, int::out,
io__state::di, io__state::uo) is det.
do_call_gcc_backend(ModuleName, Result) -->
globals__io_lookup_bool_option(pic, Pic),
{ Pic = yes ->
PicExt = ".pic_s",
PicOpt = "-fpic "
;
PicExt = ".s",
PicOpt = ""
},
module_name_to_file_name(ModuleName, ".m", no, SourceFileName),
module_name_to_file_name(ModuleName, PicExt, yes, AsmFileName),
% XXX should use new gcc_* options rather than
% reusing cflags, c_optimize
globals__io_lookup_bool_option(statistics, Statistics),
{ Statistics = yes ->
QuietOption = ""
;
QuietOption = "-quiet "
},
globals__io_lookup_bool_option(c_optimize, C_optimize),
{ C_optimize = yes ->
OptimizeOpt = "-O2 -fomit-frame-pointer "
;
OptimizeOpt = ""
},
globals__io_lookup_bool_option(target_debug, Target_Debug),
{ Target_Debug = yes ->
Target_DebugOpt = "-g "
;
Target_DebugOpt = ""
},
globals__io_lookup_accumulating_option(cflags, C_Flags_List),
{ CFLAGS = string__append_list(list__map(func(Flag) = Flag ++ " ",
C_Flags_List)) },
% Be careful with the order here.
% Also be careful that each option is separated by spaces.
{ string__append_list(["""<GCC back-end>"" ", PicOpt,
QuietOption, OptimizeOpt, Target_DebugOpt, CFLAGS,
SourceFileName, " -o ", AsmFileName], CommandLine) },
globals__io_lookup_bool_option(verbose, Verbose),
maybe_write_string(Verbose, "% Invoking GCC back-end as `"),
maybe_write_string(Verbose, CommandLine),
maybe_write_string(Verbose, "':\n"),
call_gcc_backend(CommandLine, Result),
( { Result \= 0 } ->
report_error("GCC back-end failed!\n")
;
maybe_write_string(Verbose, "% GCC back-end done.\n")
).
% Returns `yes' iff we've already entered the gcc back-end.
:- pred in_gcc(bool::out, io__state::di, io__state::uo) is det.
:- pragma import(in_gcc(out, di, uo), "MC_in_gcc").
:- pred call_gcc_backend(string::in, int::out,
io__state::di, io__state::uo) is det.
:- pragma import(call_gcc_backend(in, out, di, uo), "MC_call_gcc_backend").
:- pragma c_header_code("
/* We use an `MC_' prefix for C code in the mercury/compiler directory. */
extern MR_Word MC_mlds;
extern MR_Word MC_contains_c_code;
void MC_in_gcc(MR_Word *result);
void MC_call_gcc_backend(MR_String all_args, MR_Integer *result);
void MC_continue_frontend(void);
#include ""mercury_wrapper.h"" /* for MR_make_argv() */
#include <stdio.h> /* for fprintf() */
#include <stdlib.h> /* for exit() */
").
:- pragma c_code("
#ifndef MC_GUARD_GCC_HEADERS
#define MC_GUARD_GCC_HEADERS
#include ""gcc/config.h""
#include ""gcc/system.h""
#include ""gcc/gansidecl.h""
#include ""gcc/toplev.h""
#include ""gcc/tree.h""
/* XXX we should eliminate the dependency on the C front-end */
#include ""gcc/c-tree.h""
#include ""gcc/mercury/mercury-gcc.h""
#endif /* MC_GUARD_GCC_HEADERS */
/* We use an `MC_' prefix for C code in the mercury/compiler directory. */
MR_Word MC_mlds;
MR_Word MC_contains_c_code;
extern int toplev_main(int argc, char **argv);
void
MC_in_gcc(MR_Word *result)
{
/* If we've already entered gcc, then gcc will have set progname. */
*result = (progname != NULL);
}
void
MC_call_gcc_backend(MR_String all_args, MR_Integer *result)
{
char *args;
char **argv;
int argc;
const char *error_msg;
static int num_calls = 0;
/*
** The gcc back-end cannot be called more than once.
** If you try, it uses up all available memory.
** So we need to abort nicely in that case.
**
** That case will happen if (a) there were nested
** sub-modules or (b) the user specified more than
** one module on the command line.
*/
num_calls++;
if (num_calls > 1) {
fprintf(stderr, ""Sorry, not implemented:\\n""
""compiling more than one module at a time ""
""with `--target asm'.\\n""
""Please use separate sub-modules ""
""rather than nested sub-modules,\\n""
""i.e. put each sub-module in its own file, ""
""and don't specify more\\n""
""than one module on the command line ""
""(use Mmake instead).\\n""
""Or alternatively, just use `--target c'.\\n"");
exit(EXIT_FAILURE);
}
error_msg = MR_make_argv(all_args, &args, &argv, &argc);
if (error_msg) {
fprintf(stderr,
""Error parsing GCC back-end arguments:\n%s\n"",
error_msg);
exit(EXIT_FAILURE);
}
merc_continue_frontend = &MC_continue_frontend;
*result = toplev_main(argc, argv);
/*
** Reset GCC's progname after we return from toplev_main(),
** so that MC_in_gcc() knows that we're no longer in GCC.
*/
progname = NULL;
MR_GC_free(args);
MR_GC_free(argv);
}
void
MC_continue_frontend(void)
{
MC_compile_to_gcc(MC_mlds, &MC_contains_c_code);
}
").
:- pred get_global_mlds(mlds__mlds::out, io__state::di, io__state::uo) is det.
:- pred set_global_mlds(mlds__mlds::in, io__state::di, io__state::uo) is det.
:- pred get_global_contains_c_code(bool::out,
io__state::di, io__state::uo) is det.
:- pred set_global_contains_c_code(bool::in,
io__state::di, io__state::uo) is det.
:- pragma c_code(get_global_mlds(MLDS::out, _IO0::di, _IO::uo),
[will_not_call_mercury],
"MLDS = MC_mlds;").
:- pragma c_code(set_global_mlds(MLDS::in, _IO0::di, _IO::uo),
[will_not_call_mercury],
"MC_mlds = MLDS;").
:- pragma c_code(get_global_contains_c_code(ContainsCCode::out,
_IO0::di, _IO::uo), [will_not_call_mercury],
"ContainsCCode = MC_contains_c_code;").
:- pragma c_code(set_global_contains_c_code(ContainsCCode::in,
_IO0::di, _IO::uo), [will_not_call_mercury],
"MC_contains_c_code = ContainsCCode;").
%
% This is called from yyparse() in mercury/mercury-gcc
% in the gcc back-end.
%
:- pragma export(mlds_to_gcc__compile_to_gcc(in, out, di, uo),
"MC_compile_to_gcc").
:- pred mlds_to_gcc__compile_to_gcc(mlds__mlds, bool, io__state, io__state).
:- mode mlds_to_gcc__compile_to_gcc(in, out, di, uo) is det.
mlds_to_gcc__compile_to_gcc(MLDS, ContainsCCode) -->
{ MLDS = mlds(ModuleName, ForeignCode, Imports, Defns0) },
%
% Handle output of any foreign code (C, Ada, Fortran, etc.)
% to appropriate files.
%
{ list__filter(defn_contains_foreign_code(lang_asm), Defns0,
ForeignDefns, Defns) },
(
% Check if there is any code from pragma foreign_code,
% pragma export, or pragma foreign_proc declarations.
%
% We don't call mlds_to_c to generate `.c' and `.h' files
% if the module contains only `pragma foreign_decls'.
% This is needed to avoid calling mlds_to_c when intermodule
% optimization is enabled and `pragma foreign_decls'
% declarations have been read in from the `.opt' files
% and have propagated through to the MLDS.
% Calling mlds_to_c when the module itself doesn't contain
% C code breaks things, since Mmake won't compile and link
% in the generated `.c' files, but those files contain the
% definition of the `*__init_type_tables()' functions that
% are referenced by `*_init.c'.
%
% XXX This is not quite right, since if the module itself
% contains `pragma foreign_decls', the `.h' file might
% be needed. But the Mercury standard library needs
% intermodule optimization enabled for `make install'
% to work. A better fix would be to ignore foreign_decls
% that were defined in other modules, but to call mlds_to_c
% for foreign_decls that were defined in the module that
% we're compiling.
{ ForeignCode = mlds__foreign_code(_Decls, [], []) },
{ ForeignDefns = [] }
->
{ ContainsCCode = no },
% there's no foreign code, so we don't need to
% do anything special
{ NeedInitFn = yes }
;
% create a new MLDS containing just the foreign code
% (with all definitions made public, so we can use
% them from the asm file!) and pass that to mlds_to_c.m
{ ForeignMLDS = mlds(ModuleName, ForeignCode, Imports,
list__map(make_public, ForeignDefns)) },
mlds_to_c__output_mlds(ForeignMLDS),
% XXX currently the only foreign code we handle is C;
% see comments above (at the declaration for
% mlds_to_c__compile_to_asm)
{ ContainsCCode = yes },
{ NeedInitFn = no }
),
%
% We generate things in this order:
% #1. definitions of the types,
% #2. definitions of all the non-types
% #3. initialization functions
% #1 needs to come before #2 since we need the types to be
% complete before we generate local variables of that type.
% (This happens for the environment structs that we
% use for nested functions.)
%
% Declarations of functions and types referred to by this
% module are generated on-demand.
%
{ list__filter(defn_is_type, Defns, TypeDefns, NonTypeDefns) },
{ MLDS_ModuleName = mercury_module_name_to_mlds(ModuleName) },
{ GlobalInfo0 = global_info(map__init, map__init) },
gen_defns(MLDS_ModuleName, TypeDefns, GlobalInfo0, GlobalInfo1),
gen_defns(MLDS_ModuleName, NonTypeDefns, GlobalInfo1, GlobalInfo2),
% XXX currently we just generate an empty initialization function.
% Initialization functions are only needed for --profiling
% and --heap-profiling, which we don't support yet.
( { NeedInitFn = yes } ->
gen_init_fn_defns(MLDS_ModuleName, GlobalInfo2, _GlobalInfo)
;
[]
).
/****
not yet:
{ list__filter(defn_is_function, NonTypeDefns, FuncDefns) },
{ list__filter(defn_is_type_ctor_info, NonTypeDefns,
TypeCtorInfoDefns) },
mlds_output_init_fn_defns(MLDS_ModuleName, FuncDefns,
TypeCtorInfoDefns), io__nl,
*****/
% XXX we ought to output a reference to the mangled grade name,
% to prevent linking with the wrong grade.
% But this would require duplicating the logic in
% runtime/mercury_grade.h. Some of it is already duplicated
% in
% of the code in
/******
not yet:
% mlds_output_grade_var, io__nl.
******/
/******
not yet implemented for mlds_to_gcc:
%
% Output a reference to the mangled grade name for the grade
% that the C file gets compiled with. This ensures that
% we don't try to link objects files compiled in different
% grades.
%
:- pred mlds_output_grade_var(io__state::di, io__state::uo) is det.
mlds_output_grade_var -->
io__write_string(
"// ensure everything is compiled with the same grade\n"),
io__write_string(
"static const void *const MR_grade = &MR_GRADE_VAR;\n").
******/
:- func make_public(mlds__defn) = mlds__defn.
make_public(mlds__defn(Name, Context, Flags0, Defn)) =
mlds__defn(Name, Context, Flags, Defn) :-
Flags = mlds__set_access(Flags0, public).
%-----------------------------------------------------------------------------%
:- pred gen_init_fn_defns(mlds_module_name::in,
global_info::in, global_info::out,
io__state::di, io__state::uo) is det.
gen_init_fn_defns(MLDS_ModuleName, GlobalInfo0, GlobalInfo) -->
%
% Generate an empty function of the form
%
% void <foo>_init_type_tables() {}
%
{ GlobalInfo = GlobalInfo0 },
{ FuncName = init_fn_name(MLDS_ModuleName, "_type_tables") },
{ GCC_ParamTypes = gcc__empty_param_types },
{ GCC_ParamDecls = gcc__empty_param_decls },
{ GCC_RetType = gcc__void_type_node },
gcc__build_function_decl(FuncName, FuncName,
GCC_RetType, GCC_ParamTypes, GCC_ParamDecls, GCC_FuncDecl),
{ Name = export(FuncName) },
{ map__init(SymbolTable) },
{ map__init(LabelTable) },
{ DefnInfo = defn_info(GlobalInfo,
qual(MLDS_ModuleName, Name),
SymbolTable, LabelTable) },
{ term__context_init(Context) },
{ FuncBody = mlds__statement(block([], []), mlds__make_context(Context)) },
gcc__start_function(GCC_FuncDecl),
gen_statement(DefnInfo, FuncBody),
gcc__end_function.
:- func init_fn_name(mlds_module_name, string) = string.
init_fn_name(ModuleName, Suffix) = InitFnName :-
% Here we ensure that we only get one "mercury__" at the
% start of the function name.
prog_out__sym_name_to_string(
mlds_module_name_to_sym_name(ModuleName), "__",
ModuleNameString0),
(
string__prefix(ModuleNameString0, "mercury__")
->
ModuleNameString = ModuleNameString0
;
string__append("mercury__", ModuleNameString0,
ModuleNameString)
),
string__append_list([ModuleNameString, "__init", Suffix], InitFnName).
%-----------------------------------------------------------------------------%
/***************
XXX The following is all not yet implemented for mlds_to_gcc.m.
The code below shows what mlds_to_c.m does
(modified to avoid using C macros, which we'll need to do for mlds_to_gcc.m).
%
% Maybe output the function `mercury__<modulename>__init()'.
% The body of the function consists of calls
% MR_init_entry(<function>) for each function defined in the
% module.
%
:- pred mlds_output_init_fn_decls(mlds_module_name::in,
io__state::di, io__state::uo) is det.
mlds_output_init_fn_decls(ModuleName) -->
output_init_fn_name(ModuleName, ""),
io__write_string(";\n"),
output_init_fn_name(ModuleName, "_type_tables"),
io__write_string(";\n"),
output_init_fn_name(ModuleName, "_debugger"),
io__write_string(";\n").
:- pred mlds_output_init_fn_defns(mlds_module_name::in, mlds__defns::in,
mlds__defns::in, io__state::di, io__state::uo) is det.
mlds_output_init_fn_defns(ModuleName, FuncDefns, TypeCtorInfoDefns) -->
output_init_fn_name(ModuleName, ""),
io__write_string("\n{\n"),
io_get_globals(Globals),
(
{ need_to_init_entries(Globals) },
{ FuncDefns \= [] }
->
io__write_strings(["\tstatic bool initialised = FALSE;\n",
"\tif (initialised) return;\n",
"\tinitialised = TRUE;\n\n"]),
mlds_output_calls_to_init_entry(ModuleName, FuncDefns)
;
[]
),
io__write_string("}\n\n"),
output_init_fn_name(ModuleName, "_type_tables"),
io__write_string("\n{\n"),
(
{ TypeCtorInfoDefns \= [] }
->
io__write_strings(["\tstatic bool initialised = FALSE;\n",
"\tif (initialised) return;\n",
"\tinitialised = TRUE;\n\n"]),
mlds_output_calls_to_register_tci(ModuleName,
TypeCtorInfoDefns)
;
[]
),
io__write_string("}\n\n"),
output_init_fn_name(ModuleName, "_debugger"),
io__write_string("\n{\n"),
io__write_string(
"\tMR_fatal_error(""debugger initialization in MLDS grade"");\n"),
io__write_string("}\n").
:- pred output_init_fn_name(mlds_module_name::in, string::in,
io__state::di, io__state::uo) is det.
output_init_fn_name(ModuleName, Suffix) -->
% Here we ensure that we only get one "mercury__" at the
% start of the function name.
{ prog_out__sym_name_to_string(
mlds_module_name_to_sym_name(ModuleName), "__",
ModuleNameString0) },
{
string__prefix(ModuleNameString0, "mercury__")
->
ModuleNameString = ModuleNameString0
;
string__append("mercury__", ModuleNameString0,
ModuleNameString)
},
io__write_string("void "),
io__write_string(ModuleNameString),
io__write_string("__init"),
io__write_string(Suffix),
io__write_string("(void)").
:- pred need_to_init_entries(globals::in) is semidet.
need_to_init_entries(Globals) :-
% We only need to output calls to MR_init_entry() if profiling is
% enabled.
( Option = profile_calls
; Option = profile_time
; Option = profile_memory
),
globals__lookup_bool_option(Globals, Option, yes).
% Generate calls to MR_init_entry() for the specified functions.
%
:- pred mlds_output_calls_to_init_entry(mlds_module_name::in, mlds__defns::in,
io__state::di, io__state::uo) is det.
mlds_output_calls_to_init_entry(_ModuleName, []) --> [].
mlds_output_calls_to_init_entry(ModuleName, [FuncDefn | FuncDefns]) -->
{ FuncDefn = mlds__defn(EntityName, _, _, _) },
% Generate a call to MR_insert_entry_label(), which is declared as
% MR_insert_entry_label(const char *name, MR_Code *addr,
% const MR_Stack_Layout_Entry *entry_layout);
io__write_string("\tMR_insert_entry_label("""),
mlds_output_fully_qualified_name(qual(ModuleName, EntityName)),
io__write_string("\t"", "),
mlds_output_fully_qualified_name(qual(ModuleName, EntityName)),
io__write_string(", NULL);\n"),
mlds_output_calls_to_init_entry(ModuleName, FuncDefns).
% Generate calls to MR_register_type_ctor_info() for the specified
% type_ctor_infos.
%
:- pred mlds_output_calls_to_register_tci(mlds_module_name::in, mlds__defns::in,
io__state::di, io__state::uo) is det.
mlds_output_calls_to_register_tci(_ModuleName, []) --> [].
mlds_output_calls_to_register_tci(ModuleName,
[TypeCtorInfoDefn | TypeCtorInfoDefns]) -->
{ TypeCtorInfoDefn = mlds__defn(EntityName, _, _, _) },
io__write_string("\tMR_register_type_ctor_info(&"),
mlds_output_fully_qualified_name(qual(ModuleName, EntityName)),
io__write_string(");\n"),
mlds_output_calls_to_register_tci(ModuleName, TypeCtorInfoDefns).
********************/
%-----------------------------------------------------------------------------%
%
% Foreign language interface stuff
%
/****************
XXX The following code for handling `pragma export'
is all not yet implemented for mlds_to_gcc.m.
The code below is copied from mlds_to_c.m.
It shows what we need to do.
:- pred mlds_output_pragma_export_decl(mlds_module_name, indent,
mlds__pragma_export, io__state, io__state).
:- mode mlds_output_pragma_export_decl(in, in, in, di, uo) is det.
mlds_output_pragma_export_decl(ModuleName, Indent, PragmaExport) -->
mlds_output_pragma_export_func_name(ModuleName, Indent, PragmaExport),
io__write_string(";").
:- pred mlds_output_pragma_export_defn(mlds_module_name, indent,
mlds__pragma_export, io__state, io__state).
:- mode mlds_output_pragma_export_defn(in, in, in, di, uo) is det.
mlds_output_pragma_export_defn(ModuleName, Indent, PragmaExport) -->
{ PragmaExport = ml_pragma_export(_C_name, MLDS_Name, MLDS_Signature,
Context) },
mlds_output_pragma_export_func_name(ModuleName, Indent, PragmaExport),
io__write_string("\n"),
mlds_indent(Context, Indent),
io__write_string("{\n"),
mlds_indent(Context, Indent),
mlds_output_pragma_export_defn_body(ModuleName, MLDS_Name,
MLDS_Signature),
io__write_string("}\n").
:- pred mlds_output_pragma_export_func_name(mlds_module_name, indent,
mlds__pragma_export, io__state, io__state).
:- mode mlds_output_pragma_export_func_name(in, in, in, di, uo) is det.
mlds_output_pragma_export_func_name(ModuleName, Indent,
ml_pragma_export(C_name, _MLDS_Name, Signature, Context)) -->
{ Name = qual(ModuleName, export(C_name)) },
mlds_indent(Context, Indent),
% For functions exported using `pragma export',
% we use the default C calling convention.
{ CallingConvention = "" },
mlds_output_func_decl_ho(Indent, Name, Context,
CallingConvention, Signature,
mlds_output_pragma_export_type(prefix),
mlds_output_pragma_export_type(suffix)).
:- type locn ---> prefix ; suffix.
:- pred mlds_output_pragma_export_type(locn, mlds__type, io__state, io__state).
:- mode mlds_output_pragma_export_type(in, in, di, uo) is det.
mlds_output_pragma_export_type(suffix, _Type) --> [].
mlds_output_pragma_export_type(prefix, mercury_type(Type, _)) -->
{ export__type_to_type_string(Type, String) },
io__write_string(String).
mlds_output_pragma_export_type(prefix, mlds__cont_type(_)) -->
io__write_string("MR_Word").
mlds_output_pragma_export_type(prefix, mlds__commit_type) -->
io__write_string("MR_Word").
mlds_output_pragma_export_type(prefix, mlds__native_bool_type) -->
io__write_string("MR_Word").
mlds_output_pragma_export_type(prefix, mlds__native_int_type) -->
io__write_string("MR_Integer").
mlds_output_pragma_export_type(prefix, mlds__native_float_type) -->
io__write_string("MR_Float").
mlds_output_pragma_export_type(prefix, mlds__native_char_type) -->
io__write_string("MR_Char").
mlds_output_pragma_export_type(prefix, mlds__class_type(_, _, _)) -->
io__write_string("MR_Word").
mlds_output_pragma_export_type(prefix, mlds__array_type(_)) -->
io__write_string("MR_Word").
mlds_output_pragma_export_type(prefix, mlds__ptr_type(Type)) -->
mlds_output_pragma_export_type(prefix, Type),
io__write_string(" *").
mlds_output_pragma_export_type(prefix, mlds__func_type(_)) -->
io__write_string("MR_Word").
mlds_output_pragma_export_type(prefix, mlds__generic_type) -->
io__write_string("MR_Word").
mlds_output_pragma_export_type(prefix, mlds__generic_env_ptr_type) -->
io__write_string("MR_Word").
mlds_output_pragma_export_type(prefix, mlds__pseudo_type_info_type) -->
io__write_string("MR_Word").
mlds_output_pragma_export_type(prefix, mlds__rtti_type(_)) -->
io__write_string("MR_Word").
%
% Output the definition body for a pragma export
%
:- pred mlds_output_pragma_export_defn_body(mlds_module_name,
mlds__qualified_entity_name, func_params, io__state, io__state).
:- mode mlds_output_pragma_export_defn_body(in, in, in, di, uo) is det.
mlds_output_pragma_export_defn_body(ModuleName, FuncName, Signature) -->
{ Signature = mlds__func_params(Parameters, RetTypes) },
( { RetTypes = [] } ->
io__write_string("\t")
; { RetTypes = [RetType] } ->
io__write_string("\treturn ("),
mlds_output_pragma_export_type(prefix, RetType),
mlds_output_pragma_export_type(suffix, RetType),
io__write_string(") ")
;
{ error("mlds_output_pragma_export: multiple return types") }
),
mlds_output_fully_qualified_name(FuncName),
io__write_string("("),
io__write_list(Parameters, ", ",
mlds_output_name_with_cast(ModuleName)),
io__write_string(");\n").
%
% Write out the arguments to the MLDS function. Note the last
% in the list of the arguments is the return value, so it must
% be "&arg"
%
:- pred write_func_args(mlds_module_name::in, mlds__arguments::in,
io__state::di, io__state::uo) is det.
write_func_args(_ModuleName, []) -->
{ error("write_func_args: empty list") }.
write_func_args(_ModuleName, [_Arg]) -->
io__write_string("&arg").
write_func_args(ModuleName, [Arg | Args]) -->
{ Args = [_|_] },
mlds_output_name_with_cast(ModuleName, Arg),
io__write_string(", "),
write_func_args(ModuleName, Args).
%
% Output a fully qualified name preceded by a cast.
%
:- pred mlds_output_name_with_cast(mlds_module_name::in,
pair(mlds__entity_name, mlds__type)::in,
io__state::di, io__state::uo) is det.
mlds_output_name_with_cast(ModuleName, Name - Type) -->
mlds_output_cast(Type),
mlds_output_fully_qualified_name(qual(ModuleName, Name)).
************************/
%-----------------------------------------------------------------------------%
%
% Code to output declarations and definitions
%
% Handle MLDS definitions that occur at global scope.
:- pred gen_defns(mlds_module_name, mlds__defns, global_info, global_info,
io__state, io__state).
:- mode gen_defns(in, in, in, out, di, uo) is det.
gen_defns(_ModuleName, [], GlobalInfo, GlobalInfo) --> [].
gen_defns(ModuleName, [Defn | Defns], GlobalInfo0, GlobalInfo) -->
gen_defn(ModuleName, Defn, GlobalInfo0, GlobalInfo1),
gen_defns(ModuleName, Defns, GlobalInfo1, GlobalInfo).
% Handle MLDS definitions that are nested inside a
% function definition (or inside a block within a function),
% and which are hence local to that function.
:- pred build_local_defns(mlds__defns, mlds_module_name, defn_info, defn_info,
io__state, io__state).
:- mode build_local_defns(in, in, in, out, di, uo) is det.
build_local_defns([], _, DefnInfo, DefnInfo) --> [].
build_local_defns([Defn|Defns], ModuleName, DefnInfo0, DefnInfo) -->
build_local_defn(Defn, DefnInfo0, ModuleName, GCC_Defn),
% Insert the variable definition into our symbol table.
% The MLDS code that the MLDS code generator generates should
% not have any shadowing of parameters or local variables by
% nested local variables, so we use map__det_insert rather
% than map__set here. (Actually nothing in this module depends
% on it, so this sanity check here is perhaps a bit paranoid.)
{ Defn = mlds__defn(Name, _, _, _) },
{ DefnInfo1 = DefnInfo0 ^ local_vars :=
map__det_insert(DefnInfo0 ^ local_vars,
qual(ModuleName, Name), GCC_Defn) },
build_local_defns(Defns, ModuleName, DefnInfo1, DefnInfo).
% Handle MLDS definitions that are nested inside a type,
% i.e. fields of that type.
:- pred build_field_defns(mlds__defns, mlds_module_name, global_info,
gcc__field_decls, field_table, field_table,
io__state, io__state).
:- mode build_field_defns(in, in, in, out, in, out, di, uo) is det.
build_field_defns([], _, _, FieldList, FieldTable, FieldTable) -->
gcc__empty_field_list(FieldList).
build_field_defns([Defn|Defns], ModuleName, GlobalInfo, FieldList,
FieldTable0, FieldTable) -->
build_field_defn(Defn, ModuleName, GlobalInfo, GCC_FieldDefn),
% Insert the field definition into our field symbol table.
{ Defn = mlds__defn(Name, _, _, _) },
( { Name = data(var(FieldName)) } ->
{ FieldTable1 = map__det_insert(FieldTable0,
qual(ModuleName, FieldName), GCC_FieldDefn) }
;
{ unexpected(this_file, "non-var field") }
),
build_field_defns(Defns, ModuleName, GlobalInfo, FieldList0,
FieldTable1, FieldTable),
gcc__cons_field_list(GCC_FieldDefn, FieldList0, FieldList).
:- pred gen_defn(mlds_module_name, mlds__defn, global_info, global_info,
io__state, io__state).
:- mode gen_defn(in, in, in, out, di, uo) is det.
gen_defn(ModuleName, Defn, GlobalInfo0, GlobalInfo) -->
{ Defn = mlds__defn(Name, Context, Flags, DefnBody) },
gen_defn_body(qual(ModuleName, Name), Context, Flags, DefnBody,
GlobalInfo0, GlobalInfo).
:- pred build_local_defn(mlds__defn, defn_info, mlds_module_name,
gcc__var_decl, io__state, io__state).
:- mode build_local_defn(in, in, in, out, di, uo) is det.
build_local_defn(Defn, DefnInfo, ModuleName, GCC_Defn) -->
{ Defn = mlds__defn(Name, Context, Flags, DefnBody) },
build_local_defn_body(qual(ModuleName, Name), DefnInfo, Context, Flags,
DefnBody, GCC_Defn).
:- pred build_field_defn(mlds__defn, mlds_module_name, global_info,
gcc__field_decl, io__state, io__state).
:- mode build_field_defn(in, in, in, out, di, uo) is det.
build_field_defn(Defn, ModuleName, GlobalInfo, GCC_Defn) -->
{ Defn = mlds__defn(Name, Context, Flags, DefnBody) },
build_field_defn_body(qual(ModuleName, Name), Context, Flags, DefnBody,
GlobalInfo, GCC_Defn).
:- pred gen_defn_body(mlds__qualified_entity_name,
mlds__context, mlds__decl_flags, mlds__entity_defn,
global_info, global_info, io__state, io__state).
:- mode gen_defn_body(in, in, in, in, in, out, di, uo) is det.
gen_defn_body(Name, Context, Flags, DefnBody, GlobalInfo0, GlobalInfo) -->
(
{ DefnBody = mlds__data(Type, Initializer) },
{ LocalVars = map__init },
{ LabelTable = map__init },
{ DefnInfo = defn_info(GlobalInfo0, Name, LocalVars,
LabelTable) },
{ GCC_Name = build_qualified_name(Name) },
build_type(Type, initializer_array_size(Initializer),
GlobalInfo0, GCC_Type),
build_initializer(Initializer, GCC_Type, DefnInfo,
GCC_Initializer),
gcc__build_static_var_decl(GCC_Name, GCC_Type, GCC_Initializer,
GCC_Defn),
add_var_decl_flags(Flags, GCC_Defn),
gcc__finish_static_var_decl(GCC_Defn),
%
% insert the definition in our symbol table
%
{ GlobalVars0 = GlobalInfo0 ^ global_vars },
{ GlobalVars = map__det_insert(GlobalVars0, Name, GCC_Defn) },
{ GlobalInfo = GlobalInfo0 ^ global_vars := GlobalVars }
;
{ DefnBody = mlds__function(_MaybePredProcId, Signature,
MaybeBody) },
gen_func(Name, Context, Flags, Signature, MaybeBody,
GlobalInfo0, GlobalInfo)
;
{ DefnBody = mlds__class(ClassDefn) },
gen_class(Name, Context, ClassDefn,
GlobalInfo0, GlobalInfo)
).
:- pred build_local_defn_body(mlds__qualified_entity_name, defn_info,
mlds__context, mlds__decl_flags, mlds__entity_defn,
gcc__var_decl, io__state, io__state).
:- mode build_local_defn_body(in, in, in, in, in, out, di, uo) is det.
build_local_defn_body(Name, DefnInfo, _Context, Flags, DefnBody, GCC_Defn) -->
(
{ DefnBody = mlds__data(Type, Initializer) },
build_local_data_defn(Name, Flags, Type,
Initializer, DefnInfo, GCC_Defn)
;
{ DefnBody = mlds__function(_, _, _) },
% nested functions should get eliminated by ml_elim_nested,
% unless --gcc-nested-functions is enabled.
% XXX --gcc-nested-functions is not yet implemented
{ sorry(this_file, "nested function (`--gcc-nested-functions' "
++ "not yet supported with `--target asm')") }
;
{ DefnBody = mlds__class(_) },
% currently the MLDS code generator doesn't generate
% types nested inside functions, so we don't need to
% implement this
{ unexpected(this_file, "nested type") }
).
:- pred build_field_defn_body(mlds__qualified_entity_name,
mlds__context, mlds__decl_flags, mlds__entity_defn,
global_info, gcc__field_decl,
io__state, io__state).
:- mode build_field_defn_body(in, in, in, in, in, out, di, uo) is det.
build_field_defn_body(Name, _Context, Flags, DefnBody, GlobalInfo, GCC_Defn) -->
(
{ DefnBody = mlds__data(Type, Initializer) },
build_field_data_defn(Name, Type, Initializer, GlobalInfo,
GCC_Defn),
add_field_decl_flags(Flags, GCC_Defn)
;
{ DefnBody = mlds__function(_, _, _) },
{ unexpected(this_file, "function nested in type") }
;
{ DefnBody = mlds__class(_) },
{ unexpected(this_file, "type nested in type") }
).
%-----------------------------------------------------------------------------%
%
% Code to handle declaration flags.
%
%
% decl flags for variables
%
:- pred add_var_decl_flags(mlds__decl_flags, gcc__var_decl,
io__state, io__state).
:- mode add_var_decl_flags(in, in, di, uo) is det.
add_var_decl_flags(Flags, GCC_Defn) -->
add_var_access_flag( access(Flags), GCC_Defn),
% note that the per_instance flag is handled separately,
% by calling build_local_var or build_static_var
add_var_virtuality_flag( virtuality(Flags), GCC_Defn),
add_var_finality_flag( finality(Flags), GCC_Defn),
add_var_constness_flag( constness(Flags), GCC_Defn),
add_var_abstractness_flag( abstractness(Flags), GCC_Defn).
:- pred add_var_access_flag(mlds__access, gcc__var_decl, io__state, io__state).
:- mode add_var_access_flag(in, in, di, uo) is det.
add_var_access_flag(public, GCC_Defn) -->
gcc__set_var_decl_public(GCC_Defn).
add_var_access_flag(private, _GCC_Defn) -->
% this is the default
[].
add_var_access_flag(protected, _GCC_Defn) -->
{ sorry(this_file, "`protected' access") }.
add_var_access_flag(default, _GCC_Defn) -->
{ sorry(this_file, "`default' access") }.
:- pred add_var_virtuality_flag(mlds__virtuality, gcc__var_decl,
io__state, io__state).
:- mode add_var_virtuality_flag(in, in, di, uo) is det.
add_var_virtuality_flag(virtual, _GCC_Defn) -->
% `virtual' should only be used for methods,
% not for variables.
{ unexpected(this_file, "`virtual' variable") }.
add_var_virtuality_flag(non_virtual, _GCC_Defn) -->
% this is the default
[].
:- pred add_var_constness_flag(mlds__constness, gcc__var_decl,
io__state, io__state).
:- mode add_var_constness_flag(in, in, di, uo) is det.
add_var_constness_flag(const, GCC_Defn) -->
gcc__set_var_decl_readonly(GCC_Defn).
add_var_constness_flag(modifiable, _GCC_Defn) -->
% this is the default
[].
:- pred add_var_finality_flag(mlds__finality, gcc__var_decl,
io__state, io__state).
:- mode add_var_finality_flag(in, in, di, uo) is det.
add_var_finality_flag(final, GCC_Defn) -->
gcc__set_var_decl_readonly(GCC_Defn).
add_var_finality_flag(overridable, _GCC_Defn) -->
% this is the default
[].
:- pred add_var_abstractness_flag(mlds__abstractness, gcc__var_decl,
io__state, io__state).
:- mode add_var_abstractness_flag(in, in, di, uo) is det.
add_var_abstractness_flag(concrete, _GCC_Defn) -->
% this is the default
[].
add_var_abstractness_flag(abstract, _GCC_Defn) -->
% `abstract' should only be used for fields or methods,
% not for variables.
{ unexpected(this_file, "`abstract' variable") }.
%
% decl flags for fields
%
:- pred add_field_decl_flags(mlds__decl_flags, gcc__field_decl,
io__state, io__state).
:- mode add_field_decl_flags(in, in, di, uo) is det.
add_field_decl_flags(Flags, GCC_Defn) -->
add_field_access_flag( access(Flags), GCC_Defn),
add_field_per_instance_flag( per_instance(Flags), GCC_Defn),
add_field_virtuality_flag( virtuality(Flags), GCC_Defn),
add_field_finality_flag( finality(Flags), GCC_Defn),
add_field_constness_flag( constness(Flags), GCC_Defn),
add_field_abstractness_flag( abstractness(Flags), GCC_Defn).
:- pred add_field_access_flag(mlds__access, gcc__field_decl,
io__state, io__state).
:- mode add_field_access_flag(in, in, di, uo) is det.
add_field_access_flag(public, _GCC_Defn) -->
% this is the default
[].
add_field_access_flag(private, _GCC_Defn) -->
{ sorry(this_file, "`private' field") }.
add_field_access_flag(protected, _GCC_Defn) -->
{ sorry(this_file, "`protected' access") }.
add_field_access_flag(default, _GCC_Defn) -->
{ sorry(this_file, "`default' access") }.
:- pred add_field_per_instance_flag(mlds__per_instance, gcc__field_decl,
io__state, io__state).
:- mode add_field_per_instance_flag(in, in, di, uo) is det.
add_field_per_instance_flag(per_instance, _GCC_Defn) -->
% this is the default
[].
add_field_per_instance_flag(one_copy, _GCC_Defn) -->
% Static fields should be hoisted out as global variables
{ unexpected(this_file, "`static' field") }.
:- pred add_field_virtuality_flag(mlds__virtuality, gcc__field_decl,
io__state, io__state).
:- mode add_field_virtuality_flag(in, in, di, uo) is det.
add_field_virtuality_flag(virtual, _GCC_Defn) -->
{ sorry(this_file, "`virtual' field") }.
add_field_virtuality_flag(non_virtual, _GCC_Defn) -->
% this is the default
[].
:- pred add_field_constness_flag(mlds__constness, gcc__field_decl,
io__state, io__state).
:- mode add_field_constness_flag(in, in, di, uo) is det.
add_field_constness_flag(const, _GCC_Defn) -->
{ sorry(this_file, "`const' field") }.
add_field_constness_flag(modifiable, _GCC_Defn) -->
% this is the default
[].
:- pred add_field_finality_flag(mlds__finality, gcc__field_decl,
io__state, io__state).
:- mode add_field_finality_flag(in, in, di, uo) is det.
add_field_finality_flag(final, _GCC_Defn) -->
{ sorry(this_file, "`final' field") }.
add_field_finality_flag(overridable, _GCC_Defn) -->
% this is the default
[].
:- pred add_field_abstractness_flag(mlds__abstractness, gcc__field_decl,
io__state, io__state).
:- mode add_field_abstractness_flag(in, in, di, uo) is det.
add_field_abstractness_flag(concrete, _GCC_Defn) -->
% this is the default
[].
add_field_abstractness_flag(abstract, _GCC_Defn) -->
{ sorry(this_file, "`abstract' field") }.
%
% decl flags for functions
%
:- pred add_func_decl_flags(mlds__decl_flags, gcc__func_decl,
io__state, io__state).
:- mode add_func_decl_flags(in, in, di, uo) is det.
add_func_decl_flags(Flags, GCC_Defn) -->
add_func_access_flag( access(Flags), GCC_Defn),
add_func_per_instance_flag( per_instance(Flags), GCC_Defn),
add_func_virtuality_flag( virtuality(Flags), GCC_Defn),
add_func_finality_flag( finality(Flags), GCC_Defn),
add_func_constness_flag( constness(Flags), GCC_Defn),
add_func_abstractness_flag( abstractness(Flags), GCC_Defn).
:- pred add_func_access_flag(mlds__access, gcc__func_decl,
io__state, io__state).
:- mode add_func_access_flag(in, in, di, uo) is det.
add_func_access_flag(public, GCC_Defn) -->
gcc__set_func_decl_public(GCC_Defn).
add_func_access_flag(private, _GCC_Defn) -->
% this is the default
[].
add_func_access_flag(protected, _GCC_Defn) -->
{ sorry(this_file, "`protected' access") }.
add_func_access_flag(default, _GCC_Defn) -->
{ sorry(this_file, "`default' access") }.
:- pred add_func_per_instance_flag(mlds__per_instance, gcc__func_decl,
io__state, io__state).
:- mode add_func_per_instance_flag(in, in, di, uo) is det.
add_func_per_instance_flag(per_instance, _GCC_Defn) -->
% this is the default
[].
add_func_per_instance_flag(one_copy, _GCC_Defn) -->
{ sorry(this_file, "`one_copy' function") }.
:- pred add_func_virtuality_flag(mlds__virtuality, gcc__func_decl,
io__state, io__state).
:- mode add_func_virtuality_flag(in, in, di, uo) is det.
add_func_virtuality_flag(virtual, _GCC_Defn) -->
{ sorry(this_file, "`virtual' function") }.
add_func_virtuality_flag(non_virtual, _GCC_Defn) -->
% this is the default
[].
:- pred add_func_constness_flag(mlds__constness, gcc__func_decl,
io__state, io__state).
:- mode add_func_constness_flag(in, in, di, uo) is det.
add_func_constness_flag(const, _GCC_Defn) -->
{ sorry(this_file, "`const' function") }.
add_func_constness_flag(modifiable, _GCC_Defn) -->
% this is the default
[].
:- pred add_func_finality_flag(mlds__finality, gcc__func_decl,
io__state, io__state).
:- mode add_func_finality_flag(in, in, di, uo) is det.
add_func_finality_flag(final, _GCC_Defn) -->
{ sorry(this_file, "`final' function") }.
add_func_finality_flag(overridable, _GCC_Defn) -->
% this is the default
[].
:- pred add_func_abstractness_flag(mlds__abstractness, gcc__func_decl,
io__state, io__state).
:- mode add_func_abstractness_flag(in, in, di, uo) is det.
add_func_abstractness_flag(abstract, _GCC_Defn) -->
{ sorry(this_file, "`abstract' function") }.
add_func_abstractness_flag(concrete, _GCC_Defn) -->
% this is the default
[].
%-----------------------------------------------------------------------------%
%
% Code to output data declarations/definitions
%
% Handle an MLDS data definition that is nested inside a
% function definition (or inside a block within a function),
% and which is hence local to that function.
:- pred build_local_data_defn(mlds__qualified_entity_name, mlds__decl_flags,
mlds__type, mlds__initializer, defn_info, gcc__var_decl,
io__state, io__state).
:- mode build_local_data_defn(in, in, in, in, in, out, di, uo) is det.
build_local_data_defn(Name, Flags, Type, Initializer, DefnInfo, GCC_Defn) -->
build_type(Type, initializer_array_size(Initializer),
DefnInfo ^ global_info, GCC_Type),
{ Name = qual(_ModuleName, UnqualName) },
( { UnqualName = data(var(VarName0)) } ->
{ VarName = VarName0 }
;
% var/1 should be the only kind of mlds__data_name for which
% the MLDS code generator generates local definitions
% (within functions)
{ unexpected(this_file, "build_local_data_defn: non-var") }
),
{ PerInstance = per_instance(Flags) },
(
{ PerInstance = per_instance },
% an ordinary local variable
gcc__build_local_var_decl(VarName, GCC_Type, GCC_Defn),
add_var_decl_flags(Flags, GCC_Defn),
( { Initializer = no_initializer } ->
[]
;
build_initializer(Initializer, GCC_Type, DefnInfo,
GCC_InitExpr),
gcc__gen_assign(gcc__var_expr(GCC_Defn), GCC_InitExpr)
)
;
{ PerInstance = one_copy },
% a local static variable
% these must always have initializers
build_initializer(Initializer, GCC_Type, DefnInfo,
GCC_InitExpr),
gcc__build_static_var_decl(VarName, GCC_Type, GCC_InitExpr,
GCC_Defn),
{ llds_out__name_mangle(VarName, MangledVarName) },
gcc__set_var_decl_asm_name(GCC_Defn, MangledVarName),
add_var_decl_flags(Flags, GCC_Defn),
gcc__finish_static_var_decl(GCC_Defn)
).
% Handle an MLDS data definition that is nested inside a type,
% i.e. a field definition.
:- pred build_field_data_defn(mlds__qualified_entity_name, mlds__type,
mlds__initializer, global_info, gcc__field_decl,
io__state, io__state).
:- mode build_field_data_defn(in, in, in, in, out, di, uo) is det.
build_field_data_defn(Name, Type, Initializer, GlobalInfo, GCC_Defn) -->
build_type(Type, initializer_array_size(Initializer),
GlobalInfo, GCC_Type),
{ Name = qual(_ModuleName, UnqualName) },
( { UnqualName = data(var(VarName)) } ->
gcc__build_field_decl(VarName, GCC_Type, GCC_Defn)
;
{ sorry(this_file, "build_field_data_defn: non-var") }
),
( { Initializer = no_initializer } ->
[]
;
% fields can't have initializers
{ sorry(this_file, "build_field_data_defn: initializer") }
).
:- pred build_initializer(mlds__initializer, gcc__type, defn_info,
gcc__expr, io__state, io__state) is det.
:- mode build_initializer(in, in, in, out, di, uo) is det.
build_initializer(Initializer, GCC_Type, DefnInfo, GCC_Expr) -->
(
{ Initializer = no_initializer },
{ unexpected(this_file, "no_initializer (build_initializer)") }
;
{ Initializer = init_obj(Rval) },
build_rval(Rval, DefnInfo, GCC_Expr)
;
{ Initializer = init_struct(InitList) },
gcc__get_struct_field_decls(GCC_Type, GCC_FieldDecls),
build_struct_initializer(InitList, GCC_FieldDecls, DefnInfo,
GCC_InitList),
gcc__build_initializer_expr(GCC_InitList, GCC_Type, GCC_Expr)
;
{ Initializer = init_array(InitList) },
gcc__get_array_elem_type(GCC_Type, GCC_ElemType),
build_array_initializer(InitList, GCC_ElemType, 0, DefnInfo,
GCC_InitList),
gcc__build_initializer_expr(GCC_InitList, GCC_Type, GCC_Expr)
).
:- pred build_array_initializer(list(mlds__initializer), gcc__type, int,
defn_info, gcc__init_list, io__state, io__state) is det.
:- mode build_array_initializer(in, in, in, in, out, di, uo) is det.
build_array_initializer([], _, _, _, GCC_InitList) -->
gcc__empty_init_list(GCC_InitList).
build_array_initializer([Init | Inits], GCC_ElemType, Index, DefnInfo,
GCC_InitList) -->
gcc__array_elem_initializer(Index, GCC_InitIndex),
build_initializer(Init, GCC_ElemType, DefnInfo, GCC_InitValue),
build_array_initializer(Inits, GCC_ElemType, Index + 1, DefnInfo,
GCC_InitList0),
gcc__cons_init_list(GCC_InitIndex, GCC_InitValue,
GCC_InitList0, GCC_InitList).
:- pred build_struct_initializer(list(mlds__initializer), gcc__field_decls,
defn_info, gcc__init_list, io__state, io__state) is det.
:- mode build_struct_initializer(in, in, in, out, di, uo) is det.
build_struct_initializer([], _, _, GCC_InitList) -->
gcc__empty_init_list(GCC_InitList).
build_struct_initializer([Init | Inits], GCC_FieldDecls, DefnInfo,
GCC_InitList) -->
gcc__next_field_decl(GCC_FieldDecls, GCC_ThisFieldDecl,
GCC_RemainingFieldDecls),
gcc__struct_field_initializer(GCC_ThisFieldDecl, GCC_InitField),
gcc__field_type(GCC_ThisFieldDecl, GCC_ThisFieldType),
build_initializer(Init, GCC_ThisFieldType, DefnInfo, GCC_InitValue),
build_struct_initializer(Inits, GCC_RemainingFieldDecls, DefnInfo,
GCC_InitList0),
gcc__cons_init_list(GCC_InitField, GCC_InitValue, GCC_InitList0,
GCC_InitList).
%-----------------------------------------------------------------------------%
%
% Code to output type definitions
%
:- pred gen_class(mlds__qualified_entity_name, mlds__context,
mlds__class_defn, global_info, global_info,
io__state, io__state).
:- mode gen_class(in, in, in, in, out, di, uo) is det.
gen_class(Name, Context, ClassDefn, GlobalInfo0, GlobalInfo) -->
%
% To avoid name clashes, we need to qualify the names of
% the member constants with the class name.
% (In particular, this is needed for enumeration constants
% and for the nested classes that we generate for constructors
% of discriminated union types.)
% Here we compute the appropriate qualifier.
%
{ Name = qual(ModuleName, UnqualName) },
{ UnqualName = type(ClassName, ClassArity) ->
ClassModuleName = mlds__append_class_qualifier(ModuleName,
ClassName, ClassArity)
;
error("mlds_output_enum_constants")
},
%
% Hoist out static members, since plain old C doesn't support
% static members in structs (except for enumeration constants).
%
% XXX this should be conditional: only when compiling to C,
% not when compiling to C++
%
{ ClassDefn = class_defn(Kind, _Imports, BaseClasses, _Implements,
AllMembers) },
( { Kind = mlds__enum } ->
{ StaticMembers = [] },
{ StructMembers = AllMembers }
;
{ list__filter(is_static_member, AllMembers, StaticMembers,
NonStaticMembers) },
{ StructMembers = NonStaticMembers }
),
%
% Convert the base classes into member variables,
% since plain old C doesn't support base classes.
%
% This is copied from the MLDS->C back-end.
% We could probably handle it more directly for the
% MLDS->GCC back-end, but doing it this way is simple
% enough, and works.
%
{ list__map_foldl(mlds_make_base_class(Context),
BaseClasses, BaseDefns, 1, _) },
{ list__append(BaseDefns, StructMembers, BasesAndMembers) },
%
% Output the class declaration and the class members.
% We treat enumerations specially.
%
( { Kind = mlds__enum } ->
% XXX enumeration definitions are not yet implemented
{ sorry(this_file, "enum type (`--high-level-data' not yet "
++ "implemented for `--target asm')") }
/************
mlds_output_class_decl(Indent, Name, ClassDefn),
io__write_string(" {\n"),
mlds_output_enum_constants(Indent + 1, ClassModuleName,
BasesAndMembers)
*************/
;
%
% Build a gcc declaration node for the struct and
% for the fields it contains. Create a field table
% mapping the field names to their respective nodes.
%
{ map__init(FieldTable0) },
build_field_defns(BasesAndMembers, ClassModuleName,
GlobalInfo0, FieldDecls, FieldTable0, FieldTable),
{ AsmStructName = build_qualified_name(Name) },
gcc__build_struct_type_decl(AsmStructName,
FieldDecls, StructTypeDecl),
%
% Insert the gcc declaration node and the field table
% for this type into the global type table
%
{ TypeTable0 = GlobalInfo0 ^ type_table },
{ map__det_insert(TypeTable0, Name,
gcc_type_info(StructTypeDecl, FieldTable),
TypeTable) },
{ GlobalInfo1 = GlobalInfo0 ^ type_table := TypeTable }
),
%
% Output the static members.
%
gen_defns(ClassModuleName, StaticMembers, GlobalInfo1, GlobalInfo).
:- pred is_static_member(mlds__defn::in) is semidet.
is_static_member(Defn) :-
Defn = mlds__defn(Name, _, Flags, _),
( Name = type(_, _)
; per_instance(Flags) = one_copy
).
% Convert a base class class_id into a member variable
% that holds the value of the base class.
%
:- pred mlds_make_base_class(mlds__context, mlds__class_id, mlds__defn,
int, int).
:- mode mlds_make_base_class(in, in, out, in, out) is det.
mlds_make_base_class(Context, ClassId, MLDS_Defn, BaseNum0, BaseNum) :-
BaseName = string__format("base_%d", [i(BaseNum0)]),
Type = ClassId,
MLDS_Defn = ml_gen_mlds_var_decl(var(BaseName), Type, Context),
BaseNum = BaseNum0 + 1.
/***********
XXX enumeration definitions are not yet implemented for mlds_to_gcc.m.
The following code for handling enumeration definitions is copied from
mlds_to_c.m. It shows what we should generate.
:- pred mlds_output_class_decl(indent, mlds__qualified_entity_name,
mlds__class_defn, io__state, io__state).
:- mode mlds_output_class_decl(in, in, in, di, uo) is det.
mlds_output_class_decl(_Indent, Name, ClassDefn) -->
( { ClassDefn^kind = mlds__enum } ->
io__write_string("enum "),
mlds_output_fully_qualified_name(Name),
io__write_string("_e")
;
io__write_string("struct "),
mlds_output_fully_qualified_name(Name),
io__write_string("_s")
).
% Output the definitions of the enumeration constants
% for an enumeration type.
%
:- pred mlds_output_enum_constants(indent, mlds_module_name,
mlds__defns, io__state, io__state).
:- mode mlds_output_enum_constants(in, in, in, di, uo) is det.
mlds_output_enum_constants(Indent, EnumModuleName, Members) -->
%
% Select the enumeration constants from the list of members
% for this enumeration type, and output them.
%
{ EnumConsts = list__filter(is_enum_const, Members) },
io__write_list(EnumConsts, ",\n",
mlds_output_enum_constant(Indent, EnumModuleName)),
io__nl.
% Test whether one of the members of an mlds__enum class
% is an enumeration constant.
%
:- pred is_enum_const(mlds__defn).
:- mode is_enum_const(in) is semidet.
is_enum_const(Defn) :-
Defn = mlds__defn(_Name, _Context, Flags, _DefnBody),
constness(Flags) = const.
% Output the definition of a single enumeration constant.
%
:- pred mlds_output_enum_constant(indent, mlds_module_name, mlds__defn,
io__state, io__state).
:- mode mlds_output_enum_constant(in, in, in, di, uo) is det.
mlds_output_enum_constant(Indent, EnumModuleName, Defn) -->
{ Defn = mlds__defn(Name, Context, _Flags, DefnBody) },
(
{ DefnBody = data(Type, Initializer) }
->
mlds_indent(Context, Indent),
mlds_output_fully_qualified_name(qual(EnumModuleName, Name)),
mlds_output_initializer(Type, Initializer)
;
{ error("mlds_output_enum_constant: constant is not data") }
).
***********/
%-----------------------------------------------------------------------------%
%
% Code to output function declarations/definitions
%
:- pred gen_func(qualified_entity_name, mlds__context,
mlds__decl_flags, func_params, maybe(statement),
global_info, global_info, io__state, io__state).
:- mode gen_func(in, in, in, in, in, in, out, di, uo) is det.
gen_func(Name, Context, Flags, Signature, MaybeBody,
GlobalInfo0, GlobalInfo) -->
{ GlobalInfo = GlobalInfo0 },
(
{ MaybeBody = no }
;
{ MaybeBody = yes(Body) },
gcc__push_gc_context,
make_func_decl_for_defn(Name, Signature, GlobalInfo0,
FuncDecl, SymbolTable),
add_func_decl_flags(Flags, FuncDecl),
build_label_table(Body, LabelTable),
{ DefnInfo = defn_info(GlobalInfo,
Name, SymbolTable, LabelTable) },
set_context(Context),
gcc__start_function(FuncDecl),
% mlds_maybe_output_time_profile_instr(Context, Name)
gen_statement(DefnInfo, Body),
set_context(Context),
gcc__end_function,
gcc__pop_gc_context
).
%
% Before generating code for a function,
% we build a table of all the label declarations
% in that function body.
%
:- pred build_label_table(mlds__statement::in, label_table::out,
io__state::di, io__state::uo) is det.
build_label_table(Statement, LabelTable) -->
{ solutions(statement_contains_label(Statement), Labels) },
list__map_foldl(gcc__build_label, Labels, GCC_LabelDecls),
{ map__from_corresponding_lists(Labels, GCC_LabelDecls,
LabelTable) }.
:- pred statement_contains_label(mlds__statement::in, mlds__label::out)
is nondet.
statement_contains_label(Statement, Label) :-
statement_contains_statement(Statement, SubStatement),
SubStatement = mlds__statement(label(Label), _).
% XXX we should lookup the existing definition, if there is one,
% rather than always making a new one
:- pred make_func_decl(mlds__qualified_entity_name::in,
mlds__func_signature::in, global_info::in,
gcc__func_decl::out, io__state::di, io__state::uo) is det.
make_func_decl(Name, Signature, GlobalInfo, GCC_FuncDecl) -->
{ Signature = func_signature(Arguments, ReturnTypes) },
get_return_type(ReturnTypes, GlobalInfo, RetType),
{ get_qualified_func_name(Name, _ModuleName, FuncName, AsmFuncName) },
build_param_types(Arguments, GlobalInfo, GCC_Types, GCC_ParamTypes),
build_dummy_param_decls(GCC_Types, GCC_ParamDecls),
gcc__build_function_decl(FuncName, AsmFuncName,
RetType, GCC_ParamTypes, GCC_ParamDecls, GCC_FuncDecl).
:- pred build_dummy_param_decls(list(gcc__type), gcc__param_decls,
io__state, io__state).
:- mode build_dummy_param_decls(in, out, di, uo) is det.
build_dummy_param_decls([], gcc__empty_param_decls) --> [].
build_dummy_param_decls([Type | Types],
gcc__cons_param_decls(ParamDecl, ParamDecls)) -->
gcc__build_param_decl("<unnamed param>", Type, ParamDecl),
build_dummy_param_decls(Types, ParamDecls).
% Like make_func_decl, except that it fills in the
% function parameters properly
:- pred make_func_decl_for_defn(mlds__qualified_entity_name::in,
mlds__func_params::in, global_info::in, gcc__func_decl::out,
symbol_table::out, io__state::di, io__state::uo) is det.
make_func_decl_for_defn(Name, Parameters, GlobalInfo, FuncDecl, SymbolTable) -->
{ Parameters = func_params(Arguments, ReturnTypes) },
get_return_type(ReturnTypes, GlobalInfo, RetType),
{ get_qualified_func_name(Name, ModuleName, FuncName, AsmFuncName) },
build_param_types_and_decls(Arguments, ModuleName, GlobalInfo,
ParamTypes, ParamDecls, SymbolTable),
gcc__build_function_decl(FuncName, AsmFuncName,
RetType, ParamTypes, ParamDecls, FuncDecl).
:- pred get_return_type(list(mlds__type)::in, global_info::in, gcc__type::out,
io__state::di, io__state::uo) is det.
get_return_type(List, GlobalInfo, GCC_Type) -->
( { List = [] } ->
{ GCC_Type = gcc__void_type_node }
; { List = [Type] } ->
build_type(Type, GlobalInfo, GCC_Type)
;
{ error(this_file ++ ": multiple return types") }
).
% get_func_name(Name, ModuleName, FuncName, AsmFuncName):
% Get the module name and the function name.
% `FuncName' is the name used for generating debug symbols,
% whereas `AsmFuncName' is what we actually spit out in the
% assembler file.
:- pred get_qualified_func_name(mlds__qualified_entity_name::in,
mlds_module_name::out, string::out, string::out) is det.
get_qualified_func_name(Name, ModuleName, FuncName, AsmFuncName) :-
Name = qual(ModuleName, EntityName),
get_func_name(EntityName, FuncName, AsmFuncName0),
maybe_add_module_qualifier(Name, AsmFuncName0, AsmFuncName).
% get_func_name(Name, FuncName, AsmFuncName):
% Get the function name (without any module qualifier).
% `FuncName' is the name used for generating debug symbols,
% whereas `AsmFuncName' is what we actually spit out in the
% assembler file.
:- pred get_func_name(mlds__entity_name::in,
string::out, string::out) is det.
get_func_name(FunctionName, FuncName, AsmFuncName) :-
( FunctionName = function(PredLabel, ProcId, MaybeSeqNum, _PredId) ->
%
% Generate the AsmFuncName
% This needs to be fully name mangled to ensure that it
% is unique.
%
% XXX we should consider not appending the modenum and seqnum
% if they are not needed.
%
get_pred_label_name(PredLabel, AsmFuncName0),
proc_id_to_int(ProcId, ProcIdNum),
( MaybeSeqNum = yes(SeqNum) ->
AsmFuncName = string__format("%s_%d_%d",
[s(AsmFuncName0), i(ProcIdNum), i(SeqNum)])
;
AsmFuncName = string__format("%s_%d",
[s(AsmFuncName0), i(ProcIdNum)])
),
%
% Generate the FuncName.
% This is for human consumption, and does not
% necessarily need to be unique.
%
(
PredLabel = pred(_PorF, _ModuleName, PredName, _Arity),
FuncName = PredName
;
PredLabel = special_pred(SpecialPredName, _ModuleName,
TypeName, _Arity),
FuncName = SpecialPredName ++ TypeName
)
;
error("get_func_name: non-function")
).
% XXX same as mlds_output_pred_label in mlds_to_c,
% except that it returns a string.
:- pred get_pred_label_name(mlds__pred_label, string).
:- mode get_pred_label_name(in, out) is det.
get_pred_label_name(pred(PredOrFunc, MaybeDefiningModule, Name, Arity),
LabelName) :-
( PredOrFunc = predicate, Suffix = "p"
; PredOrFunc = function, Suffix = "f"
),
llds_out__name_mangle(Name, MangledName),
string__format("%s_%d_%s", [s(MangledName), i(Arity), s(Suffix)],
LabelName0),
( MaybeDefiningModule = yes(DefiningModule) ->
LabelName = LabelName0 ++ "_in__" ++
get_module_name(DefiningModule)
;
LabelName = LabelName0
).
get_pred_label_name(special_pred(PredName, MaybeTypeModule,
TypeName, TypeArity), LabelName) :-
llds_out__name_mangle(PredName, MangledPredName),
llds_out__name_mangle(TypeName, MangledTypeName),
TypeNameString = string__format("%s_%d",
[s(MangledTypeName), i(TypeArity)]),
( MaybeTypeModule = yes(TypeModule) ->
TypeNameList = [get_module_name(TypeModule),
"__", TypeNameString]
;
TypeNameList = [TypeNameString]
),
LabelName = string__append_list([MangledPredName, "__" | TypeNameList]).
:- func get_module_name(module_name) = string.
get_module_name(ModuleName) = MangledModuleName :-
llds_out__sym_name_mangle(ModuleName, MangledModuleName).
:- pred build_param_types(mlds__arg_types::in, global_info::in,
list(gcc__type)::out, gcc__param_types::out,
io__state::di, io__state::uo) is det.
build_param_types([], _, [], gcc__empty_param_types) --> [].
build_param_types([ArgType | ArgTypes], GlobalInfo, [GCC_Type | GCC_Types],
ParamTypes) -->
build_param_types(ArgTypes, GlobalInfo, GCC_Types, ParamTypes0),
build_type(ArgType, GlobalInfo, GCC_Type),
{ ParamTypes = gcc__cons_param_types(GCC_Type, ParamTypes0) }.
:- pred build_param_types_and_decls(mlds__arguments::in, mlds_module_name::in,
global_info::in, gcc__param_types::out, gcc__param_decls::out,
symbol_table::out, io__state::di, io__state::uo) is det.
build_param_types_and_decls([], _, _, gcc__empty_param_types,
gcc__empty_param_decls, SymbolTable) -->
{ map__init(SymbolTable) }.
build_param_types_and_decls([Arg|Args], ModuleName, GlobalInfo,
ParamTypes, ParamDecls, SymbolTable) -->
build_param_types_and_decls(Args, ModuleName, GlobalInfo,
ParamTypes0, ParamDecls0, SymbolTable0),
{ Arg = ArgName - Type },
build_type(Type, GlobalInfo, GCC_Type),
( { ArgName = data(var(ArgVarName)) } ->
gcc__build_param_decl(ArgVarName, GCC_Type, ParamDecl),
{ SymbolTable = map__det_insert(SymbolTable0,
qual(ModuleName, ArgName), ParamDecl) }
;
{ error("build_param_types_and_decls: invalid param name") }
),
{ ParamTypes = gcc__cons_param_types(GCC_Type, ParamTypes0) },
{ ParamDecls = gcc__cons_param_decls(ParamDecl, ParamDecls0) }.
%-----------------------------------------------------------------------------%
%
% Code to build types
%
:- pred build_type(mlds__type, global_info, gcc__type, io__state, io__state).
:- mode build_type(in, in, out, di, uo) is det.
build_type(Type, GlobalInfo, GCC_Type) -->
build_type(Type, no_size, GlobalInfo, GCC_Type).
:- pred build_type(mlds__type, initializer_array_size, global_info,
gcc__type, io__state, io__state).
:- mode build_type(in, in, in, out, di, uo) is det.
build_type(mercury_type(Type, TypeCategory), _, _, GCC_Type) -->
build_mercury_type(Type, TypeCategory, GCC_Type).
build_type(mlds__native_int_type, _, _, gcc__integer_type_node) --> [].
build_type(mlds__native_float_type, _, _, gcc__double_type_node) --> [].
build_type(mlds__native_bool_type, _, _, gcc__boolean_type_node) --> [].
build_type(mlds__native_char_type, _, _, gcc__char_type_node) --> [].
build_type(mlds__class_type(Name, Arity, ClassKind), _, GlobalInfo,
GCC_Type) -->
( { ClassKind = mlds__enum } ->
%
% XXX following comment is copied from mlds_to_c;
% it is wrong for mlds_to_gcc back-end
%
% We can't just use the enumeration type,
% since the enumeration type's definition
% is not guaranteed to be in scope at this point.
% (Fixing that would be somewhat complicated; it would
% require writing enum definitions to a separate header file.)
% Also the enumeration might not be word-sized,
% which would cause problems for e.g. `std_util:arg/2'.
% So we just use `MR_Integer'.
%
{ GCC_Type = 'MR_Integer' }
;
%
% Check to see whether we already have a definition for
% this type.
%
{ Name = qual(ModuleName, TypeName) },
{ EntityName = qual(ModuleName, type(TypeName, Arity)) },
(
{ map__search(GlobalInfo ^ type_table, EntityName,
gcc_type_info(GCC_TypeDecl, _)) }
->
{ GCC_Type = gcc__declared_type(GCC_TypeDecl) }
;
%
% The type was not already defined.
% This case only arises with `--high-level-data'.
% For struct types which are not defined in this
% module, it's OK to use an incomplete type,
% since don't use such types directly, we only
% use pointers to them.
%
% XXX currently we use `void' as the canonical
% incomplete type. Probably it would be better
% to generate an incomplete struct type decl
% for each struct type.
%
{ GCC_Type = gcc__void_type_node },
%
% XXX The I/O code below is just for debugging,
% and should eventually be removed
%
io__write_string("note: undeclared class_type "),
io__print(EntityName),
io__write_string(", i.e. "),
{ AsmName = build_qualified_name(EntityName) },
io__write_string(AsmName),
io__nl
)
).
build_type(mlds__ptr_type(Type), _, GlobalInfo, GCC_PtrType) -->
build_type(Type, GlobalInfo, GCC_Type),
gcc__build_pointer_type(GCC_Type, GCC_PtrType).
build_type(mlds__array_type(Type), ArraySize, GlobalInfo, GCC_ArrayType) -->
build_type(Type, GlobalInfo, GCC_Type),
build_sized_array_type(GCC_Type, ArraySize, GCC_ArrayType).
build_type(mlds__func_type(Params), _, GlobalInfo, GCC_FuncPtrType) -->
{ Signature = mlds__get_func_signature(Params) },
{ Signature = mlds__func_signature(ArgTypes, RetTypes) },
( { RetTypes = [] } ->
{ GCC_RetType = gcc__void_type_node }
; { RetTypes = [RetType] } ->
build_type(RetType, no_size, GlobalInfo, GCC_RetType)
;
{ sorry(this_file, "multiple return types") }
),
build_param_types(ArgTypes, GlobalInfo, _, GCC_ParamTypes),
gcc__build_function_type(GCC_RetType, GCC_ParamTypes, GCC_FuncType),
gcc__build_pointer_type(GCC_FuncType, GCC_FuncPtrType).
build_type(mlds__generic_type, _, _, 'MR_Box') --> [].
build_type(mlds__generic_env_ptr_type, _, _, gcc__ptr_type_node) --> [].
build_type(mlds__pseudo_type_info_type, _, _, 'MR_PseudoTypeInfo') --> [].
build_type(mlds__cont_type(ArgTypes), _, _, GCC_Type) -->
( { ArgTypes = [] } ->
globals__io_lookup_bool_option(gcc_nested_functions,
GCC_NestedFuncs),
( { GCC_NestedFuncs = yes } ->
% typedef void (*MR_NestedCont)(void)
gcc__build_function_type(gcc__void_type_node,
gcc__empty_param_types, FuncType),
gcc__build_pointer_type(FuncType, MR_NestedCont),
{ GCC_Type = MR_NestedCont }
;
% typedef void (*MR_Cont)(void *)
gcc__build_function_type(gcc__void_type_node,
gcc__cons_param_types(gcc__ptr_type_node,
gcc__empty_param_types),
FuncType),
gcc__build_pointer_type(FuncType, MR_Cont),
{ GCC_Type = MR_Cont }
)
;
% This case only happens for --nondet-copy-out
% (See mlds_to_c.m for what we ought to do.)
{ sorry(this_file,
"cont_type (`--nondet-copy-out' & `--target asm')") }
).
build_type(mlds__commit_type, _, _, gcc__jmpbuf_type_node) --> [].
build_type(mlds__rtti_type(RttiName), InitializerSize, _GlobalInfo,
GCC_Type) -->
build_rtti_type(RttiName, InitializerSize, GCC_Type).
:- pred build_mercury_type(mercury_type, builtin_type, gcc__type,
io__state, io__state).
:- mode build_mercury_type(in, in, out, di, uo) is det.
build_mercury_type(_Type, TypeCategory, GCC_Type) -->
(
{ TypeCategory = char_type },
{ GCC_Type = 'MR_Char' }
;
{ TypeCategory = int_type },
{ GCC_Type = 'MR_Integer' }
;
{ TypeCategory = str_type },
{ GCC_Type = 'MR_String' }
;
{ TypeCategory = float_type },
{ GCC_Type = 'MR_Float' }
;
{ TypeCategory = polymorphic_type },
{ GCC_Type = 'MR_Box' }
;
{ TypeCategory = tuple_type },
% tuples are always (pointers to)
% arrays of polymorphic terms
gcc__build_pointer_type('MR_Box', MR_Tuple),
{ GCC_Type = MR_Tuple }
;
{ TypeCategory = pred_type },
globals__io_lookup_bool_option(highlevel_data, HighLevelData),
( { HighLevelData = yes } ->
{ sorry(this_file, "--high-level-data (pred_type)") }
% { GCC_Type = 'MR_ClosurePtr' }
;
{ GCC_Type = 'MR_Word' }
)
;
{ TypeCategory = enum_type },
% Note that the MLDS -> C back-end uses 'MR_Word' here,
% unless --high-level-data is enabled. But 'MR_Integer'
% seems better, I think. It probably doesn't make any real
% difference either way.
% XXX for --high-level-data, we should use a real enum type
{ GCC_Type = 'MR_Integer' }
;
{ TypeCategory = user_type },
globals__io_lookup_bool_option(highlevel_data, HighLevelData),
( { HighLevelData = yes } ->
{ sorry(this_file, "--high-level-data (user_type)") }
;
{ GCC_Type = 'MR_Word' }
)
).
:- pred build_sized_array_type(gcc__type, initializer_array_size, gcc__type,
io__state, io__state).
:- mode build_sized_array_type(in, in, out, di, uo) is det.
build_sized_array_type(GCC_Type, ArraySize, GCC_ArrayType) -->
{ ArraySize = no_size, Size = 0
; ArraySize = array_size(Size)
},
gcc__build_array_type(GCC_Type, Size, GCC_ArrayType).
%-----------------------------------------------------------------------------%
:- type initializer_array_size
---> array_size(int)
; no_size. % either the size is unknown,
% or the data is not an array
:- func initializer_array_size(mlds__initializer) = initializer_array_size.
initializer_array_size(no_initializer) = no_size.
initializer_array_size(init_obj(_)) = no_size.
initializer_array_size(init_struct(_)) = no_size.
initializer_array_size(init_array(Elems)) = array_size(list__length(Elems)).
%-----------------------------------------------------------------------------%
%
% Code to build RTTI types
%
% The types constructed here should be the same as the types
% defined in runtime/mercury_type_info.h for the C back-end.
% See that file for documentation on these types.
% XXX We should consider avoiding the code duplication, by
% generating the relevant parts of runtime/mercury_type_info.h
% automatically, from a Mercury data structure describing the
% types. The same Mercury data structure could be used here.
% XXX it would be more efficient to construct these types once,
% at initialization time, rather than every time they are used.
:- pred build_rtti_type(rtti_name, initializer_array_size, gcc__type,
io__state, io__state).
:- mode build_rtti_type(in, in, out, di, uo) is det.
build_rtti_type(exist_locns(_), Size, GCC_Type) -->
build_du_exist_locn_type(MR_DuExistLocn),
build_sized_array_type(MR_DuExistLocn, Size, GCC_Type).
build_rtti_type(exist_info(_), _, MR_DuExistInfo) -->
build_du_exist_info_type(MR_DuExistInfo).
build_rtti_type(field_names(_), Size, GCC_Type) -->
build_sized_array_type('MR_ConstString', Size, GCC_Type).
build_rtti_type(field_types(_), Size, GCC_Type) -->
build_sized_array_type('MR_PseudoTypeInfo', Size, GCC_Type).
build_rtti_type(enum_functor_desc(_), _, GCC_Type) -->
% typedef struct {
% MR_ConstString MR_enum_functor_name;
% MR_int_least32_t MR_enum_functor_ordinal;
% } MR_EnumFunctorDesc;
build_struct_type("MR_EnumFunctorDesc",
['MR_ConstString' - "MR_enum_functor_name",
'MR_int_least32_t' - "MR_enum_functor_ordinal"],
GCC_Type).
build_rtti_type(notag_functor_desc, _, GCC_Type) -->
% typedef struct {
% MR_ConstString MR_notag_functor_name;
% MR_PseudoTypeInfo MR_notag_functor_arg_type;
% MR_ConstString MR_notag_functor_arg_name;
% } MR_NotagFunctorDesc;
build_struct_type("MR_NotagFunctorDesc",
['MR_ConstString' - "MR_notag_functor_name",
'MR_PseudoTypeInfo' - "MR_notag_functor_arg_type",
'MR_ConstString' - "MR_notag_functor_arg_name"],
GCC_Type).
build_rtti_type(du_functor_desc(_), _, GCC_Type) -->
% typedef struct {
% MR_ConstString MR_du_functor_name;
% MR_int_least16_t MR_du_functor_orig_arity;
% MR_int_least16_t MR_du_functor_arg_type_contains_var;
% MR_Sectag_Locn MR_du_functor_sectag_locn;
% MR_int_least8_t MR_du_functor_primary;
% MR_int_least32_t MR_du_functor_secondary;
% MR_int_least32_t MR_du_functor_ordinal;
% const MR_PseudoTypeInfo *MR_du_functor_arg_types;
% const MR_ConstString *MR_du_functor_arg_names;
% const MR_DuExistInfo *MR_du_functor_exist_info;
% } MR_DuFunctorDesc;
build_du_exist_info_type(MR_DuExistInfo),
gcc__build_pointer_type('MR_PseudoTypeInfo', MR_PseudoTypeInfoPtr),
gcc__build_pointer_type(MR_DuExistInfo, MR_DuExistInfoPtr),
gcc__build_pointer_type('MR_ConstString', MR_ConstStringPtr),
build_struct_type("MR_DuFunctorDesc",
['MR_ConstString' - "MR_du_functor_name",
'MR_int_least16_t' - "MR_du_functor_orig_arity",
'MR_int_least16_t' - "MR_du_functor_arg_type_contains_var",
'MR_Sectag_Locn' - "MR_du_functor_sectag_locn",
'MR_int_least8_t' - "MR_du_functor_primary",
'MR_int_least32_t' - "MR_du_functor_secondary",
'MR_int_least32_t' - "MR_du_functor_ordinal",
MR_PseudoTypeInfoPtr - "MR_du_functor_arg_types",
MR_ConstStringPtr - "MR_du_functor_arg_names",
MR_DuExistInfoPtr - "MR_du_functor_exist_info"],
GCC_Type).
build_rtti_type(enum_name_ordered_table, Size, GCC_Type) -->
{ MR_EnumFunctorDescPtr = gcc__ptr_type_node },
build_sized_array_type(MR_EnumFunctorDescPtr, Size, GCC_Type).
build_rtti_type(enum_value_ordered_table, Size, GCC_Type) -->
{ MR_EnumFunctorDescPtr = gcc__ptr_type_node },
build_sized_array_type(MR_EnumFunctorDescPtr, Size, GCC_Type).
build_rtti_type(du_name_ordered_table, Size, GCC_Type) -->
{ MR_DuFunctorDescPtr = gcc__ptr_type_node },
build_sized_array_type(MR_DuFunctorDescPtr, Size, GCC_Type).
build_rtti_type(du_stag_ordered_table(_), Size, GCC_Type) -->
{ MR_DuFunctorDescPtr = gcc__ptr_type_node },
build_sized_array_type(MR_DuFunctorDescPtr, Size, GCC_Type).
build_rtti_type(du_ptag_ordered_table, Size, GCC_Type) -->
% typedef struct {
% MR_int_least32_t MR_sectag_sharers;
% MR_Sectag_Locn MR_sectag_locn;
% const MR_DuFunctorDesc * const * MR_sectag_alternatives;
% } MR_DuPtagLayout;
build_struct_type("MR_DuPtagLayout",
['MR_int_least32_t' - "MR_sectag_sharers",
'MR_Sectag_Locn' - "MR_sectag_locn",
gcc__ptr_type_node - "MR_sectag_alternatives"],
MR_DuPtagLayout),
build_sized_array_type(MR_DuPtagLayout, Size, GCC_Type).
build_rtti_type(type_ctor_info, _, GCC_Type) -->
% struct MR_TypeCtorInfo_Struct {
% MR_Integer arity;
% MR_ProcAddr unify_pred;
% MR_ProcAddr new_unify_pred;
% MR_ProcAddr compare_pred;
% MR_TypeCtorRep type_ctor_rep;
% MR_ProcAddr solver_pred;
% MR_ProcAddr init_pred;
% MR_ConstString type_ctor_module_name;
% MR_ConstString type_ctor_name;
% MR_Integer type_ctor_version;
% MR_TypeFunctors type_functors;
% MR_TypeLayout type_layout;
% MR_int_least32_t type_ctor_num_functors;
% MR_int_least8_t type_ctor_num_ptags; /* if DU */
% /*
% ** The following fields will be added later, once we can exploit them:
% ** union MR_TableNode_Union **type_std_table;
% ** MR_ProcAddr prettyprinter;
% */
% };
{ MR_ProcAddr = gcc__ptr_type_node },
build_struct_type("MR_TypeFunctors",
[gcc__ptr_type_node - "functors_init"],
MR_TypeFunctors),
build_struct_type("MR_TypeLayout",
[gcc__ptr_type_node - "layout_init"],
MR_TypeLayout),
build_struct_type("MR_TypeCtorInfo_Struct",
['MR_Integer' - "arity",
MR_ProcAddr - "unify_pred",
MR_ProcAddr - "new_unify_pred",
MR_ProcAddr - "compare_pred",
'MR_TypeCtorRep' - "type_ctor_rep",
MR_ProcAddr - "solver_pred",
MR_ProcAddr - "init_pred",
'MR_ConstString' - "type_ctor_module_name",
'MR_ConstString' - "type_ctor_name",
'MR_Integer' - "type_ctor_version",
MR_TypeFunctors - "type_functors",
MR_TypeLayout - "type_layout",
'MR_int_least32_t' - "type_ctor_num_functors",
'MR_int_least8_t' - "type_ctor_num_ptags"],
GCC_Type).
build_rtti_type(base_typeclass_info(_, _, _), Size, GCC_Type) -->
{ MR_BaseTypeclassInfo = gcc__ptr_type_node },
build_sized_array_type(MR_BaseTypeclassInfo, Size, GCC_Type).
build_rtti_type(pseudo_type_info(PseudoTypeInfo), _, GCC_Type) -->
build_pseudo_type_info_type(PseudoTypeInfo, GCC_Type).
build_rtti_type(type_hashcons_pointer, _, MR_TableNodePtrPtr) -->
{ MR_TableNodePtrPtr = gcc__ptr_type_node }.
:- pred build_pseudo_type_info_type(pseudo_type_info::in,
gcc__type::out, io__state::di, io__state::uo) is det.
build_pseudo_type_info_type(type_var(_), _) -->
% we use small integers to represent type_vars,
% rather than pointers, so there is no pointed-to type
{ error("mlds_rtti_type: type_var") }.
build_pseudo_type_info_type(type_ctor_info(_), GCC_Type) -->
build_rtti_type(type_ctor_info, no_size, GCC_Type).
build_pseudo_type_info_type(type_info(_TypeId, ArgTypes), GCC_Type) -->
{ Arity = list__length(ArgTypes) },
% typedef struct {
% MR_TypeCtorInfo MR_pti_type_ctor_info;
% MR_PseudoTypeInfo MR_pti_first_order_arg_pseudo_typeinfos[<ARITY>];
% } MR_FO_PseudoTypeInfo_Struct<ARITY>;
{ MR_TypeCtorInfo = gcc__ptr_type_node },
gcc__build_array_type('MR_PseudoTypeInfo', Arity,
MR_PseudoTypeInfoArray),
{ StructName = string__format("MR_FO_PseudoTypeInfo_Struct%d",
[i(Arity)]) },
build_struct_type(StructName,
[MR_TypeCtorInfo - "MR_pti_type_ctor_info",
MR_PseudoTypeInfoArray - "MR_pti_first_order_arg_pseudo_typeinfos"],
GCC_Type).
build_pseudo_type_info_type(higher_order_type_info(_TypeId, _Arity,
ArgTypes), GCC_Type) -->
{ Arity = list__length(ArgTypes) },
% struct NAME { \
% MR_TypeCtorInfo MR_pti_type_ctor_info; \
% MR_Integer MR_pti_higher_order_arity; \
% MR_PseudoTypeInfo MR_pti_higher_order_arg_pseudo_typeinfos[ARITY]; \
% }
{ MR_TypeCtorInfo = gcc__ptr_type_node },
gcc__build_array_type('MR_PseudoTypeInfo', Arity,
MR_PseudoTypeInfoArray),
{ StructName = string__format("MR_HO_PseudoTypeInfo_Struct%d",
[i(Arity)]) },
build_struct_type(StructName,
[MR_TypeCtorInfo - "MR_pti_type_ctor_info",
'MR_Integer' - "MR_pti_higher_order_arity",
MR_PseudoTypeInfoArray -
"MR_pti_higher_order_arg_pseudo_typeinfos"],
GCC_Type).
:- pred build_du_exist_locn_type(gcc__type, io__state, io__state).
:- mode build_du_exist_locn_type(out, di, uo) is det.
build_du_exist_locn_type(MR_DuExistLocn) -->
% typedef struct {
% MR_int_least16_t MR_exist_arg_num;
% MR_int_least16_t MR_exist_offset_in_tci;
% } MR_DuExistLocn;
build_struct_type("MR_DuExistLocn",
['MR_int_least16_t' - "MR_exist_arg_num",
'MR_int_least16_t' - "MR_exist_offset_in_tci"],
MR_DuExistLocn).
:- pred build_du_exist_info_type(gcc__type, io__state, io__state).
:- mode build_du_exist_info_type(out, di, uo) is det.
build_du_exist_info_type(MR_DuExistInfo) -->
% typedef struct {
% MR_int_least16_t MR_exist_typeinfos_plain;
% MR_int_least16_t MR_exist_typeinfos_in_tci;
% MR_int_least16_t MR_exist_tcis;
% const MR_DuExistLocn *MR_exist_typeinfo_locns;
% } MR_DuExistInfo;
build_du_exist_locn_type(MR_DuExistLocn),
gcc__build_pointer_type(MR_DuExistLocn, MR_DuExistLocnPtr),
build_struct_type("MR_DuExistInfo",
['MR_int_least16_t' - "MR_exist_typeinfos_plain",
'MR_int_least16_t' - "MR_exist_typeinfos_in_tci",
'MR_int_least16_t' - "MR_exist_tcis",
MR_DuExistLocnPtr - "MR_exist_typeinfo_locns"],
MR_DuExistInfo).
% rtti_enum_const(Name, Value):
% Succeed iff Name is the name of an RTTI
% enumeration constant whose integer value is Value.
% The values here must match the definitions of the
% MR_TypeCtor and MR_Sectag_Locn enumerations in
% runtime/mercury_type_info.h.
:- pred rtti_enum_const(string::in, int::out) is semidet.
rtti_enum_const("MR_TYPECTOR_REP_ENUM", 0).
rtti_enum_const("MR_TYPECTOR_REP_ENUM_USEREQ", 1).
rtti_enum_const("MR_TYPECTOR_REP_DU", 2).
rtti_enum_const("MR_TYPECTOR_REP_DU_USEREQ", 3).
rtti_enum_const("MR_TYPECTOR_REP_NOTAG", 4).
rtti_enum_const("MR_TYPECTOR_REP_NOTAG_USEREQ", 5).
rtti_enum_const("MR_TYPECTOR_REP_EQUIV", 6).
rtti_enum_const("MR_TYPECTOR_REP_EQUIV_VAR", 7).
rtti_enum_const("MR_TYPECTOR_REP_INT", 8).
rtti_enum_const("MR_TYPECTOR_REP_CHAR", 9).
rtti_enum_const("MR_TYPECTOR_REP_FLOAT", 10).
rtti_enum_const("MR_TYPECTOR_REP_STRING", 11).
rtti_enum_const("MR_TYPECTOR_REP_PRED", 12).
rtti_enum_const("MR_TYPECTOR_REP_UNIV", 13).
rtti_enum_const("MR_TYPECTOR_REP_VOID", 14).
rtti_enum_const("MR_TYPECTOR_REP_C_POINTER", 15).
rtti_enum_const("MR_TYPECTOR_REP_TYPEINFO", 16).
rtti_enum_const("MR_TYPECTOR_REP_TYPECLASSINFO", 17).
rtti_enum_const("MR_TYPECTOR_REP_ARRAY", 18).
rtti_enum_const("MR_TYPECTOR_REP_SUCCIP", 19).
rtti_enum_const("MR_TYPECTOR_REP_HP", 20).
rtti_enum_const("MR_TYPECTOR_REP_CURFR", 21).
rtti_enum_const("MR_TYPECTOR_REP_MAXFR", 22).
rtti_enum_const("MR_TYPECTOR_REP_REDOFR", 23).
rtti_enum_const("MR_TYPECTOR_REP_REDOIP", 24).
rtti_enum_const("MR_TYPECTOR_REP_TRAIL_PTR", 25).
rtti_enum_const("MR_TYPECTOR_REP_TICKET", 26).
rtti_enum_const("MR_TYPECTOR_REP_NOTAG_GROUND", 27).
rtti_enum_const("MR_TYPECTOR_REP_NOTAG_GROUND_USEREQ", 28).
rtti_enum_const("MR_TYPECTOR_REP_EQUIV_GROUND", 29).
rtti_enum_const("MR_TYPECTOR_REP_TUPLE", 30).
rtti_enum_const("MR_TYPECTOR_REP_UNKNOWN", 31).
rtti_enum_const("MR_SECTAG_NONE", 0).
rtti_enum_const("MR_SECTAG_LOCAL", 1).
rtti_enum_const("MR_SECTAG_REMOTE", 2).
:- pred build_struct_type(gcc__struct_name::in,
list(pair(gcc__type, gcc__field_name))::in,
gcc__type::out, io__state::di, io__state::uo) is det.
build_struct_type(StructName, Fields, GCC_Type) -->
build_fields(Fields, GCC_Fields),
gcc__build_struct_type_decl(StructName, GCC_Fields, GCC_TypeDecl),
{ GCC_Type = gcc__declared_type(GCC_TypeDecl) }.
:- pred build_fields(list(pair(gcc__type, gcc__field_name))::in,
gcc__field_decls::out, io__state::di, io__state::uo) is det.
build_fields([], GCC_Fields) -->
gcc__empty_field_list(GCC_Fields).
build_fields([Type - Name | Fields0], GCC_Fields) -->
build_fields(Fields0, GCC_Fields0),
gcc__build_field_decl(Name, Type, FieldDecl),
gcc__cons_field_list(FieldDecl, GCC_Fields0, GCC_Fields).
%-----------------------------------------------------------------------------%
%
% Code to output names of various entities
%
:- func build_qualified_name(mlds__qualified_entity_name) = string.
build_qualified_name(QualifiedName) = AsmName :-
QualifiedName = qual(_ModuleName, Name),
AsmName0 = build_name(Name),
maybe_add_module_qualifier(QualifiedName, AsmName0, AsmName).
:- pred maybe_add_module_qualifier(mlds__qualified_entity_name::in,
string::in, string::out) is det.
maybe_add_module_qualifier(QualifiedName, AsmName0, AsmName) :-
QualifiedName = qual(ModuleName, Name),
(
(
%
% don't module-qualify main/2
%
Name = function(PredLabel, _, _, _),
PredLabel = pred(predicate, no, "main", 2)
;
%
% don't module-qualify base_typeclass_infos
%
% We don't want to include the module name as part
% of the name if it is a base_typeclass_info, since
% we _want_ to cause a link error for overlapping
% instance decls, even if they are in a different
% module
%
Name = data(base_typeclass_info(_, _))
;
% We don't module qualify pragma export names.
Name = export(_)
)
->
AsmName = AsmName0
;
ModuleSymName = mlds_module_name_to_sym_name(ModuleName),
AsmName = string__format("%s__%s",
[s(get_module_name(ModuleSymName)), s(AsmName0)])
).
% XXX we should consider not appending the arity, modenum, and seqnum
% if they are not needed.
:- func build_name(mlds__entity_name) = string.
build_name(type(Name, Arity)) = TypeName :-
llds_out__name_mangle(Name, MangledName),
TypeName = string__format("%s_%d", [s(MangledName), i(Arity)]).
build_name(data(DataName)) = build_data_name(DataName).
build_name(EntityName) = AsmFuncName :-
EntityName = function(_, _, _, _),
get_func_name(EntityName, _FuncName, AsmFuncName).
build_name(export(Name)) = Name.
:- func build_data_name(mlds__data_name) = string.
build_data_name(var(Name)) = MangledName :-
llds_out__name_mangle(Name, MangledName).
build_data_name(common(Num)) =
string__format("common_%d", [i(Num)]).
build_data_name(rtti(RttiTypeId0, RttiName0)) = RttiAddrName :-
RttiTypeId = fixup_rtti_type_id(RttiTypeId0),
RttiName = fixup_rtti_name(RttiName0),
rtti__addr_to_string(RttiTypeId, RttiName, RttiAddrName).
build_data_name(base_typeclass_info(ClassId, InstanceStr)) = Name :-
llds_out__make_base_typeclass_info_name(ClassId, InstanceStr,
Name).
build_data_name(module_layout) = _ :-
sorry(this_file, "module_layout").
build_data_name(proc_layout(_ProcLabel)) = _ :-
sorry(this_file, "proc_layout").
build_data_name(internal_layout(_ProcLabel, _FuncSeqNum)) = _ :-
sorry(this_file, "internal_layout").
build_data_name(tabling_pointer(ProcLabel)) = TablingPointerName :-
% convert the proc_label into an entity_name,
% so we can use get_func_name below
ProcLabel = PredLabel - ProcId,
MaybeSeqNum = no,
invalid_pred_id(InvalidPredId),
Name = function(PredLabel, ProcId, MaybeSeqNum, InvalidPredId),
get_func_name(Name, _FuncName, AsmFuncName),
TablingPointerName = string__append("table_for_", AsmFuncName).
% XXX sometimes earlier stages of the compiler forget to add
% the appropriate qualifiers for stuff in the `builtin' module;
% we fix that here.
:- func fixup_rtti_type_id(rtti_type_id) = rtti_type_id.
fixup_rtti_type_id(RttiTypeId0) = RttiTypeId :-
(
RttiTypeId0 = rtti_type_id(ModuleName0, Name, Arity),
ModuleName0 = unqualified("")
->
ModuleName = unqualified("builtin"),
RttiTypeId = rtti_type_id(ModuleName, Name, Arity)
;
RttiTypeId = RttiTypeId0
).
:- func fixup_rtti_name(rtti_name) = rtti_name.
fixup_rtti_name(RttiTypeId0) = RttiTypeId :-
(
RttiTypeId0 = pseudo_type_info(PseudoTypeInfo0)
->
RttiTypeId = pseudo_type_info(
fixup_pseudo_type_info(PseudoTypeInfo0))
;
RttiTypeId = RttiTypeId0
).
:- func fixup_pseudo_type_info(pseudo_type_info) = pseudo_type_info.
fixup_pseudo_type_info(PseudoTypeInfo0) = PseudoTypeInfo :-
(
PseudoTypeInfo0 = type_ctor_info(RttiTypeId0)
->
PseudoTypeInfo = type_ctor_info(
fixup_rtti_type_id(RttiTypeId0))
;
PseudoTypeInfo = PseudoTypeInfo0
).
%-----------------------------------------------------------------------------%
%
% Symbol tables and other (semi-)global data structures
%
:- type global_info
---> global_info(
type_table :: gcc_type_table,
global_vars :: symbol_table
).
% The type field table records the mapping from MLDS type names
% to the table of field declarations for that type.
:- type gcc_type_table == map(mlds__qualified_entity_name, gcc_type_info).
:- type gcc_type_info ---> gcc_type_info(gcc__type_decl, field_table).
% The field table records the mapping from MLDS field names
% to GCC field declarations.
:- type field_table == map(mlds__fully_qualified_name(field_name), gcc__field_decl).
% The defn_info holds information used while generating code
% inside a function, or in the initializers for a global variable.
:- type defn_info
---> defn_info(
global_info :: global_info,
func_name :: mlds__qualified_entity_name,
local_vars :: symbol_table,
label_table :: label_table
).
% The symbol table records the mapping from MLDS variable names
% to GCC variable declarations.
% We initialize the symbol table with the function parameters,
% and update it whenever we enter a block with local variables.
:- type symbol_table == map(mlds__qualified_entity_name, gcc__var_decl).
% The label table records the mapping from MLDS label names
% to GCC label declaration tree nodes.
% We initialize it using a separate pass over the function body
% before we generate code for the function.
:- type label_table == map(mlds__label, gcc__label).
%-----------------------------------------------------------------------------%
%
% Code to output statements
%
:- pred gen_statements(defn_info, list(mlds__statement),
io__state, io__state).
:- mode gen_statements(in, in, di, uo) is det.
gen_statements(DefnInfo, Statements) -->
list__foldl(gen_statement(DefnInfo), Statements).
:- pred gen_statement(defn_info, mlds__statement,
io__state, io__state).
:- mode gen_statement(in, in, di, uo) is det.
gen_statement(DefnInfo, mlds__statement(Statement, Context)) -->
gen_context(Context),
gen_stmt(DefnInfo, Statement, Context).
:- pred gen_stmt(defn_info, mlds__stmt, mlds__context,
io__state, io__state).
:- mode gen_stmt(in, in, in, di, uo) is det.
%
% sequence
%
gen_stmt(DefnInfo0, block(Defns, Statements), _Context) -->
gcc__start_block,
{ FuncName = DefnInfo0 ^ func_name },
{ FuncName = qual(ModuleName, _) },
build_local_defns(Defns, ModuleName, DefnInfo0, DefnInfo),
gen_statements(DefnInfo, Statements),
gcc__end_block.
%
% iteration
%
gen_stmt(DefnInfo, while(Cond, Statement, AtLeastOneIteration), _Context) -->
gcc__gen_start_loop(Loop),
build_rval(Cond, DefnInfo, GCC_Cond),
(
{ AtLeastOneIteration = yes },
% generate the test at the end of the loop
gen_statement(DefnInfo, Statement),
gcc__gen_exit_loop_if_false(Loop, GCC_Cond)
;
{ AtLeastOneIteration = no },
% generate the test at the start of the loop
gcc__gen_exit_loop_if_false(Loop, GCC_Cond),
gen_statement(DefnInfo, Statement)
),
gcc__gen_end_loop.
%
% selection (see also computed_goto)
%
gen_stmt(DefnInfo, if_then_else(Cond, Then, MaybeElse), _Context) -->
build_rval(Cond, DefnInfo, GCC_Cond),
gcc__gen_start_cond(GCC_Cond),
gen_statement(DefnInfo, Then),
(
{ MaybeElse = no }
;
{ MaybeElse = yes(Else) },
gcc__gen_start_else,
gen_statement(DefnInfo, Else)
),
gcc__gen_end_cond.
gen_stmt(DefnInfo, switch(Type, Val, Range, Cases, Default), _) -->
build_type(Type, DefnInfo ^ global_info, GCC_Type),
( { Range = range(Min, Max) } ->
gcc__build_range_type(GCC_Type, Min, Max, GCC_RangeType)
;
{ GCC_RangeType = GCC_Type }
),
build_rval(Val, DefnInfo, GCC_Expr),
gcc__gen_start_switch(GCC_Expr, GCC_RangeType),
% we put the default case first, so that if it is unreachable,
% it will get merged in with the first case.
gen_default(DefnInfo, Default),
gen_cases(DefnInfo, Cases),
gcc__gen_end_switch(GCC_Expr).
%
% transfer of control
%
gen_stmt(DefnInfo, label(LabelName), _) -->
{ LabelTable = DefnInfo ^ label_table },
{ GCC_Label = map__lookup(LabelTable, LabelName) },
gcc__gen_label(GCC_Label).
gen_stmt(DefnInfo, goto(LabelName), _) -->
{ LabelTable = DefnInfo ^ label_table },
{ GCC_Label = map__lookup(LabelTable, LabelName) },
gcc__gen_goto(GCC_Label).
gen_stmt(_DefnInfo, computed_goto(_Expr, _Labels), _) -->
% XXX not yet implemented
% but we set target_supports_computed_goto to no
% for this target, so we shouldn't get any
{ unexpected(this_file, "computed goto") }.
%
% function call/return
%
gen_stmt(DefnInfo, Call, _) -->
{ Call = call(_Signature, FuncRval, MaybeObject, CallArgs,
Results, IsTailCall) },
{ require(unify(MaybeObject, no), this_file ++ ": method call") },
build_args(CallArgs, DefnInfo, GCC_ArgList),
build_rval(FuncRval, DefnInfo, GCC_FuncRval),
% XXX GCC currently ignores the tail call boolean
{ IsTailCallBool = (IsTailCall = tail_call -> yes ; no) },
gcc__build_call_expr(GCC_FuncRval, GCC_ArgList, IsTailCallBool,
GCC_Call),
( { Results = [ResultLval] } ->
build_lval(ResultLval, DefnInfo, GCC_ResultExpr),
gcc__gen_assign(GCC_ResultExpr, GCC_Call)
; { Results = [] } ->
gcc__gen_expr_stmt(GCC_Call)
;
{ sorry(this_file, "call with multiple outputs") }
).
gen_stmt(DefnInfo, return(Results), _) -->
( { Results = [] } ->
% XXX Not yet implemented
% These are not generated by the current MLDS code
% generator, so I didn't bother to implement them.
{ sorry(this_file, "gen_stmt: return without return value") }
; { Results = [Rval] } ->
build_rval(Rval, DefnInfo, Expr),
gcc__gen_return(Expr)
;
{ sorry(this_file, "gen_stmt: multiple return values") }
).
%
% commits
%
gen_stmt(DefnInfo, do_commit(Ref), _Context) -->
% generate `__builtin_longjmp(&<Ref>, 1);'
{ Ref = lval(RefLval0) ->
RefLval = RefLval0
;
unexpected(this_file, "non-lval argument to do_commit")
},
build_call(gcc__longjmp_func_decl,
[mem_addr(RefLval), const(int_const(1))],
DefnInfo, GCC_CallLongjmp),
gcc__gen_expr_stmt(GCC_CallLongjmp).
gen_stmt(DefnInfo, try_commit(Ref, Stmt, Handler), _) -->
%
% Generate the following:
%
% if (__builtin_setjmp(&<Ref>) == 0)
% <Stmt>
% else
% <Handler>
%
build_call(gcc__setjmp_func_decl, [mem_addr(Ref)], DefnInfo,
GCC_CallSetjmp),
gcc__build_int(0, GCC_Zero),
gcc__build_binop(gcc__eq_expr, gcc__boolean_type_node,
GCC_CallSetjmp, GCC_Zero, GCC_SetjmpEqZero),
gcc__gen_start_cond(GCC_SetjmpEqZero),
gen_statement(DefnInfo, Stmt),
gcc__gen_start_else,
gen_statement(DefnInfo, Handler),
gcc__gen_end_cond.
%
% exception handling
%
/* XXX MLDS exception handling not yet implemented */
%
% atomic statements
%
gen_stmt(DefnInfo, atomic(AtomicStatement), Context) -->
gen_atomic_stmt(DefnInfo, AtomicStatement, Context).
%-----------------------------------------------------------------------------%
%
% Extra code for outputting switch statements
%
:- pred gen_cases(defn_info::in, mlds__switch_cases::in,
io__state::di, io__state::uo) is det.
gen_cases(DefnInfo, Cases) -->
list__foldl(gen_case(DefnInfo), Cases).
:- pred gen_case(defn_info::in, mlds__switch_case::in,
io__state::di, io__state::uo) is det.
gen_case(DefnInfo, MatchConds - Code) -->
list__foldl(gen_case_label(DefnInfo), MatchConds),
gen_statement(DefnInfo, Code),
gcc__gen_break.
:- pred gen_case_label(defn_info::in, mlds__case_match_cond::in,
io__state::di, io__state::uo) is det.
gen_case_label(DefnInfo, match_value(Val)) -->
build_rval(Val, DefnInfo, GCC_Val),
gcc__build_unnamed_label(Label),
gcc__gen_case_label(GCC_Val, Label).
gen_case_label(DefnInfo, match_range(Min, Max)) -->
build_rval(Min, DefnInfo, _GCC_Min),
build_rval(Max, DefnInfo, _GCC_Max),
gcc__build_unnamed_label(_Label),
% the following is not yet implemented
% (would be easy to do, but not needed so far, since
% these are not generated by the current MLDS code generator)
%%% gcc__gen_case_range_label(GCC_Min, GCC_Max, Label).
{ sorry(this_file, "match_range") }.
:- pred gen_default(defn_info::in, mlds__switch_default::in,
io__state::di, io__state::uo) is det.
gen_default(_, default_do_nothing) --> [].
gen_default(_, default_is_unreachable) -->
% If the default is unreachable, we just generate a label
% which will just drop through into the first case.
% This generally leads to more efficient code than
% default_do_nothing.
gcc__build_unnamed_label(Label),
gcc__gen_default_case_label(Label).
gen_default(DefnInfo, default_case(Statement)) -->
gcc__build_unnamed_label(Label),
gcc__gen_default_case_label(Label),
gen_statement(DefnInfo, Statement),
gcc__gen_break.
%-----------------------------------------------------------------------------%
/**********
XXX Profiling is not yet implemented for mlds_to_gcc.m.
The following code for handling profiling is copied from
mlds_to_c.m. It shows what we should generate.
%
% If memory profiling is turned on output an instruction to
% record the heap allocation.
%
:- pred mlds_maybe_output_heap_profile_instr(mlds__context::in,
indent::in, list(mlds__rval)::in,
mlds__qualified_entity_name::in, maybe(ctor_name)::in,
io__state::di, io__state::uo) is det.
mlds_maybe_output_heap_profile_instr(Context, Indent, Args, FuncName,
MaybeCtorName) -->
globals__io_lookup_bool_option(profile_memory, ProfileMem),
(
{ ProfileMem = yes }
->
mlds_indent(Context, Indent),
io__write_string("MR_record_allocation("),
io__write_int(list__length(Args)),
io__write_string(", "),
mlds_output_fully_qualified_name(FuncName),
io__write_string(", """),
mlds_output_fully_qualified_name(FuncName),
io__write_string(""", "),
( { MaybeCtorName = yes(CtorName) } ->
io__write_char('"'),
c_util__output_quoted_string(CtorName),
io__write_char('"')
;
io__write_string("NULL")
),
io__write_string(");\n")
;
[]
).
%
% If call profiling is turned on output an instruction to record
% an arc in the call profile between the callee and caller.
%
:- pred mlds_maybe_output_call_profile_instr(mlds__context::in,
indent::in, mlds__rval::in, mlds__qualified_entity_name::in,
io__state::di, io__state::uo) is det.
mlds_maybe_output_call_profile_instr(Context, Indent,
CalleeFuncRval, CallerName) -->
globals__io_lookup_bool_option(profile_calls, ProfileCalls),
( { ProfileCalls = yes } ->
mlds_indent(Context, Indent),
io__write_string("MR_prof_call_profile("),
mlds_output_bracketed_rval(CalleeFuncRval),
io__write_string(", "),
mlds_output_fully_qualified_name(CallerName),
io__write_string(");\n")
;
[]
).
%
% If time profiling is turned on output an instruction which
% informs the runtime which procedure we are currently located
% in.
%
:- pred mlds_maybe_output_time_profile_instr(mlds__context::in,
indent::in, mlds__qualified_entity_name::in,
io__state::di, io__state::uo) is det.
mlds_maybe_output_time_profile_instr(Context, Indent, Name) -->
globals__io_lookup_bool_option(profile_time, ProfileTime),
(
{ ProfileTime = yes }
->
mlds_indent(Context, Indent),
io__write_string("MR_set_prof_current_proc("),
mlds_output_fully_qualified_name(Name),
io__write_string(");\n")
;
[]
).
***************/
%-----------------------------------------------------------------------------%
%
% atomic statements
%
:- pred gen_atomic_stmt(defn_info,
mlds__atomic_statement, mlds__context, io__state, io__state).
:- mode gen_atomic_stmt(in, in, in, di, uo) is det.
%
% comments
%
gen_atomic_stmt(_DefnInfo, comment(_Comment), _) -->
% For now, we just ignore the comments.
% XXX Does gcc provide some way of inserting
% comments into the generated assembler?
[].
%
% assignment
%
gen_atomic_stmt(DefnInfo, assign(Lval, Rval), _) -->
build_lval(Lval, DefnInfo, GCC_Lval),
build_rval(Rval, DefnInfo, GCC_Rval),
gcc__gen_assign(GCC_Lval, GCC_Rval).
%
% heap management
%
gen_atomic_stmt(_DefnInfo, delete_object(_Lval), _) -->
% XXX not yet implemented
% we should generate a call to GC_free()
% (would be easy to do, but not needed so far, since
% these are not generated by the current MLDS code generator)
{ sorry(this_file, "delete_object") }.
gen_atomic_stmt(DefnInfo, NewObject, Context) -->
{ NewObject = new_object(Target, MaybeTag, Type, MaybeSize,
_MaybeCtorName, Args, ArgTypes) },
%
% Calculate the size that we're going to allocate.
%
( { MaybeSize = yes(SizeInWords) } ->
globals__io_lookup_int_option(bytes_per_word, BytesPerWord),
{ SizeOfWord = const(int_const(BytesPerWord)) },
{ SizeInBytes = binop((*), SizeInWords, SizeOfWord) }
;
{ sorry(this_file, "new_object with unknown size") }
),
%
% Generate code to allocate the memory and optionally tag the pointer,
% i.e. `Target = (Type) GC_malloc(SizeInBytes)'
% or `Target = MR_mkword(Tag, (Type) GC_malloc(SizeInBytes))'.
%
% generate `GC_malloc(SizeInBytes)'
build_call(gcc__alloc_func_decl, [SizeInBytes], DefnInfo, GCC_Call),
% cast the result to (Type)
build_type(Type, DefnInfo ^ global_info, GCC_Type),
gcc__convert_type(GCC_Call, GCC_Type, GCC_CastCall),
% add a tag to the pointer, if necessary
( { MaybeTag = yes(Tag0) } ->
{ Tag = Tag0 },
gcc__build_int(Tag, GCC_Tag),
gcc__build_binop(gcc__plus_expr, GCC_Type,
GCC_CastCall, GCC_Tag, GCC_TaggedCastCall)
;
{ Tag = 0 },
{ GCC_TaggedCastCall = GCC_CastCall }
),
% assign it to Target
build_lval(Target, DefnInfo, GCC_Target),
gcc__gen_assign(GCC_Target, GCC_TaggedCastCall),
%
% Initialize the fields.
%
gen_init_args(Args, ArgTypes, Context, 0, Target, Type, Tag,
DefnInfo).
gen_atomic_stmt(_DefnInfo, mark_hp(_Lval), _) -->
{ sorry(this_file, "mark_hp") }.
gen_atomic_stmt(_DefnInfo, restore_hp(_Rval), _) -->
{ sorry(this_file, "restore_hp") }.
%
% trail management
%
gen_atomic_stmt(_DefnInfo, trail_op(_TrailOp), _) -->
% Currently trail ops are implemented via calls to
% impure predicates implemented in C, rather than as
% MLDS trail ops, so this should never be reached.
{ unexpected(this_file, "trail_op") }.
% XXX That approach should work OK, but it is not
% maximally efficient for this back-end, since for
% this back-end the calls to C will end up as out-of-line
% calls. It would be more efficient to recognize
% the calls to the impure trail predicates and treat them
% as as builtins, expanding them to MLDS trail ops in
% ml_code_gen/ml_call_gen, and then generating inline
% code for them here.
%
% foreign language interfacing
%
gen_atomic_stmt(_DefnInfo, target_code(_TargetLang, _Components),
_Context) -->
% XXX we should support inserting inline asm code fragments
{ sorry(this_file, "target_code (for `--target asm')") }.
%
% gen_init_args generates code to initialize the fields
% of an object allocated with a new_object MLDS instruction.
%
:- pred gen_init_args(list(mlds__rval), list(mlds__type), mlds__context, int,
mlds__lval, mlds__type, mlds__tag, defn_info,
io__state, io__state).
:- mode gen_init_args(in, in, in, in, in, in, in, in, di, uo) is det.
gen_init_args([_|_], [], _, _, _, _, _, _) -->
{ error("gen_init_args: length mismatch") }.
gen_init_args([], [_|_], _, _, _, _, _, _) -->
{ error("gen_init_args: length mismatch") }.
gen_init_args([], [], _, _, _, _, _, _) --> [].
gen_init_args([Arg | Args], [ArgType | ArgTypes], Context,
ArgNum, Target, Type, Tag, DefnInfo) -->
%
% Currently all fields of new_object instructions are
% represented as MR_Box, so we need to box them if necessary.
%
{ Lval = field(yes(Tag), lval(Target),
offset(const(int_const(ArgNum))), mlds__generic_type, Type) },
{ Rval = unop(box(ArgType), Arg) },
build_lval(Lval, DefnInfo, GCC_Lval),
build_rval(Rval, DefnInfo, GCC_Rval),
gcc__gen_assign(GCC_Lval, GCC_Rval),
gen_init_args(Args, ArgTypes, Context,
ArgNum + 1, Target, Type, Tag, DefnInfo).
%-----------------------------------------------------------------------------%
%
% Code to output expressions
%
:- pred build_lval(mlds__lval, defn_info, gcc__expr, io__state, io__state).
:- mode build_lval(in, in, out, di, uo) is det.
build_lval(field(MaybeTag, Rval, offset(OffsetRval),
FieldType, _ClassType), DefnInfo, GCC_FieldRef) -->
% sanity check (copied from mlds_to_c.m)
(
{ FieldType = mlds__generic_type
; FieldType = mlds__mercury_type(term__variable(_), _)
}
->
[]
;
% The field type for field(_, _, offset(_), _, _) lvals
% must be something that maps to MR_Box.
{ error("unexpected field type") }
),
% generate the tagged pointer whose field we want to extract
build_rval(Rval, DefnInfo, GCC_TaggedPointer),
% subtract or mask out the tag
( { MaybeTag = yes(Tag) } ->
gcc__build_int(Tag, GCC_Tag),
gcc__build_binop(gcc__minus_expr, gcc__ptr_type_node,
GCC_TaggedPointer, GCC_Tag, GCC_Pointer)
;
globals__io_lookup_int_option(num_tag_bits, TagBits),
gcc__build_int(\ ((1 << TagBits) - 1), GCC_Mask),
gcc__build_binop(gcc__bit_and_expr, gcc__ptr_type_node,
GCC_TaggedPointer, GCC_Mask, GCC_Pointer)
),
% add the appropriate offset
build_rval(OffsetRval, DefnInfo, GCC_OffsetInWords),
globals__io_lookup_int_option(bytes_per_word, BytesPerWord),
gcc__build_int(BytesPerWord, GCC_BytesPerWord),
gcc__build_binop(gcc__mult_expr, 'MR_intptr_t',
GCC_OffsetInWords, GCC_BytesPerWord, GCC_OffsetInBytes),
gcc__build_binop(gcc__plus_expr, gcc__ptr_type_node,
GCC_Pointer, GCC_OffsetInBytes, GCC_FieldPointer0),
% cast the pointer to the right type (XXX is this necessary?)
build_type(FieldType, DefnInfo ^ global_info, GCC_FieldType),
gcc__build_pointer_type(GCC_FieldType, GCC_FieldPointerType),
gcc__convert_type(GCC_FieldPointer0, GCC_FieldPointerType,
GCC_FieldPointer),
% deference it
gcc__build_pointer_deref(GCC_FieldPointer, GCC_FieldRef).
build_lval(field(MaybeTag, PtrRval, named_field(FieldName, CtorType),
_FieldType, _PtrType), DefnInfo, GCC_Expr) -->
% generate the tagged pointer whose field we want to extract
build_rval(PtrRval, DefnInfo, GCC_TaggedPointer),
% subtract or mask out the tag
( { MaybeTag = yes(Tag) } ->
gcc__build_int(Tag, GCC_Tag),
gcc__build_binop(gcc__minus_expr, gcc__ptr_type_node,
GCC_TaggedPointer, GCC_Tag, GCC_Pointer)
;
globals__io_lookup_int_option(num_tag_bits, TagBits),
gcc__build_int(\ ((1 << TagBits) - 1), GCC_Mask),
gcc__build_binop(gcc__bit_and_expr, gcc__ptr_type_node,
GCC_TaggedPointer, GCC_Mask, GCC_Pointer)
),
% cast the pointer to the right type
build_type(CtorType, DefnInfo ^ global_info, GCC_CtorType),
gcc__build_pointer_type(GCC_CtorType, GCC_PointerType),
gcc__convert_type(GCC_Pointer, GCC_PointerType,
GCC_CastPointer),
% deference it
gcc__build_pointer_deref(GCC_CastPointer, GCC_ObjectRef),
% extract the right field
{ TypeTable = DefnInfo ^ global_info ^ type_table },
{ TypeName = get_class_type_name(CtorType) },
{ gcc_type_info(_, FieldTable) = map__lookup(TypeTable, TypeName) },
{ GCC_FieldDecl = map__lookup(FieldTable, FieldName) },
gcc__build_component_ref(GCC_ObjectRef, GCC_FieldDecl,
GCC_Expr).
build_lval(mem_ref(PointerRval, _Type), DefnInfo, Expr) -->
build_rval(PointerRval, DefnInfo, PointerExpr),
gcc__build_pointer_deref(PointerExpr, Expr).
build_lval(var(qual(ModuleName, VarName)), DefnInfo, Expr) -->
%
% Look up the variable in the symbol table.
% We try the symbol table for local vars first,
% and then if its not there, we look in the global vars
% symbol table. If it's not in either of those,
% we check if its an RTTI enumeration constant.
%
{ Name = qual(ModuleName, data(var(VarName))) },
(
{ map__search(DefnInfo ^ local_vars, Name, LocalVarDecl) }
->
{ Expr = gcc__var_expr(LocalVarDecl) }
;
{ map__search(DefnInfo ^ global_info ^ global_vars,
Name, GlobalVarDecl) }
->
{ Expr = gcc__var_expr(GlobalVarDecl) }
;
% check if it's in the private_builtin module
% and is an RTTI enumeration constant
{ mercury_private_builtin_module(PrivateBuiltin) },
{ mercury_module_name_to_mlds(PrivateBuiltin) = ModuleName },
{ rtti_enum_const(VarName, IntVal) }
->
gcc__build_int(IntVal, Expr)
;
% check if it's private_builtin:dummy_var
{ mercury_private_builtin_module(PrivateBuiltin) },
{ mercury_module_name_to_mlds(PrivateBuiltin) = ModuleName },
{ VarName = "dummy_var" }
->
% if so, generate an extern declaration for it, and use that.
{ GCC_VarName = build_data_var_name(ModuleName, var(VarName)) },
{ Type = 'MR_Word' },
gcc__build_extern_var_decl(GCC_VarName, Type, Decl),
{ Expr = gcc__var_expr(Decl) }
;
{ unexpected(this_file, "undeclared variable: " ++
build_qualified_name(Name)) }
).
:- func get_class_type_name(mlds__type) = mlds__qualified_entity_name.
get_class_type_name(Type) = Name :-
(
(
Type = mlds__class_type(ClassName, Arity, _Kind)
;
Type = mlds__ptr_type(mlds__class_type(ClassName,
Arity, _Kind))
)
->
ClassName = qual(ModuleName, UnqualClassName),
Name = qual(ModuleName, type(UnqualClassName, Arity))
;
unexpected(this_file, "non-class_type in get_type_name")
).
:- pred build_rval(mlds__rval, defn_info, gcc__expr, io__state, io__state).
:- mode build_rval(in, in, out, di, uo) is det.
build_rval(lval(Lval), DefnInfo, Expr) -->
build_lval(Lval, DefnInfo, Expr).
build_rval(mkword(Tag, Arg), DefnInfo, Expr) -->
gcc__build_int(Tag, GCC_Tag),
build_rval(Arg, DefnInfo, GCC_Arg),
gcc__build_binop(gcc__plus_expr, gcc__ptr_type_node,
GCC_Arg, GCC_Tag, Expr).
build_rval(const(Const), DefnInfo, Expr) -->
build_rval_const(Const, DefnInfo ^ global_info, Expr).
build_rval(unop(Op, Rval), DefnInfo, Expr) -->
build_unop(Op, Rval, DefnInfo, Expr).
build_rval(binop(Op, Rval1, Rval2), DefnInfo, Expr) -->
build_std_binop(Op, Rval1, Rval2, DefnInfo, Expr).
build_rval(mem_addr(Lval), DefnInfo, AddrExpr) -->
build_lval(Lval, DefnInfo, Expr),
gcc__build_addr_expr(Expr, AddrExpr).
:- pred build_unop(mlds__unary_op, mlds__rval, defn_info, gcc__expr,
io__state, io__state).
:- mode build_unop(in, in, in, out, di, uo) is det.
build_unop(cast(Type), Rval, DefnInfo, GCC_Expr) -->
build_cast_rval(Type, Rval, DefnInfo, GCC_Expr).
build_unop(box(Type), Rval, DefnInfo, GCC_Expr) -->
(
{ type_is_float(Type) }
->
build_call(gcc__box_float_func_decl, [Rval], DefnInfo,
GCC_Expr)
;
build_cast_rval(mlds__generic_type, Rval, DefnInfo, GCC_Expr)
).
build_unop(unbox(Type), Rval, DefnInfo, GCC_Expr) -->
(
{ type_is_float(Type) }
->
% Generate `*(MR_Float *)<Rval>'
build_rval(Rval, DefnInfo, GCC_Pointer),
gcc__build_pointer_type('MR_Float', FloatPointerType),
gcc__convert_type(GCC_Pointer, FloatPointerType,
GCC_CastPointer),
gcc__build_pointer_deref(GCC_CastPointer, GCC_Expr)
;
build_cast_rval(Type, Rval, DefnInfo, GCC_Expr)
).
build_unop(std_unop(Unop), Exprn, DefnInfo, GCC_Expr) -->
build_std_unop(Unop, Exprn, DefnInfo, GCC_Expr).
:- pred type_is_float(mlds__type::in) is semidet.
type_is_float(Type) :-
( Type = mlds__mercury_type(term__functor(term__atom("float"),
[], _), _)
; Type = mlds__native_float_type
).
:- pred build_cast_rval(mlds__type, mlds__rval, defn_info, gcc__expr,
io__state, io__state).
:- mode build_cast_rval(in, in, in, out, di, uo) is det.
build_cast_rval(Type, Rval, DefnInfo, GCC_Expr) -->
build_rval(Rval, DefnInfo, GCC_Rval),
build_type(Type, DefnInfo ^ global_info, GCC_Type),
gcc__convert_type(GCC_Rval, GCC_Type, GCC_Expr).
:- pred build_std_unop(builtin_ops__unary_op, mlds__rval, defn_info,
gcc__expr, io__state, io__state).
:- mode build_std_unop(in, in, in, out, di, uo) is det.
build_std_unop(UnaryOp, Arg, DefnInfo, Expr) -->
build_rval(Arg, DefnInfo, GCC_Arg),
build_unop_expr(UnaryOp, GCC_Arg, Expr).
:- pred build_unop_expr(builtin_ops__unary_op, gcc__expr, gcc__expr,
io__state, io__state).
:- mode build_unop_expr(in, in, out, di, uo) is det.
% We assume that the tag bits are kept on the low bits
% (`--tags low'), not on the high bits (`--tags high').
% XXX we should enforce this in handle_options.m.
build_unop_expr(mktag, Tag, Tag) --> [].
build_unop_expr(tag, Arg, Expr) -->
globals__io_lookup_int_option(num_tag_bits, TagBits),
gcc__build_int((1 << TagBits) - 1, Mask),
gcc__build_binop(gcc__bit_and_expr, 'MR_intptr_t',
Arg, Mask, Expr).
build_unop_expr(unmktag, Tag, Tag) --> [].
build_unop_expr(mkbody, Arg, Expr) -->
globals__io_lookup_int_option(num_tag_bits, TagBits),
gcc__build_int(TagBits, TagBitsExpr),
gcc__build_binop(gcc__lshift_expr, 'MR_intptr_t',
Arg, TagBitsExpr, Expr).
build_unop_expr(unmkbody, Arg, Expr) -->
globals__io_lookup_int_option(num_tag_bits, TagBits),
gcc__build_int(TagBits, TagBitsExpr),
gcc__build_binop(gcc__rshift_expr, 'MR_intptr_t',
Arg, TagBitsExpr, Expr).
build_unop_expr(hash_string, Arg, Expr) -->
gcc__build_func_addr_expr(gcc__hash_string_func_decl,
HashStringFuncExpr),
gcc__empty_arg_list(GCC_ArgList0),
gcc__cons_arg_list(Arg, GCC_ArgList0, GCC_ArgList),
{ IsTailCall = no },
gcc__build_call_expr(HashStringFuncExpr, GCC_ArgList, IsTailCall,
Expr).
build_unop_expr(bitwise_complement, Arg, Expr) -->
gcc__build_unop(gcc__bit_not_expr, 'MR_Integer', Arg, Expr).
build_unop_expr((not), Arg, Expr) -->
gcc__build_unop(gcc__truth_not_expr, gcc__boolean_type_node, Arg, Expr).
:- pred build_std_binop(builtin_ops__binary_op, mlds__rval, mlds__rval,
defn_info, gcc__expr, io__state, io__state).
:- mode build_std_binop(in, in, in, in, out, di, uo) is det.
build_std_binop(BinaryOp, Arg1, Arg2, DefnInfo, Expr) -->
( { string_compare_op(BinaryOp, CorrespondingIntOp) } ->
%
% treat string comparison operators specially:
% convert "X `str_OP` Y" into "strcmp(X, Y) `OP` 0"
%
build_call(gcc__strcmp_func_decl, [Arg1, Arg2], DefnInfo,
GCC_Call),
gcc__build_int(0, Zero),
gcc__build_binop(CorrespondingIntOp, gcc__boolean_type_node,
GCC_Call, Zero, Expr)
; { unsigned_compare_op(BinaryOp, _GCC_BinaryOp) } ->
% XXX This is not implemented yet, because we don't have
% 'MR_Unsigned'. But unsigned_le is only needed for dense
% (computed_goto) switches, and we set
% target_supports_computed_goto to no for this target,
% so we shouldn't get any of these.
{ unexpected(this_file, "unsigned comparison operator") }
/***
%
% Treat unsigned comparison operators specially:
% convert the arguments to unsigned.
%
build_rval(Arg1, DefnInfo, GCC_Arg1),
build_rval(Arg2, DefnInfo, GCC_Arg2),
gcc__convert_type(GCC_Arg1, 'MR_Unsigned', GCC_UnsignedArg1),
gcc__convert_type(GCC_Arg2, 'MR_Unsigned', GCC_UnsignedArg2),
gcc__build_binop(GCC_BinaryOp, gcc__boolean_type_node,
GCC_UnsignedArg1, GCC_UnsignedArg2, Expr)
***/
;
%
% the usual case: just build a gcc tree node for the expr.
%
build_rval(Arg1, DefnInfo, GCC_Arg1),
build_rval(Arg2, DefnInfo, GCC_Arg2),
{ convert_binary_op(BinaryOp, GCC_BinaryOp, GCC_ResultType) },
gcc__build_binop(GCC_BinaryOp, GCC_ResultType,
GCC_Arg1, GCC_Arg2, Expr)
).
:- pred string_compare_op(builtin_ops__binary_op, gcc__op).
:- mode string_compare_op(in, out) is semidet.
string_compare_op(str_eq, gcc__eq_expr).
string_compare_op(str_ne, gcc__ne_expr).
string_compare_op(str_lt, gcc__lt_expr).
string_compare_op(str_gt, gcc__gt_expr).
string_compare_op(str_le, gcc__le_expr).
string_compare_op(str_ge, gcc__ge_expr).
:- pred unsigned_compare_op(builtin_ops__binary_op, gcc__op).
:- mode unsigned_compare_op(in, out) is semidet.
unsigned_compare_op(unsigned_le, gcc__le_expr).
% Convert one of our operators to the corresponding
% gcc operator. Also compute the gcc return type.
:- pred convert_binary_op(builtin_ops__binary_op, gcc__op, gcc__type).
:- mode convert_binary_op(in, out, out) is det.
% Operator GCC operator GCC result type
convert_binary_op(+, gcc__plus_expr, 'MR_Integer').
convert_binary_op(-, gcc__minus_expr, 'MR_Integer').
convert_binary_op(*, gcc__mult_expr, 'MR_Integer').
convert_binary_op(/, gcc__trunc_div_expr, 'MR_Integer').
convert_binary_op((mod), gcc__trunc_mod_expr, 'MR_Integer').
convert_binary_op((<<), gcc__lshift_expr, 'MR_Integer').
convert_binary_op((>>), gcc__rshift_expr, 'MR_Integer').
convert_binary_op((&), gcc__bit_and_expr, 'MR_Integer').
convert_binary_op(('|'), gcc__bit_ior_expr, 'MR_Integer').
convert_binary_op((^), gcc__bit_xor_expr, 'MR_Integer').
convert_binary_op((and), gcc__truth_andif_expr, gcc__boolean_type_node).
convert_binary_op((or), gcc__truth_orif_expr, gcc__boolean_type_node).
convert_binary_op(eq, gcc__eq_expr, gcc__boolean_type_node).
convert_binary_op(ne, gcc__ne_expr, gcc__boolean_type_node).
convert_binary_op(body, gcc__minus_expr, 'MR_intptr_t').
convert_binary_op(array_index, gcc__array_ref, Type) :-
% XXX temp hack -- this is wrong.
% We should change builtin_ops:array_index
% so that it takes the type as an argument.
Type = 'MR_Integer'.
convert_binary_op(str_eq, _, _) :- unexpected(this_file, "str_eq").
convert_binary_op(str_ne, _, _) :- unexpected(this_file, "str_ne").
convert_binary_op(str_lt, _, _) :- unexpected(this_file, "str_lt").
convert_binary_op(str_gt, _, _) :- unexpected(this_file, "str_gt").
convert_binary_op(str_le, _, _) :- unexpected(this_file, "str_le").
convert_binary_op(str_ge, _, _) :- unexpected(this_file, "str_ge").
convert_binary_op((<), gcc__lt_expr, gcc__boolean_type_node).
convert_binary_op((>), gcc__gt_expr, gcc__boolean_type_node).
convert_binary_op((<=), gcc__le_expr, gcc__boolean_type_node).
convert_binary_op((>=), gcc__ge_expr, gcc__boolean_type_node).
convert_binary_op(unsigned_le, _, _) :- unexpected(this_file, "unsigned_le").
convert_binary_op(float_plus, gcc__plus_expr, 'MR_Float').
convert_binary_op(float_minus, gcc__minus_expr, 'MR_Float').
convert_binary_op(float_times, gcc__mult_expr, 'MR_Float').
convert_binary_op(float_divide, gcc__rdiv_expr, 'MR_Float').
convert_binary_op(float_eq, gcc__eq_expr, gcc__boolean_type_node).
convert_binary_op(float_ne, gcc__ne_expr, gcc__boolean_type_node).
convert_binary_op(float_lt, gcc__lt_expr, gcc__boolean_type_node).
convert_binary_op(float_gt, gcc__gt_expr, gcc__boolean_type_node).
convert_binary_op(float_le, gcc__le_expr, gcc__boolean_type_node).
convert_binary_op(float_ge, gcc__ge_expr, gcc__boolean_type_node).
:- pred build_call(gcc__func_decl::in, list(mlds__rval)::in, defn_info::in,
gcc__expr::out, io__state::di, io__state::uo) is det.
build_call(FuncDecl, ArgList, DefnInfo, GCC_Call) -->
gcc__build_func_addr_expr(FuncDecl, FuncExpr),
build_args(ArgList, DefnInfo, GCC_ArgList),
{ IsTailCall = no },
gcc__build_call_expr(FuncExpr, GCC_ArgList, IsTailCall, GCC_Call).
:- pred build_args(list(mlds__rval), defn_info, gcc__arg_list,
io__state, io__state).
:- mode build_args(in, in, out, di, uo) is det.
build_args([], _DefnInfo, EmptyArgList) -->
gcc__empty_arg_list(EmptyArgList).
build_args([Arg|Args], DefnInfo, GCC_ArgList) -->
build_rval(Arg, DefnInfo, GCC_Expr),
build_args(Args, DefnInfo, GCC_ArgList0),
gcc__cons_arg_list(GCC_Expr, GCC_ArgList0, GCC_ArgList).
%-----------------------------------------------------------------------------%
%
% Code to output constants
%
:- pred build_rval_const(mlds__rval_const, global_info, gcc__expr,
io__state, io__state).
:- mode build_rval_const(in, in, out, di, uo) is det.
build_rval_const(true, _, Expr) -->
% XXX currently we don't use a separate boolean type
gcc__build_int(1, Expr).
build_rval_const(false, _, Expr) -->
% XXX currently we don't use a separate boolean type
gcc__build_int(0, Expr).
build_rval_const(int_const(N), _, Expr) -->
gcc__build_int(N, Expr).
build_rval_const(float_const(FloatVal), _, Expr) -->
gcc__build_float(FloatVal, Expr).
build_rval_const(string_const(String), _, Expr) -->
gcc__build_string(String, Expr).
build_rval_const(multi_string_const(Length, String), _, Expr) -->
gcc__build_string(Length, String, Expr).
build_rval_const(code_addr_const(CodeAddr), GlobalInfo, Expr) -->
build_code_addr(CodeAddr, GlobalInfo, Expr).
build_rval_const(data_addr_const(DataAddr), _, Expr) -->
build_data_addr(DataAddr, Expr).
build_rval_const(null(_Type), _, Expr) -->
% XXX is it OK to ignore the type here?
gcc__build_null_pointer(Expr).
:- pred build_code_addr(mlds__code_addr, global_info, gcc__expr,
io__state, io__state).
:- mode build_code_addr(in, in, out, di, uo) is det.
build_code_addr(CodeAddr, GlobalInfo, Expr) -->
(
{ CodeAddr = proc(Label, Signature) },
{ MaybeSeqNum = no }
;
{ CodeAddr = internal(Label, SeqNum, Signature) },
{ MaybeSeqNum = yes(SeqNum) }
),
% convert the label into a entity_name,
% so we can use make_func_decl below
{ Label = qual(ModuleName, PredLabel - ProcId) },
{ invalid_pred_id(InvalidPredId) },
{ Name = qual(ModuleName, function(PredLabel, ProcId,
MaybeSeqNum, InvalidPredId)) },
% build a function declaration for the function,
% and take its address.
make_func_decl(Name, Signature, GlobalInfo, FuncDecl),
gcc__build_func_addr_expr(FuncDecl, Expr).
:- pred build_data_addr(mlds__data_addr, gcc__expr, io__state, io__state).
:- mode build_data_addr(in, out, di, uo) is det.
build_data_addr(DataAddr, Expr) -->
build_data_decl(DataAddr, Decl),
gcc__build_addr_expr(gcc__var_expr(Decl), Expr).
:- pred build_data_decl(mlds__data_addr, gcc__var_decl, io__state, io__state).
:- mode build_data_decl(in, out, di, uo) is det.
build_data_decl(data_addr(ModuleName, DataName), Decl) -->
% XXX Bug! Type won't always be 'MR_Word'
% XXX Bug! Shouldn't always be extern
{ VarName = build_data_var_name(ModuleName, DataName) },
{ Type = 'MR_Word' },
gcc__build_extern_var_decl(VarName, Type, Decl).
:- func build_data_var_name(mlds_module_name, mlds__data_name) = string.
build_data_var_name(ModuleName, DataName) =
ModuleQualifier ++ build_data_name(DataName) :-
(
%
% don't module-qualify base_typeclass_infos
%
% We don't want to include the module name as part
% of the name if it is a base_typeclass_info, since
% we _want_ to cause a link error for overlapping
% instance decls, even if they are in a different
% module
%
DataName = base_typeclass_info(_, _)
->
ModuleQualifier = ""
;
ModuleNameString = get_module_name(
mlds_module_name_to_sym_name(ModuleName)),
ModuleQualifier = string__append(ModuleNameString, "__")
).
%-----------------------------------------------------------------------------%
%
% Generation of source context info (file name and line number annotations).
%
:- pred set_context(mlds__context::in, io__state::di, io__state::uo) is det.
set_context(MLDS_Context) -->
{ ProgContext = mlds__get_prog_context(MLDS_Context) },
{ FileName = term__context_file(ProgContext) },
{ LineNumber = term__context_line(ProgContext) },
gcc__set_context(FileName, LineNumber).
:- pred gen_context(mlds__context, io__state, io__state).
:- mode gen_context(in, di, uo) is det.
gen_context(MLDS_Context) -->
{ ProgContext = mlds__get_prog_context(MLDS_Context) },
{ FileName = term__context_file(ProgContext) },
{ LineNumber = term__context_line(ProgContext) },
gcc__gen_line_note(FileName, LineNumber).
%-----------------------------------------------------------------------------%
%
% "Typedefs", i.e. constants of type `gcc__type'.
%
% We use the same names for types as in the MLDS -> C back-end.
%
:- func 'MR_Box' = gcc__type.
:- func 'MR_Integer' = gcc__type.
:- func 'MR_Float' = gcc__type.
:- func 'MR_Char' = gcc__type.
:- func 'MR_String' = gcc__type.
:- func 'MR_ConstString' = gcc__type.
:- func 'MR_Word' = gcc__type.
:- func 'MR_PseudoTypeInfo' = gcc__type.
:- func 'MR_Sectag_Locn' = gcc__type.
:- func 'MR_TypeCtorRep' = gcc__type.
:- func 'MR_int_least8_t' = gcc__type.
:- func 'MR_int_least16_t' = gcc__type.
:- func 'MR_int_least32_t' = gcc__type.
:- func 'MR_int_least64_t' = gcc__type.
:- func 'MR_intptr_t' = gcc__type.
'MR_Box' = gcc__ptr_type_node.
'MR_Integer' = gcc__intptr_type_node.
'MR_Float' = gcc__double_type_node.
'MR_Char' = gcc__char_type_node.
'MR_String' = gcc__string_type_node.
% XXX 'MR_ConstString' should really be const
'MR_ConstString' = gcc__string_type_node.
% XXX 'MR_Word' should perhaps be unsigned, to match the C back-end
'MR_Word' = gcc__intptr_type_node.
'MR_PseudoTypeInfo' = gcc__ptr_type_node.
% XXX MR_Sectag_Locn and MR_TypeCtorRep are actually enums
% in the C back-end. Binary compatibility between this
% back-end and the C back-end only works if the C compiler
% represents these enums the same as `int'.
'MR_Sectag_Locn' = gcc__integer_type_node.
'MR_TypeCtorRep' = gcc__integer_type_node.
'MR_int_least8_t' = gcc__int8_type_node.
'MR_int_least16_t' = gcc__int16_type_node.
'MR_int_least32_t' = gcc__int32_type_node.
'MR_int_least64_t' = gcc__int64_type_node.
'MR_intptr_t' = gcc__intptr_type_node.
%-----------------------------------------------------------------------------%
:- func this_file = string.
this_file = "mlds_to_gcc.m".
:- end_module mlds_to_gcc.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
|