1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
|
%-----------------------------------------------------------------------------%
% Copyright (C) 2000-2001 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% mlds_to_il - Convert MLDS to IL.
% Main author: trd.
%
% This module generates IL from MLDS. Currently it's pretty tuned
% towards generating assembler -- to generate code using
% Reflection::Emit it is likely some changes will need to be made.
%
% Currently non-det environments are represented using a high-level data
% representation (classes with typed fields), while all other data structures
% are represented using a low-level data representation (arrays of
% System.Object). This is for historical reasons -- the MLDS high-level-data
% support wasn't available when it was needed. Eventually we should
% move to a completely high-level data representation as the current
% representation is pretty inefficient.
%
% The IL backend TO-DO list:
%
% [ ] solutions
% [ ] floating point
% [ ] Type classes
% - You need to know what module the instance declaration is given in.
% - This involves module qualifying instance declarations.
% - This has semantic complications that we have to ignore for now
% [ ] RTTI (io__write -- about half the work required for this is done)
% [ ] High-level RTTI data
% [ ] Test unused mode (we seem to create a byref for it)
% [ ] Char (test unicode support)
% [ ] auto dependency generation for IL and assembler
% [ ] build environment improvements (support
% libraries/packages/namespaces better)
% [ ] verifiable code
% [ ] verifiable function pointers
% [ ] omit empty cctors
% [ ] Convert to "high-level data"
% [ ] Computed gotos need testing.
% [ ] :- extern doesn't work -- it needs to be treated like pragma c code.
% [ ] nested modules need testing
% [ ] We generate too many castclasses, it would be good to check if we
% really to do it before generating it. Same with isinst.
% [ ] Write line number information from contexts (in .il and .cpp files)
% [ ] Implement pragma export.
% [ ] Fix issues with abstract types so that we can implement C
% pointers as MR_Box rather than MR_Word.
% [ ] When generating target_code, sometimes we output more calls than
% we should (this can occur in nondet C code).
% [ ] ml_gen_call_current_success_cont_indirectly should be merged with
% similar code for doing copy-in/copy-out.
% [ ] figure out whether we need maxstack and fix it
% [ ] Try to use the IL bool type for the true/false rvals.
% [ ] Add an option to do overflow checking.
% [ ] Should replace hard-coded of int32 with a more abstract name such
% as `mercury_int_il_type'.
%
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- module mlds_to_il.
:- interface.
:- import_module mlds, ilasm, ilds.
:- import_module io, list, bool, std_util.
:- import_module hlds_pred. % for `pred_proc_id'.
%-----------------------------------------------------------------------------%
%
% Generate IL assembly from MLDS.
%
% This is where all the action is for the IL backend.
%
:- pred generate_il(mlds, list(ilasm:decl), bool, io__state, io__state).
:- mode generate_il(in, out, out, di, uo) is det.
%-----------------------------------------------------------------------------%
%
% The following predicates are exported so that we can get type
% conversions and name mangling consistent between the managed
% C++ output (currently in mlds_to_ilasm.m) and IL output (in
% this file).
%
% XXX we should reduce the dependencies here to a bare minimum.
%
:- pred params_to_il_signature(mlds_module_name, mlds__func_params,
signature).
:- mode params_to_il_signature(in, in, out) is det.
% Generate an IL identifier for a pred label.
:- pred predlabel_to_id(mlds__pred_label, proc_id,
maybe(mlds__func_sequence_num), ilds__id).
:- mode predlabel_to_id(in, in, in, out) is det.
% Generate an IL identifier for a MLDS var.
:- pred mangle_mlds_var(mlds__var, ilds__id).
:- mode mangle_mlds_var(in, out) is det.
% Get the corresponding ILDS type for a MLDS
:- func mlds_type_to_ilds_type(mlds__type) = ilds__type.
% Turn a proc name into an IL class_name and a method name.
:- pred mangle_mlds_proc_label(mlds__qualified_proc_label,
maybe(mlds__func_sequence_num), ilds__class_name, ilds__id).
:- mode mangle_mlds_proc_label(in, in, out, out) is det.
% Turn an MLDS module name into a class_name name.
:- func mlds_module_name_to_class_name(mlds_module_name) =
ilds__class_name.
% Return the class_name for the generic class.
:- func il_generic_class_name = ilds__class_name.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module globals, options, passes_aux.
:- import_module builtin_ops, c_util, modules, tree.
:- import_module prog_data, prog_out, llds_out.
:- import_module rtti, type_util.
:- import_module ilasm, il_peephole.
:- import_module ml_util, ml_code_util, error_util.
:- import_module mlds_to_c. /* to output C code for .cpp files */
:- use_module llds. /* for user_c_code */
:- import_module bool, int, map, string, list, assoc_list, term.
:- import_module library, require, counter.
% We build up lists of instructions using a tree to make
% insertion easy.
:- type instr_tree == tree(list(instr)).
% The state of the il code generator.
:- type il_info ---> il_info(
% file-wide attributes (all static)
module_name :: mlds_module_name, % the module name
imports :: mlds__imports, % the imports
file_c_code :: bool, % file contains c_code
% class-wide attributes (all accumulate)
alloc_instrs :: instr_tree, % .cctor allocation instructions
init_instrs :: instr_tree, % .cctor init instructions
classdecls :: list(classdecl), % class methods and fields
has_main :: bool, % class contains main
class_c_code :: bool, % class contains c_code
% method-wide attributes (accumulating)
locals :: locals_map, % The current locals
instr_tree :: instr_tree, % The instruction tree (unused)
label_counter :: counter, % the label counter
block_counter :: counter, % the block counter
method_c_code :: bool, % method contains c_code
% method-wide attributes (static)
arguments :: arguments_map, % The arguments
method_name :: member_name, % current method name
signature :: signature % current return type
).
:- type locals_map == map(ilds__id, mlds__type).
:- type arguments_map == assoc_list(ilds__id, mlds__type).
:- type mlds_vartypes == map(ilds__id, mlds__type).
%-----------------------------------------------------------------------------%
generate_il(MLDS, ILAsm, ContainsCCode, IO, IO) :-
MLDS = mlds(MercuryModuleName, _ForeignCode, Imports, Defns),
ModuleName = mercury_module_name_to_mlds(MercuryModuleName),
il_info_init(ModuleName, Imports, Info0),
% Generate code for all the methods in this module.
list__foldl(generate_method_defn, Defns, Info0, Info1),
bool__or(Info1 ^ file_c_code, Info1 ^ method_c_code, ContainsCCode),
Info = Info1 ^ file_c_code := ContainsCCode,
ClassDecls = Info ^ classdecls,
InitInstrs = list__condense(tree__flatten(Info ^ init_instrs)),
AllocInstrs = list__condense(tree__flatten(Info ^ alloc_instrs)),
% Generate definitions for all the other things
% declared within this module.
% XXX we should do them at the same time as the methods
list__map(generate_other_decls(ModuleName), Defns, OtherDeclsList),
list__condense(OtherDeclsList, OtherDecls),
SymName = mlds_module_name_to_sym_name(ModuleName),
ClassName = mlds_module_name_to_class_name(ModuleName),
mlds_to_il__sym_name_to_string(SymName, MStr),
% Make this module an assembly unless it is in the standard
% library. Standard library modules all go in the one
% assembly in a separate step during the build (using
% AL.EXE).
(
SymName = qualified(unqualified("mercury"), _)
->
ThisAssembly = [],
AssemblerRefs = Imports
;
ThisAssembly = [assembly(MStr)],
% If not in the library, but we have C code,
% declare the __c_code module as an assembly we
% reference
(
Info1 ^ file_c_code = yes,
mangle_dataname_module(no, ModuleName, CCodeModuleName),
AssemblerRefs = [CCodeModuleName | Imports]
;
Info1 ^ file_c_code = no,
AssemblerRefs = Imports
)
),
% Turn the MLDS module names we import into a list of
% assembly declarations.
mlds_to_il__generate_extern_assembly(AssemblerRefs,
ExternAssemblies),
% Generate a field that records whether we have finished
% RTTI initialization.
generate_rtti_initialization_field(ClassName,
AllocDoneFieldRef, AllocDoneField),
% Generate a class constructor.
make_class_constructor_classdecl(AllocDoneFieldRef,
Imports, AllocInstrs, InitInstrs, CCtor, Info1, _Info),
% The declarations in this class.
MethodDecls = [AllocDoneField, CCtor | ClassDecls],
% The class that corresponds to this MLDS module.
MainClass = [class([public], MStr, extends_nothing, implements([]),
MethodDecls)],
% A namespace to contain all the other declarations that
% are created as a result of this MLDS code.
MainNamespace = [namespace([MStr], OtherDecls)],
ILAsm = list__condense(
[ExternAssemblies, ThisAssembly, MainClass, MainNamespace]).
%-----------------------------------------------------------------------------
%
% Code for generating method definitions.
%
:- pred generate_method_defn(mlds__defn, il_info, il_info).
:- mode generate_method_defn(in, in, out) is det.
generate_method_defn(defn(type(_, _), _, _, _)) --> [].
% XXX we don't handle export
generate_method_defn(defn(export(_), _, _, _)) --> [].
generate_method_defn(FunctionDefn) -->
{ FunctionDefn = defn(function(PredLabel, ProcId, MaybeSeqNum, PredId),
Context, DeclsFlags, Entity) },
( { Entity = mlds__function(_PredProcId, Params, MaybeStatement) } ->
il_info_get_module_name(ModuleName),
% Generate a term (we use it to emit the complete
% method definition as a comment, which is nice
% for debugging).
{ term__type_to_term(defn(function(PredLabel, ProcId,
MaybeSeqNum, PredId), Context, DeclsFlags, Entity),
MLDSDefnTerm) },
% Generate the signature
{ Params = mlds__func_params(Args, Returns) },
{ list__map(mlds_arg_to_il_arg, Args, ILArgs) },
{ params_to_il_signature(ModuleName, Params,
ILSignature) },
% Generate the name of the method.
{ predlabel_to_id(PredLabel, ProcId, MaybeSeqNum,
Id) },
% Initialize the IL info with this method info.
il_info_new_method(ILArgs, ILSignature, id(Id)),
% Start a new block, which we will use to wrap
% up the entire method.
il_info_get_next_block_id(BlockId),
% Generate the code of the statement.
( { MaybeStatement = yes(Statement) } ->
statement_to_il(Statement, InstrsTree0)
;
% If there is no function body,
% generate forwarding code instead.
% This can happen with :- external
atomic_statement_to_il(target_code(lang_C, []),
InstrsTree0),
% The code might reference locals...
il_info_add_locals(["succeeded" -
mlds__native_bool_type])
),
% If this is main, add the entrypoint, set a
% flag, and call the initialization instructions
% in the cctor of this module.
( { PredLabel = pred(predicate, no, "main", 2) },
{ MaybeSeqNum = no }
->
{ EntryPoint = [entrypoint] },
il_info_add_init_instructions(
runtime_initialization_instrs),
^ has_main := yes
;
{ EntryPoint = [] }
),
% Need to insert a ret for functions returning
% void (MLDS doesn't).
{ Returns = [] ->
MaybeRet = instr_node(ret)
;
MaybeRet = empty
},
% Retrieve the locals, put them in the enclosing
% scope.
il_info_get_locals_list(Locals),
{ InstrsTree = tree__list([
instr_node(start_block(scope(Locals), BlockId)),
InstrsTree0,
MaybeRet,
instr_node(end_block(scope(Locals), BlockId))
])
},
% Generate the entire method contents.
{ MethodBody = make_method_defn(InstrsTree) },
{ list__append(EntryPoint, MethodBody, MethodContents) },
% Add this method and a comment to the class
% declarations.
{ ClassDecls = [
comment_term(MLDSDefnTerm),
ilasm__method(methodhead([static], id(Id),
ILSignature, []), MethodContents)
] },
il_info_add_classdecls(ClassDecls)
;
{ error("entity not a function") }
).
generate_method_defn(DataDefn) -->
{ DataDefn = defn(data(DataName), _Context, _DeclsFlags, Entity) },
il_info_get_module_name(ModuleName),
{ ClassName = mlds_module_name_to_class_name(ModuleName) },
% Generate a term (we use it to emit the complete
% method definition as a comment, which is nice
% for debugging).
{ term__type_to_term(DataDefn, MLDSDefnTerm) },
% Generate the field name for this data.
{ mangle_dataname(DataName, FieldName) },
(
{ Entity = mlds__data(_DataType, DataInitializer) }
->
% Generate instructions to initialize this data.
% There are two sorts of instructions,
% instructions to allocate the data structure,
% and instructions to initialize it.
% See the comments about class constructors to
% find out why we do this.
data_initializer_to_instrs(DataInitializer, AllocInstrsTree,
InitInstrTree),
% Make a field reference for the field
{ FieldRef = make_fieldref(il_array_type,
ClassName, FieldName) },
{ AllocComment = comment_node(
string__append("allocation for ", FieldName)) },
{ InitComment = comment_node(
string__append("initializer for ", FieldName)) },
% If we had to allocate memory, the code
% we generate looks like this:
%
% // allocation for foo
% ... allocation instructions ...
% stsfld thisclass::foo
%
%
% // initializer for foo
% ldsfld thisclass::foo
% ... initialization code ...
% pop
%
% The final pop is necessary because the init
% code will leave the field on the stack, but we
% don't need it anymore (and we already set the
% field when we allocated it).
%
% If no memory had to be allocated, the code is
% a bit simpler.
%
% // allocation for foo
% nothing here!
%
% // initializer for foo
% ... initialization code ...
% stsfld thisclass::foo
%
% Note that here we have to set the field.
{ AllocInstrsTree = node([]) ->
StoreAllocTree = node([]),
StoreInitTree = node([stsfld(FieldRef)]),
LoadTree = node([])
;
StoreAllocTree = node([stsfld(FieldRef)]),
StoreInitTree = node([pop]),
LoadTree = node([ldsfld(FieldRef)])
},
% Add a store after the alloc instrs (if necessary)
{ AllocInstrs = list__condense(tree__flatten(
tree(AllocComment,
tree(AllocInstrsTree, StoreAllocTree)))) },
% Add a load before the init instrs (if necessary)
{ InitInstrs = list__condense(tree__flatten(
tree(InitComment,
tree(LoadTree, tree(InitInstrTree, StoreInitTree))))) },
% Add these instructions to the lists of
% allocation/initialization instructions.
% They will be put into the class constructor
% later.
il_info_add_alloc_instructions(AllocInstrs),
il_info_add_init_instructions(InitInstrs),
% Make a public static field and add the field
% and a comment term to the class decls.
{ Field = field([public, static], il_array_type,
FieldName, no, none) },
{ ClassDecls = [comment_term(MLDSDefnTerm), Field] }
;
{ error("entity not data") }
),
il_info_add_classdecls(ClassDecls).
% Generate top level declarations for "other" things (e.g.
% anything that is not a method in the main class).
% XXX Really, this should be integrated with the other pass
% (generate_method_defn), and we can generate them all at once.
% This would involve adding the top-level decls list to il_info too.
:- pred generate_other_decls(mlds_module_name, mlds__defn, list(ilasm__decl)).
:- mode generate_other_decls(in, in, out) is det.
generate_other_decls(ModuleName, MLDSDefn, Decls) :-
ClassName = mlds_module_name_to_class_name(ModuleName),
MLDSDefn = mlds__defn(EntityName, _Context, _DeclFlags, Entity),
term__type_to_term(MLDSDefn, MLDSDefnTerm),
( EntityName = type(TypeName, _Arity),
list__append(ClassName, [TypeName],
FullClassName),
(
Entity = mlds__class(ClassDefn)
->
ClassDefn = mlds__class_defn(ClassType, _Imports,
_Inherits, _Implements, Defns),
(
ClassType = mlds__class
->
list__map(defn_to_class_decl, Defns, ILDefns),
make_constructor(FullClassName, ClassDefn,
ConstructorILDefn),
Decls = [comment_term(MLDSDefnTerm),
class([public], TypeName,
extends_nothing, implements([]),
[ConstructorILDefn | ILDefns])]
;
ClassType = mlds__struct
->
list__map(defn_to_class_decl, Defns, ILDefns),
make_constructor(FullClassName, ClassDefn,
ConstructorILDefn),
Decls = [comment_term(MLDSDefnTerm),
class([public], TypeName,
extends(il_envptr_class_name),
implements([]),
[ConstructorILDefn | ILDefns])]
;
Decls = [comment_term(MLDSDefnTerm),
comment("This type unimplemented.")]
)
;
Decls = [comment_term(MLDSDefnTerm),
comment("This type unimplemented.")]
)
; EntityName = function(_PredLabel, _ProcId, _MaybeFn, _PredId),
Decls = []
; EntityName = export(_),
% XXX we don't handle export
Decls = []
; EntityName = data(_),
Decls = []
).
%-----------------------------------------------------------------------------
%
% Code for generating initializers.
%
% Generate initializer code from an MLDS defn. We are only expecting
% data defns at this point (local vars), not functions or classes.
:- pred generate_defn_initializer(mlds__defn, instr_tree, instr_tree,
il_info, il_info).
:- mode generate_defn_initializer(in, in, out, in, out) is det.
generate_defn_initializer(defn(Name, _Context, _DeclFlags, Entity),
Tree0, Tree) -->
(
{ Name = data(DataName) },
{ Entity = mlds__data(_MldsType, Initializer) }
->
( { Initializer = no_initializer } ->
{ Tree = Tree0 }
;
( { DataName = var(VarName) } ->
il_info_get_module_name(ModuleName),
get_load_store_lval_instrs(
var(qual(ModuleName, VarName)),
LoadMemRefInstrs, StoreLvalInstrs),
{ NameString = VarName }
;
{ LoadMemRefInstrs = throw_unimplemented(
"initializer_for_non_var_data_name") },
{ StoreLvalInstrs = node([]) },
{ NameString = "unknown" }
),
data_initializer_to_instrs(Initializer, AllocInstrs,
InitInstrs),
{ string__append("initializer for ", NameString,
Comment) },
{ Tree = tree__list([
Tree0,
comment_node(Comment),
LoadMemRefInstrs,
AllocInstrs,
InitInstrs,
StoreLvalInstrs
]) }
)
;
{ unexpected(this_file, "defn not data(...) in block") }
).
% initialize this value, leave it on the stack.
% XXX the code generator doesn't box these values
% we need to look ahead at them and box them appropriately.
:- pred data_initializer_to_instrs(mlds__initializer::in,
instr_tree::out, instr_tree::out, il_info::in, il_info::out) is det.
data_initializer_to_instrs(init_obj(Rval), node([]), InitInstrs) -->
load(Rval, InitInstrs).
% Currently, structs are the same as arrays.
data_initializer_to_instrs(init_struct(InitList), AllocInstrs, InitInstrs) -->
data_initializer_to_instrs(init_array(InitList), AllocInstrs,
InitInstrs).
% Put the array allocation in AllocInstrs.
% For sub-initializations, we don't worry about keeping AllocInstrs
% and InitInstrs apart, since we are only interested in top level
% allocations.
data_initializer_to_instrs(init_array(InitList), AllocInstrs, InitInstrs) -->
% To initialize an array, we generate the following
% code:
% ldc <length of array>
% newarr System::Object
%
% Then, for each element in the array:
% dup
% ldc <index of this element in the array>
% ... allocation instructions ...
% ... initialization instructions ...
% box the value (if necessary)
% stelem System::Object
%
% The initialization will leave the array on the stack.
%
{ AllocInstrs = node([ldc(int32, i(list__length(InitList))),
newarr(il_generic_type)]) },
{ AddInitializer =
(pred(Init0::in, X0 - Tree0::in, (X0 + 1) - Tree::out,
in, out) is det -->
maybe_box_initializer(Init0, Init),
data_initializer_to_instrs(Init, ATree1, ITree1),
{ Tree = tree(tree(Tree0, node(
[dup, ldc(int32, i(X0))])),
tree(tree(ATree1, ITree1),
node([stelem(il_generic_simple_type)]
))) }
) },
list__foldl2(AddInitializer, InitList, 0 - empty, _ - InitInstrs).
data_initializer_to_instrs(no_initializer, node([]), node([])) --> [].
% If we are initializing an array or struct, we need to box
% all the things inside it.
:- pred maybe_box_initializer(mlds__initializer, mlds__initializer,
il_info, il_info).
:- mode maybe_box_initializer(in, out, in, out) is det.
% nothing to do
maybe_box_initializer(no_initializer, no_initializer) --> [].
% array already boxed
maybe_box_initializer(init_array(X), init_array(X)) --> [].
% struct already boxed
maybe_box_initializer(init_struct(X), init_struct(X)) --> [].
% single items need to be boxed
maybe_box_initializer(init_obj(Rval), init_obj(NewRval)) -->
rval_to_type(Rval, BoxType),
{ NewRval = unop(box(BoxType), Rval) }.
%-----------------------------------------------------------------------------%
%
% Code to turn MLDS definitions into IL class declarations.
%
:- pred defn_to_class_decl(mlds__defn, ilasm__classdecl).
:- mode defn_to_class_decl(in, out) is det.
% XXX shouldn't we re-use the code for creating fieldrefs here?
defn_to_class_decl(mlds__defn(Name, _Context, _DeclFlags,
mlds__data(Type, _Initializer)), ILClassDecl) :-
ILType0 = mlds_type_to_ilds_type(Type),
% IL doesn't allow byrefs in classes, so we don't use
% them.
% XXX really this should be a transformation done in
% advance
( ILType0 = ilds__type(_, '&'(ILType1)) ->
ILType = ILType1
;
ILType = ILType0
),
( Name = data(DataName) ->
mangle_dataname(DataName, MangledName),
ILClassDecl = field([], ILType, MangledName, no, none)
;
error("definintion name was not data/1")
).
% XXX this needs to be implemented
defn_to_class_decl(mlds__defn(_Name, _Context, _DeclFlags,
mlds__function(_PredProcId, _Params, _MaybeStatements)), ILClassDecl) :-
ILClassDecl = comment("unimplemented: functions in classes").
% XXX this might not need to be implemented (nested classes)
% since it will probably be flattened earlier.
defn_to_class_decl(mlds__defn(_Name, _Context, _DeclFlags,
mlds__class(_)), _ILClassDecl) :-
error("nested data definition not expected here").
%-----------------------------------------------------------------------------%
%
% Convert basic MLDS statements into IL.
%
:- pred statements_to_il(list(mlds__statement), instr_tree, il_info, il_info).
:- mode statements_to_il(in, out, in, out) is det.
statements_to_il([], empty) --> [].
statements_to_il([ S | Statements], tree(Instrs0, Instrs1)) -->
statement_to_il(S, Instrs0),
statements_to_il(Statements, Instrs1).
:- pred statement_to_il(mlds__statement, instr_tree, il_info, il_info).
:- mode statement_to_il(in, out, in, out) is det.
statement_to_il(statement(block(Defns, Statements), _Context), Instrs) -->
il_info_get_module_name(ModuleName),
il_info_get_next_block_id(BlockId),
{ list__map(defn_to_local(ModuleName), Defns, Locals) },
il_info_add_locals(Locals),
list__foldl2(generate_defn_initializer, Defns, empty,
InitInstrsTree),
statements_to_il(Statements, BlockInstrs),
{ list__map((pred((K - V)::in, (K - W)::out) is det :-
W = mlds_type_to_ilds_type(V)), Locals, ILLocals) },
{ Instrs = tree__list([
node([start_block(scope(ILLocals), BlockId)]),
InitInstrsTree,
comment_node("block body"),
BlockInstrs,
node([end_block(scope(ILLocals), BlockId)])
]) },
il_info_remove_locals(Locals).
statement_to_il(statement(atomic(Atomic), _Context), Instrs) -->
atomic_statement_to_il(Atomic, Instrs).
statement_to_il(statement(call(Sig, Function, _This, Args, Returns, IsTail),
_Context), Instrs) -->
( { IsTail = tail_call } ->
% For tail calls, to make the code verifiable,
% we need a `ret' instruction immediately after
% the call.
{ TailCallInstrs = [tailcall] },
{ RetInstrs = [ret] },
{ ReturnsStoredInstrs = empty },
{ LoadMemRefInstrs = empty }
;
% For non-tail calls, we might have to load a memory
% reference before the call so we can store the result
% into the memory reference after the call.
{ TailCallInstrs = [] },
{ RetInstrs = [] },
get_all_load_store_lval_instrs(Returns,
LoadMemRefInstrs, ReturnsStoredInstrs)
),
list__map_foldl(load, Args, ArgsLoadInstrsTrees),
{ ArgsLoadInstrs = tree__list(ArgsLoadInstrsTrees) },
{ mlds_signature_to_ilds_type_params(Sig, TypeParams) },
{ mlds_signature_to_il_return_param(Sig, ReturnParam) },
( { Function = const(_) } ->
{ FunctionLoadInstrs = empty },
{ rval_to_function(Function, MemberName) },
{ Instrs0 = [call(methoddef(call_conv(no, default),
ReturnParam, MemberName, TypeParams))] }
;
load(Function, FunctionLoadInstrs),
{ list__length(TypeParams, Length) },
{ list__duplicate(Length, no, NoList) },
{ assoc_list__from_corresponding_lists(
TypeParams, NoList, ParamsList) },
{ Instrs0 = [calli(signature(call_conv(no, default),
ReturnParam, ParamsList))] }
),
{ Instrs = tree__list([
comment_node("call"),
LoadMemRefInstrs,
ArgsLoadInstrs,
FunctionLoadInstrs,
node(TailCallInstrs),
node(Instrs0),
node(RetInstrs),
ReturnsStoredInstrs
]) }.
statement_to_il(statement(if_then_else(Condition, ThenCase, ElseCase),
_Context), Instrs) -->
generate_condition(Condition, ConditionInstrs, ElseLabel),
il_info_make_next_label(DoneLabel),
statement_to_il(ThenCase, ThenInstrs),
maybe_map_fold(statement_to_il, ElseCase, empty, ElseInstrs),
{ Instrs = tree__list([
comment_node("if then else"),
ConditionInstrs,
comment_node("then case"),
ThenInstrs,
instr_node(br(label_target(DoneLabel))),
instr_node(label(ElseLabel)),
comment_node("else case"),
ElseInstrs,
comment_node("end if then else"),
instr_node(label(DoneLabel))
]) }.
statement_to_il(statement(switch(_Type, _Val, _Range, _Cases, _Default),
_Context), _Instrs) -->
% The IL back-end only supports computed_gotos and if-then-else chains;
% the MLDS code generator should either avoid generating MLDS switches,
% or should transform them into computed_gotos or if-then-else chains.
{ error("mlds_to_il.m: `switch' not supported") }.
statement_to_il(statement(while(Condition, Body, AtLeastOnce),
_Context), Instrs) -->
generate_condition(Condition, ConditionInstrs, EndLabel),
il_info_make_next_label(StartLabel),
statement_to_il(Body, BodyInstrs),
{ AtLeastOnce = no,
Instrs = tree__list([
comment_node("while"),
instr_node(label(StartLabel)),
ConditionInstrs,
BodyInstrs,
instr_node(br(label_target(StartLabel))),
instr_node(label(EndLabel))
])
; AtLeastOnce = yes,
% XXX this generates a branch over branch which
% is suboptimal.
Instrs = tree__list([
comment_node("while (actually do ... while)"),
instr_node(label(StartLabel)),
BodyInstrs,
ConditionInstrs,
instr_node(br(label_target(StartLabel))),
instr_node(label(EndLabel))
])
}.
statement_to_il(statement(return(Rvals), _Context), Instrs) -->
( { Rvals = [Rval] } ->
load(Rval, LoadInstrs),
{ Instrs = tree__list([
LoadInstrs,
instr_node(ret)]) }
;
% MS IL doesn't support multiple return values
{ sorry(this_file, "multiple return values") }
).
statement_to_il(statement(label(Label), _Context), Instrs) -->
{ string__format("label %s", [s(Label)], Comment) },
{ Instrs = node([comment(Comment), label(Label)]) }.
statement_to_il(statement(goto(Label), _Context), Instrs) -->
{ string__format("goto %s", [s(Label)], Comment) },
{ Instrs = node([comment(Comment), br(label_target(Label))]) }.
statement_to_il(statement(do_commit(Ref), _Context), Instrs) -->
% For commits, we use exception handling.
%
% We generate code of the following form:
%
% <load exception rval -- should be of a special commit type>
% throw
%
%
load(Ref, RefLoadInstrs),
{ Instrs = tree__list([
comment_node("do_commit/1"),
RefLoadInstrs,
instr_node(throw)
]) }.
statement_to_il(statement(try_commit(Ref, GoalToTry, CommitHandlerGoal),
_Context), Instrs) -->
% For commits, we use exception handling.
%
% We generate code of the following form:
%
% .try {
% GoalToTry
% leave label1
% } catch commit_type {
% pop // discard the exception object
% CommitHandlerGoal
% leave label1
% }
% label1:
%
il_info_get_next_block_id(TryBlockId),
statement_to_il(GoalToTry, GoalInstrsTree),
il_info_get_next_block_id(CatchBlockId),
statement_to_il(CommitHandlerGoal, HandlerInstrsTree),
il_info_make_next_label(DoneLabel),
rval_to_type(lval(Ref), MLDSRefType),
{ RefType = mlds_type_to_ilds_type(MLDSRefType) },
{ RefType = ilds__type(_, class(ClassName0)) ->
ClassName = ClassName0
;
unexpected(this_file, "non-class for commit ref")
},
{ Instrs = tree__list([
comment_node("try_commit/3"),
instr_node(start_block(try, TryBlockId)),
GoalInstrsTree,
instr_node(leave(label_target(DoneLabel))),
instr_node(end_block(try, TryBlockId)),
instr_node(start_block(catch(ClassName), CatchBlockId)),
comment_node("discard the exception object"),
instr_node(pop),
HandlerInstrsTree,
instr_node(leave(label_target(DoneLabel))),
instr_node(end_block(catch(ClassName), CatchBlockId)),
instr_node(label(DoneLabel))
]) }.
statement_to_il(statement(computed_goto(Rval, MLDSLabels), _Context),
Instrs) -->
load(Rval, RvalLoadInstrs),
{ Targets = list__map(func(L) = label_target(L), MLDSLabels) },
{ Instrs = tree__list([
comment_node("computed goto"),
RvalLoadInstrs,
instr_node(switch(Targets))
]) }.
:- pred atomic_statement_to_il(mlds__atomic_statement, instr_tree,
il_info, il_info).
:- mode atomic_statement_to_il(in, out, in, out) is det.
atomic_statement_to_il(mark_hp(_), node(Instrs)) -->
{ Instrs = [comment(
"mark hp -- not relevant for this backend")] }.
atomic_statement_to_il(restore_hp(_), node(Instrs)) -->
{ Instrs = [comment(
"restore hp -- not relevant for this backend")] }.
atomic_statement_to_il(target_code(_Lang, _Code), node(Instrs)) -->
il_info_get_module_name(ModuleName),
( no =^ method_c_code ->
^ method_c_code := yes,
{ mangle_dataname_module(no, ModuleName, NewModuleName) },
{ ClassName = mlds_module_name_to_class_name(NewModuleName) },
signature(_, RetType, Params) =^ signature,
% If there is a return value, put it in succeeded.
{ RetType = void ->
StoreReturnInstr = []
;
StoreReturnInstr = [stloc(name("succeeded"))]
},
MethodName =^ method_name,
{ assoc_list__keys(Params, TypeParams) },
{ list__map_foldl((pred(_::in, Instr::out,
Num::in, Num + 1::out) is det :-
Instr = ldarg(index(Num))),
TypeParams, LoadInstrs, 0, _) },
{ list__condense(
[[comment("target code -- call handwritten version")],
LoadInstrs,
[call(get_static_methodref(ClassName, MethodName,
RetType, TypeParams))],
StoreReturnInstr
], Instrs) }
;
{ Instrs = [comment("target code -- already called")] }
).
atomic_statement_to_il(trail_op(_), node(Instrs)) -->
{ Instrs = [comment(
"... some trail operation ... (unimplemented)")] }.
atomic_statement_to_il(assign(Lval, Rval), Instrs) -->
% do assignments by loading the rval and storing
% to the lval
load(Rval, LoadRvalInstrs),
get_load_store_lval_instrs(Lval, LoadMemRefInstrs, StoreLvalInstrs),
{ Instrs = tree__list([
comment_node("assign"),
LoadMemRefInstrs,
LoadRvalInstrs,
StoreLvalInstrs
]) }.
atomic_statement_to_il(comment(Comment), Instrs) -->
{ Instrs = node([comment(Comment)]) }.
atomic_statement_to_il(delete_object(Target), Instrs) -->
% XXX we assume the code generator knows what it is
% doing and is only going to delete real objects (e.g.
% reference types). It would perhaps be prudent to
% check the type of delete_object (if it had one) to
% make sure.
% We implement delete_object by storing null in the
% lval, which hopefully gives the garbage collector a good
% solid hint that this storage is no longer required.
get_load_store_lval_instrs(Target, LoadInstrs, StoreInstrs),
{ Instrs = tree__list([LoadInstrs, instr_node(ldnull), StoreInstrs]) }.
atomic_statement_to_il(new_object(Target, _MaybeTag, Type, Size, _CtorName,
Args, ArgTypes), Instrs) -->
(
{ Type = mlds__generic_env_ptr_type
; Type = mlds__class_type(_, _, _) }
->
% If this is an env_ptr we should call the
% constructor.
% (This is also how we will handle high-level data).
% We generate code of the form:
%
% ... load memory reference ...
% // new object (call constructor)
% ... load each argument ...
% call ClassName::.ctor
% ... store to memory reference ...
%
{ ILType = mlds_type_to_ilds_type(Type) },
{
ILType = ilds__type(_, class(ClassName0))
->
ClassName = ClassName0
;
unexpected(this_file, "non-class for new_object")
},
list__map_foldl(load, Args, ArgsLoadInstrsTrees),
{ ArgsLoadInstrs = tree__list(ArgsLoadInstrsTrees) },
get_load_store_lval_instrs(Target, LoadMemRefInstrs,
StoreLvalInstrs),
{ CallCtor = newobj_constructor(ClassName) },
{ Instrs = tree__list([
LoadMemRefInstrs,
comment_node("new object (call constructor)"),
ArgsLoadInstrs,
instr_node(CallCtor),
StoreLvalInstrs
]) }
;
% Otherwise this is a generic mercury object -- we
% use an array of System::Object to represent
% it.
%
% ... load memory reference ...
% // new object
% ldc <size of array>
% newarr
%
% And then for each array element:
%
% dup
% ldc <array index>
% ... load and box rval ...
% stelem System::Object
%
% Finally, after all the array elements have
% been set:
%
% ... store to memory reference ...
% We need to do the boxing ourselves because
% MLDS hasn't done it. We add boxing unops to
% the rvals.
{ Box = (pred(A - T::in, B::out) is det :-
B = unop(box(T), A)
) },
{ assoc_list__from_corresponding_lists(Args, ArgTypes,
ArgsAndTypes) },
{ list__map(Box, ArgsAndTypes, BoxedArgs) },
% Load each rval
% (XXX we do almost exactly the same code when
% initializing array data structures -- we
% should reuse that code.
{ LoadInArray = (pred(Rval::in, I::out, Arg0::in,
Arg::out) is det :-
Arg0 = Index - S0,
I0 = instr_node(dup),
load(const(int_const(Index)), I1, S0, S1),
load(Rval, I2, S1, S),
I3 = instr_node(stelem(il_generic_simple_type)),
I = tree__list([I0, I1, I2, I3]),
Arg = (Index + 1) - S
) },
=(State0),
{ list__map_foldl(LoadInArray, BoxedArgs, ArgsLoadInstrsTrees,
0 - State0, _ - State) },
{ ArgsLoadInstrs = tree__list(ArgsLoadInstrsTrees) },
dcg_set(State),
% Get the instructions to load and store the
% target.
get_load_store_lval_instrs(Target, LoadMemRefInstrs,
StoreLvalInstrs),
{ Size = yes(SizeInWordsRval0) ->
SizeInWordsRval = SizeInWordsRval0
;
% XXX do we need to handle this case?
% I think it's needed for --high-level-data
error("unknown size in MLDS new_object")
},
load(SizeInWordsRval, LoadSizeInstrs),
{ Instrs = tree__list([
LoadMemRefInstrs,
comment_node("new object"),
LoadSizeInstrs,
instr_node(newarr(il_generic_type)),
ArgsLoadInstrs,
StoreLvalInstrs
]) }
).
:- pred get_all_load_store_lval_instrs(list(lval), instr_tree, instr_tree,
il_info, il_info).
:- mode get_all_load_store_lval_instrs(in, out, out, in, out) is det.
get_all_load_store_lval_instrs([], empty, empty) --> [].
get_all_load_store_lval_instrs([Lval | Lvals],
tree(LoadMemRefNode, LoadMemRefTree),
tree(StoreLvalNode, StoreLvalTree)) -->
get_load_store_lval_instrs(Lval, LoadMemRefNode, StoreLvalNode),
get_all_load_store_lval_instrs(Lvals, LoadMemRefTree, StoreLvalTree).
% Some lvals need to be loaded before you load the rval.
% XXX It would be much better if this took the lval and the rval and
% just gave you a single tree. Instead it gives you the
% "before" tree and the "after" tree and asks you to sandwich
% the rval in between.
% The predicate `store' should probably take the lval and the
% rval and do all of this at once.
:- pred get_load_store_lval_instrs(lval, instr_tree, instr_tree, il_info,
il_info).
:- mode get_load_store_lval_instrs(in, out, out, in, out) is det.
get_load_store_lval_instrs(Lval, LoadMemRefInstrs,
StoreLvalInstrs) -->
( { Lval = mem_ref(Rval0, MLDS_Type) } ->
load(Rval0, LoadMemRefInstrs),
{ ILType = mlds_type_to_ilds_type(MLDS_Type) },
{ ILType = ilds__type(_, SimpleType) },
{ StoreLvalInstrs = instr_node(stind(SimpleType)) }
; { Lval = field(_MaybeTag, FieldRval, FieldNum, FieldType,
ClassType) } ->
{ get_fieldref(FieldNum, FieldType, ClassType,
FieldRef) },
load(FieldRval, LoadMemRefInstrs),
{ StoreLvalInstrs = instr_node(stfld(FieldRef)) }
;
{ LoadMemRefInstrs = empty },
store(Lval, StoreLvalInstrs)
).
%-----------------------------------------------------------------------------%
%
% Load and store.
%
% NOTE: Be very careful calling store directly. You probably want to
% call get_load_store_lval_instrs to generate the prelude part (which
% will load any memory reference that need to be loaded) and the store
% part (while will store the rval into the pre-loaded lval), and then
% sandwich the calculation of the rval in between the two.
%
:- pred load(mlds__rval, instr_tree, il_info, il_info) is det.
:- mode load(in, out, in, out) is det.
load(lval(Lval), Instrs, Info0, Info) :-
( Lval = var(Var),
mangle_mlds_var(Var, MangledVarStr),
( is_local(MangledVarStr, Info0) ->
Instrs = instr_node(ldloc(name(MangledVarStr)))
; is_argument(Var, Info0) ->
Instrs = instr_node(ldarg(name(MangledVarStr)))
;
% XXX RTTI generates vars which are references
% to other modules!
Var = qual(ModuleName, _),
mangle_dataname_module(no, ModuleName,
NewModuleName),
ClassName = mlds_module_name_to_class_name(
NewModuleName),
GlobalType = mlds_type_to_ilds_type(
mlds_type_for_rtti_global),
FieldRef = make_fieldref(GlobalType, ClassName,
MangledVarStr),
Instrs = instr_node(ldsfld(FieldRef))
),
Info0 = Info
; Lval = field(_MaybeTag, Rval, FieldNum, FieldType, ClassType),
load(Rval, RvalLoadInstrs, Info0, Info1),
( FieldNum = offset(OffSet) ->
ILFieldType = mlds_type_to_ilds_type(FieldType),
ILFieldType = ilds__type(_, SimpleFieldType),
load(OffSet, OffSetLoadInstrs, Info1, Info),
LoadInstruction = ldelem(SimpleFieldType)
;
get_fieldref(FieldNum, FieldType, ClassType, FieldRef),
LoadInstruction = ldfld(FieldRef),
OffSetLoadInstrs = empty,
Info = Info1
),
Instrs = tree__list([
RvalLoadInstrs,
OffSetLoadInstrs,
instr_node(LoadInstruction)
])
; Lval = mem_ref(Rval, MLDS_Type),
ILType = mlds_type_to_ilds_type(MLDS_Type),
ILType = ilds__type(_, SimpleType),
load(Rval, RvalLoadInstrs, Info0, Info),
Instrs = tree__list([
RvalLoadInstrs,
instr_node(ldind(SimpleType))
])
).
load(mkword(_Tag, _Rval), Instrs, Info, Info) :-
Instrs = comment_node("unimplemented load rval mkword").
% XXX check these, what should we do about multi strings,
% characters, etc.
load(const(Const), Instrs, Info, Info) :-
% XXX is there a better way to handle true and false
% using IL's bool type?
( Const = true,
Instrs = instr_node(ldc(int32, i(1)))
; Const = false,
Instrs = instr_node(ldc(int32, i(0)))
; Const = string_const(Str),
Instrs = instr_node(ldstr(Str))
; Const = int_const(Int),
Instrs = instr_node(ldc(int32, i(Int)))
; Const = float_const(Float),
Instrs = instr_node(ldc(float64, f(Float)))
; Const = multi_string_const(_Length, _MultiString),
Instrs = throw_unimplemented("load multi_string_const")
; Const = code_addr_const(CodeAddr),
code_addr_constant_to_methodref(CodeAddr, MethodRef),
Instrs = instr_node(ldftn(MethodRef))
; Const = data_addr_const(DataAddr),
data_addr_constant_to_fieldref(DataAddr, FieldRef),
Instrs = instr_node(ldsfld(FieldRef))
; Const = null(_MLDSType),
% We might consider loading an integer for
% null function types.
Instrs = instr_node(ldnull)
).
load(unop(Unop, Rval), Instrs) -->
load(Rval, RvalLoadInstrs),
unaryop_to_il(Unop, Rval, UnOpInstrs),
{ Instrs = tree__list([RvalLoadInstrs, UnOpInstrs]) }.
load(binop(BinOp, R1, R2), Instrs) -->
load(R1, R1LoadInstrs),
load(R2, R2LoadInstrs),
binaryop_to_il(BinOp, BinaryOpInstrs),
{ Instrs = tree__list([R1LoadInstrs, R2LoadInstrs, BinaryOpInstrs]) }.
load(mem_addr(Lval), Instrs, Info0, Info) :-
( Lval = var(Var),
mangle_mlds_var(Var, MangledVarStr),
Info0 = Info,
( is_local(MangledVarStr, Info) ->
Instrs = instr_node(ldloca(name(MangledVarStr)))
;
Instrs = instr_node(ldarga(name(MangledVarStr)))
)
; Lval = field(_MaybeTag, Rval, FieldNum, FieldType, ClassType),
get_fieldref(FieldNum, FieldType, ClassType, FieldRef),
load(Rval, RvalLoadInstrs, Info0, Info),
Instrs = tree__list([
RvalLoadInstrs,
instr_node(ldflda(FieldRef))
])
; Lval = mem_ref(_, _),
Info0 = Info,
% XXX implement this
Instrs = throw_unimplemented("load mem_addr lval mem_ref")
).
:- pred store(mlds__lval, instr_tree, il_info, il_info) is det.
:- mode store(in, out, in, out) is det.
store(field(_MaybeTag, Rval, FieldNum, FieldType, ClassType), Instrs,
Info0, Info) :-
get_fieldref(FieldNum, FieldType, ClassType, FieldRef),
load(Rval, RvalLoadInstrs, Info0, Info),
Instrs = tree__list([RvalLoadInstrs, instr_node(stfld(FieldRef))]).
store(mem_ref(_Rval, _Type), _Instrs, Info, Info) :-
% you always need load the reference first, then
% the value, then stind it. There's no swap
% instruction. Annoying, eh?
unexpected(this_file, "store into mem_ref").
store(var(Var), Instrs, Info, Info) :-
mangle_mlds_var(Var, MangledVarStr),
( is_local(MangledVarStr, Info) ->
Instrs = instr_node(stloc(name(MangledVarStr)))
;
Instrs = instr_node(starg(name(MangledVarStr)))
).
%-----------------------------------------------------------------------------%
%
% Convert binary and unary operations to IL
%
:- pred unaryop_to_il(mlds__unary_op, mlds__rval, instr_tree, il_info,
il_info) is det.
:- mode unaryop_to_il(in, in, out, in, out) is det.
% Once upon a time the code generator generated primary tag tests
% (but we don't use primary tags).
% If we make mktag return its operand (since it will always be
% called with 0 as its operand), and we make tag return 0, it will
% always succeed in the tag test (which is good, with tagbits = 0
% we want to always succeed all primary tag tests).
unaryop_to_il(std_unop(mktag), _, comment_node("mktag (a no-op)")) --> [].
unaryop_to_il(std_unop(tag), _, Instrs) -->
load(const(int_const(0)), Instrs).
unaryop_to_il(std_unop(unmktag), _, comment_node("unmktag (a no-op)")) --> [].
unaryop_to_il(std_unop(mkbody), _, comment_node("mkbody (a no-op)")) --> [].
unaryop_to_il(std_unop(unmkbody), _, comment_node("unmkbody (a no-op)")) --> [].
% XXX implement this using string__hash
unaryop_to_il(std_unop(hash_string), _,
throw_unimplemented("unimplemented hash_string unop")) --> [].
unaryop_to_il(std_unop(bitwise_complement), _, node([not])) --> [].
% might want to revisit this and define not to be only
% valid on 1 or 0, then we can use ldc.i4.1 and xor,
% which might be more efficient.
unaryop_to_il(std_unop((not)), _,
node([ldc(int32, i(1)), clt(unsigned)])) --> [].
% if we are casting from an unboxed type, we should box
% it first.
% XXX should also test the cast-to type, to handle the
% cases where it is unboxed.
unaryop_to_il(cast(Type), Rval, Instrs) -->
{ ILType = mlds_type_to_ilds_type(Type) },
{
Rval = const(Const),
RvalType = rval_const_to_type(Const),
RvalILType = mlds_type_to_ilds_type(RvalType),
not already_boxed(RvalILType)
->
Instrs = node([call(convert_to_object(RvalILType)),
castclass(ILType)])
;
Instrs = node([castclass(ILType)])
}.
% XXX boxing and unboxing should be fixed.
% currently for boxing and unboxing we call some conversion
% methods that written by hand.
% We should do a small MLDS->MLDS transformation to introduce
% locals so we can box the address of the locals.
% then unboxing should just be castclass(System.Int32 or whatever),
% then unbox.
unaryop_to_il(box(Type), _, Instrs) -->
{ ILType = mlds_type_to_ilds_type(Type) },
{ already_boxed(ILType) ->
Instrs = node([isinst(il_generic_type)])
;
Instrs = node([call(convert_to_object(ILType))])
% XXX can't just use box, because it requires a pointer to
% the object, so it's useless for anything that isn't
% addressable
% Instrs = [box(ILType)]
}.
unaryop_to_il(unbox(Type), _, Instrs) -->
{ ILType = mlds_type_to_ilds_type(Type) },
{ ILType = ilds__type(_, class(_)) ->
Instrs = node([castclass(ILType)])
;
Instrs = node([call(convert_from_object(ILType))])
% since we can't use box, we can't use unbox
% Instrs = [unbox(ILType)]
}.
:- pred already_boxed(ilds__type::in) is semidet.
already_boxed(ilds__type(_, class(_))).
already_boxed(ilds__type(_, '[]'(_, _))).
:- pred binaryop_to_il(binary_op, instr_tree, il_info,
il_info) is det.
:- mode binaryop_to_il(in, out, in, out) is det.
binaryop_to_il((+), instr_node(I)) -->
{ I = add(nocheckoverflow, signed) }.
binaryop_to_il((-), instr_node(I)) -->
{ I = sub(nocheckoverflow, signed) }.
binaryop_to_il((*), instr_node(I)) -->
{ I = mul(nocheckoverflow, signed) }.
binaryop_to_il((/), instr_node(I)) -->
{ I = div(signed) }.
binaryop_to_il((mod), instr_node(I)) -->
{ I = rem(signed) }.
binaryop_to_il((<<), instr_node(I)) -->
{ I = shl }.
binaryop_to_il((>>), instr_node(I)) -->
{ I = shr(signed) }.
binaryop_to_il((&), instr_node(I)) -->
{ I = (and) }.
binaryop_to_il(('|'), instr_node(I)) -->
{ I = (or) }.
binaryop_to_il(('^'), instr_node(I)) -->
{ I = (xor) }.
binaryop_to_il((and), instr_node(I)) --> % This is logical and
{ I = (and) }.
binaryop_to_il((or), instr_node(I)) --> % This is logical or
{ I = (or) }.
binaryop_to_il(eq, instr_node(I)) -->
{ I = ceq }.
binaryop_to_il(ne, node(Instrs)) -->
{ Instrs = [
ceq,
ldc(int32, i(0)),
ceq
] }.
binaryop_to_il(body, _) -->
{ unexpected(this_file, "binop: body") }.
% XXX we need to know what kind of thing is being indexed
% from the array in general.
binaryop_to_il(array_index, throw_unimplemented("array index unimplemented"))
--> [].
% String operations.
binaryop_to_il(str_eq, node([
call(il_string_equals)
])) --> [].
binaryop_to_il(str_ne, node([
call(il_string_equals),
ldc(int32, i(0)),
ceq
])) --> [].
binaryop_to_il(str_lt, node([
call(il_string_compare),
ldc(int32, i(0)),
clt(signed)
])) --> [].
binaryop_to_il(str_gt, node([
call(il_string_compare),
ldc(int32, i(0)),
cgt(signed)
])) --> [].
binaryop_to_il(str_le, node([
call(il_string_compare),
ldc(int32, i(1)), clt(signed)
])) --> [].
binaryop_to_il(str_ge, node([
call(il_string_compare),
ldc(int32, i(-1)),
cgt(signed)
])) --> [].
% Integer comparison
binaryop_to_il((<), node([clt(signed)])) --> [].
binaryop_to_il((>), node([cgt(signed)])) --> [].
binaryop_to_il((<=), node([cgt(signed), ldc(int32, i(0)), ceq])) --> [].
binaryop_to_il((>=), node([clt(signed), ldc(int32, i(0)), ceq])) --> [].
binaryop_to_il(unsigned_le, node([cgt(unsigned), ldc(int32, i(0)), ceq])) -->
[].
% Floating pointer operations.
binaryop_to_il(float_plus, instr_node(I)) -->
{ I = add(nocheckoverflow, signed) }.
binaryop_to_il(float_minus, instr_node(I)) -->
{ I = sub(nocheckoverflow, signed) }.
binaryop_to_il(float_times, instr_node(I)) -->
{ I = mul(nocheckoverflow, signed) }.
binaryop_to_il(float_divide, instr_node(I)) -->
{ I = div(signed) }.
binaryop_to_il(float_eq, instr_node(I)) -->
{ I = ceq }.
binaryop_to_il(float_ne, node(Instrs)) -->
{ Instrs = [
ceq,
ldc(int32, i(0)),
ceq
] }.
binaryop_to_il(float_lt, node([clt(signed)])) --> [].
binaryop_to_il(float_gt, node([cgt(signed)])) --> [].
binaryop_to_il(float_le, node([cgt(signed), ldc(int32, i(0)), ceq])) --> [].
binaryop_to_il(float_ge, node([clt(signed), ldc(int32, i(0)), ceq])) --> [].
%-----------------------------------------------------------------------------%
%
% Generate code for conditional statements
%
% For most conditionals, we simply load the rval and branch to the else
% case if it is false.
%
% load rval
% brfalse elselabel
%
% For eq and ne binops, this will generate something a bit wasteful, e.g.
%
% load operand1
% load operand2
% ceq
% brfalse elselabel
%
% We try to avoid generating a comparison result on the stack and then
% comparing it to false. Instead we load the operands and
% branch/compare all at once. E.g.
%
% load operand1
% load operand2
% bne.unsigned elselabel
%
% Perhaps it would be better to just generate the default code and let
% the peephole optimizer pick this one up. Since it's pretty easy
% to detect I've left it here for now.
:- pred generate_condition(rval, instr_tree, string,
il_info, il_info).
:- mode generate_condition(in, out, out, in, out) is det.
generate_condition(Rval, Instrs, ElseLabel) -->
il_info_make_next_label(ElseLabel),
(
{ Rval = binop(eq, Operand1, Operand2) }
->
load(Operand1, Op1Instr),
load(Operand2, Op2Instr),
{ OpInstr = instr_node(
bne(unsigned, label_target(ElseLabel))) },
{ Instrs = tree__list([Op1Instr, Op2Instr, OpInstr]) }
;
{ Rval = binop(ne, Operand1, Operand2) }
->
load(Operand1, Op1Instr),
load(Operand2, Op2Instr),
{ OpInstr = instr_node(beq(label_target(ElseLabel))) },
{ Instrs = tree__list([Op1Instr, Op2Instr, OpInstr]) }
;
load(Rval, RvalLoadInstrs),
{ ExtraInstrs = instr_node(brfalse(label_target(ElseLabel))) },
{ Instrs = tree__list([RvalLoadInstrs, ExtraInstrs]) }
).
%-----------------------------------------------------------------------------%
%
% Get a function name for a code_addr_const rval.
%
% XXX This predicate should be narrowed down to the cases that actually
% make sense.
% Convert an rval into a function we can call.
:- pred rval_to_function(rval, class_member_name).
:- mode rval_to_function(in, out) is det.
rval_to_function(Rval, MemberName) :-
( Rval = const(Const),
( Const = code_addr_const(CodeConst) ->
( CodeConst = proc(ProcLabel, _Sig),
mangle_mlds_proc_label(ProcLabel, no,
ClassName, ProcLabelStr),
MemberName = class_member_name(ClassName,
id(ProcLabelStr))
; CodeConst = internal(ProcLabel, SeqNum, _Sig),
mangle_mlds_proc_label(ProcLabel, yes(SeqNum),
ClassName, ProcLabelStr),
MemberName = class_member_name(ClassName,
id(ProcLabelStr))
)
;
unexpected(this_file,
"rval_to_function: const is not a code address")
)
; Rval = mkword(_, _),
unexpected(this_file, "mkword_function_name")
; Rval = lval(_),
unexpected(this_file, "lval_function_name")
; Rval = unop(_, _),
unexpected(this_file, "unop_function_name")
; Rval = binop(_, _, _),
unexpected(this_file, "binop_function_name")
; Rval = mem_addr(_),
unexpected(this_file, "mem_addr_function_name")
).
%-----------------------------------------------------------------------------
%
% Class constructors (.cctors) are used to fill in the RTTI information
% needed for any types defined in the module. The RTTI is stored in
% static fields of the class.
% .cctors can be called at practically any time by the runtime
% system, but must be called before a static field is loaded
% (the runtime will ensure this happens).
% Since all the static fields in RTTI reference other RTTI static
% fields, we could run into problems if we load a field from another
% class before we initialize it. Often the RTTI in one module will
% refer to another, creating exactly this cross-referencing problem.
% To avoid problems, we initialize them in 3 passes.
%
% 1. We allocate all the RTTI data structures but leave them blank.
% When this is complete we set a flag to say we have completed this
% pass. After this pass is complete, it is safe for any other module
% to reference our data structures.
%
% 2. We call all the .cctors for RTTI data structures that we
% import. We do this because we can't load fields from them until we
% know they have been allocated.
%
% 3. We fill in the RTTI info in the already allocated structures.
%
% To ensure that pass 2 doesn't cause looping, the first thing done
% in all .cctors is a check to see if the flag is set. If it is, we
% return immediately (we have already been called and our
% initialization is either complete or at pass 2).
%
% // if (rtti_initialized) return;
% ldsfld rtti_initialized
% brfalse done_label
% ret
% done_label:
%
% // rtti_initialized = true
% ldc.i4.1
% stsfld rtti_initialized
%
% // allocate RTTI data structures.
% <allocation instructions generated by field initializers>
%
% // call .cctors
% call someclass::.cctor
% call someotherclass::.cctor
% ... etc ...
%
% // fill in fields of RTTI data structures
% <initialization instructions generated by field initializers>
%
:- pred make_class_constructor_classdecl(fieldref, mlds__imports,
list(instr), list(instr), classdecl, il_info, il_info).
:- mode make_class_constructor_classdecl(in, in, in, in, out, in, out) is det.
make_class_constructor_classdecl(DoneFieldRef, Imports, AllocInstrs,
InitInstrs, Method) -->
{ Method = method(methodhead([static], cctor,
signature(call_conv(no, default), void, []), []),
MethodDecls) },
test_rtti_initialization_field(DoneFieldRef, TestInstrs),
set_rtti_initialization_field(DoneFieldRef, SetInstrs),
{ CCtorCalls = list__map((func(X) = call_class_constructor(
mlds_module_name_to_class_name(X))), Imports) },
{ AllInstrs = list__condense([TestInstrs, AllocInstrs, SetInstrs,
CCtorCalls, InitInstrs, [ret]]) },
{ MethodDecls = [instrs(AllInstrs)] }.
:- pred test_rtti_initialization_field(fieldref, list(instr),
il_info, il_info).
:- mode test_rtti_initialization_field(in, out, in, out) is det.
test_rtti_initialization_field(FieldRef, Instrs) -->
il_info_make_next_label(DoneLabel),
{ Instrs = [ldsfld(FieldRef), brfalse(label_target(DoneLabel)),
ret, label(DoneLabel)] }.
:- pred set_rtti_initialization_field(fieldref, list(instr),
il_info, il_info).
:- mode set_rtti_initialization_field(in, out, in, out) is det.
set_rtti_initialization_field(FieldRef, Instrs) -->
{ Instrs = [ldc(int32, i(1)), stsfld(FieldRef)] }.
:- pred generate_rtti_initialization_field(ilds__class_name,
fieldref, classdecl).
:- mode generate_rtti_initialization_field(in, out, out) is det.
generate_rtti_initialization_field(ClassName, AllocDoneFieldRef,
AllocDoneField) :-
AllocDoneFieldName = "rtti_initialized",
AllocDoneField = field([public, static], ilds__type([], bool),
AllocDoneFieldName, no, none),
AllocDoneFieldRef = make_fieldref(ilds__type([], bool),
ClassName, AllocDoneFieldName).
%-----------------------------------------------------------------------------
%
% Conversion of MLDS types to IL types.
:- pred mlds_signature_to_ilds_type_params(mlds__func_signature, list(ilds__type)).
:- mode mlds_signature_to_ilds_type_params(in, out) is det.
mlds_signature_to_ilds_type_params(func_signature(Args, _Returns), Params) :-
Params = list__map(mlds_type_to_ilds_type, Args).
:- pred mlds_arg_to_il_arg(pair(mlds__entity_name, mlds__type),
pair(ilds__id, mlds__type)).
:- mode mlds_arg_to_il_arg(in, out) is det.
mlds_arg_to_il_arg(EntityName - Type, Id - Type) :-
mangle_entity_name(EntityName, Id).
:- pred mlds_signature_to_il_return_param(mlds__func_signature, ret_type).
:- mode mlds_signature_to_il_return_param(in, out) is det.
mlds_signature_to_il_return_param(func_signature(_, Returns), Param) :-
( Returns = [] ->
Param = void
; Returns = [ReturnType] ->
ReturnParam = mlds_type_to_ilds_type(ReturnType),
ReturnParam = ilds__type(_, SimpleType),
Param = simple_type(SimpleType)
;
% IL doesn't support multiple return values
sorry(this_file, "multiple return values")
).
params_to_il_signature(ModuleName, mlds__func_params(Inputs, Outputs),
ILSignature) :-
ILInputTypes = list__map(input_param_to_ilds_type(ModuleName), Inputs),
( Outputs = [] ->
Param = void
; Outputs = [ReturnType] ->
ReturnParam = mlds_type_to_ilds_type(ReturnType),
ReturnParam = ilds__type(_, SimpleType),
Param = simple_type(SimpleType)
;
% IL doesn't support multiple return values
sorry(this_file, "multiple return values")
),
ILSignature = signature(call_conv(no, default), Param, ILInputTypes).
:- func input_param_to_ilds_type(mlds_module_name,
pair(entity_name, mlds__type)) = ilds__param.
input_param_to_ilds_type(ModuleName, EntityName - MldsType)
= ILType - yes(Id) :-
mangle_entity_name(EntityName, VarName),
mangle_mlds_var(qual(ModuleName, VarName), Id),
ILType = mlds_type_to_ilds_type(MldsType).
% XXX make sure all the types are converted correctly
mlds_type_to_ilds_type(mlds__rtti_type(_RttiName)) = il_array_type.
mlds_type_to_ilds_type(mlds__array_type(ElementType)) =
ilds__type([], '[]'(mlds_type_to_ilds_type(ElementType), [])).
% This is tricky. It could be an integer, or it could be
% a System.Array.
mlds_type_to_ilds_type(mlds__pseudo_type_info_type) = il_generic_type.
% IL has a pretty fuzzy idea about function types.
% We treat them as integers for now
% XXX This means the code is not verifiable.
mlds_type_to_ilds_type(mlds__func_type(_)) = ilds__type([], int32).
mlds_type_to_ilds_type(mlds__generic_type) = il_generic_type.
% XXX Using int32 here means the code is not verifiable
% see comments about function types above.
mlds_type_to_ilds_type(mlds__cont_type(_ArgTypes)) = ilds__type([], int32).
mlds_type_to_ilds_type(mlds__class_type(Class, _Arity, _Kind)) = ILType :-
Class = qual(MldsModuleName, MldsClassName),
ClassName = mlds_module_name_to_class_name(MldsModuleName),
list__append(ClassName, [MldsClassName], FullClassName),
ILType = ilds__type([], class(FullClassName)).
mlds_type_to_ilds_type(mlds__commit_type) =
ilds__type([], class(["mercury", "runtime", "Commit"])).
mlds_type_to_ilds_type(mlds__generic_env_ptr_type) = il_envptr_type.
% XXX we ought to use the IL bool type
mlds_type_to_ilds_type(mlds__native_bool_type) = ilds__type([], int32).
mlds_type_to_ilds_type(mlds__native_char_type) = ilds__type([], char).
% These two following choices are arbitrary -- IL has native
% integer and float types too. It's not clear whether there is
% any benefit in mapping to them instead -- it all depends what
% the indended use of mlds__native_int_type and
% mlds__native_float_type is.
% Any mapping other than int32 would have to be examined to see
% whether it is going to be compatible with int32.
mlds_type_to_ilds_type(mlds__native_int_type) = ilds__type([], int32).
mlds_type_to_ilds_type(mlds__native_float_type) = ilds__type([], float64).
mlds_type_to_ilds_type(mlds__ptr_type(MLDSType)) =
ilds__type([], '&'(mlds_type_to_ilds_type(MLDSType))).
% XXX should use the classification now that it is available.
mlds_type_to_ilds_type(mercury_type(Type, _Classification)) = ILType :-
(
Type = term__functor(term__atom(Atom), [], _),
( Atom = "string", SimpleType = il_string_simple_type
; Atom = "int", SimpleType = int32
; Atom = "character", SimpleType = char
; Atom = "float", SimpleType = float64
)
->
ILType = ilds__type([], SimpleType)
;
Type = term__variable(_)
->
ILType = il_generic_type
% XXX we can't use MR_Box (il_generic_type) for C
% pointers just yest, because abstract data types are
% assumed to be MR_Word (and MR_Box is not compatible
% with MR_Word in the IL backend).
% ;
% type_to_type_id(Type,
% qualified(unqualified("builtin"), "c_pointer") - 0, [])
% ->
% ILType = il_generic_type
;
ILType = il_array_type
).
%-----------------------------------------------------------------------------
%
% Name mangling.
% XXX we should check into the name mangling done here to make
% sure it is all necessary.
% We may need to do different name mangling for CLS compliance
% than we would otherwise need.
predlabel_to_id(pred(PredOrFunc, MaybeModuleName, Name, Arity), ProcId,
MaybeSeqNum, Id) :-
( PredOrFunc = predicate, PredOrFuncStr = "p"
; PredOrFunc = function, PredOrFuncStr = "f"
),
proc_id_to_int(ProcId, ProcIdInt),
( MaybeModuleName = yes(ModuleName) ->
mlds_to_il__sym_name_to_string(ModuleName, MStr),
string__format("%s_", [s(MStr)], MaybeModuleStr)
;
MaybeModuleStr = ""
),
( MaybeSeqNum = yes(SeqNum) ->
string__format("_%d", [i(SeqNum)], MaybeSeqNumStr)
;
MaybeSeqNumStr = ""
),
string__format("%s%s_%d_%s_%d%s", [s(MaybeModuleStr), s(Name),
i(Arity), s(PredOrFuncStr), i(ProcIdInt),
s(MaybeSeqNumStr)], UnMangledId),
llds_out__name_mangle(UnMangledId, Id).
predlabel_to_id(special_pred(PredName, MaybeModuleName, TypeName, Arity),
ProcId, MaybeSeqNum, Id) :-
proc_id_to_int(ProcId, ProcIdInt),
( MaybeModuleName = yes(ModuleName) ->
mlds_to_il__sym_name_to_string(ModuleName, MStr),
string__format("%s_", [s(MStr)], MaybeModuleStr)
;
MaybeModuleStr = ""
),
( MaybeSeqNum = yes(SeqNum) ->
string__format("_%d", [i(SeqNum)], MaybeSeqNumStr)
;
MaybeSeqNumStr = ""
),
string__format("special_%s%s_%s_%d_%d%s",
[s(MaybeModuleStr), s(PredName), s(TypeName), i(Arity),
i(ProcIdInt), s(MaybeSeqNumStr)], UnMangledId),
llds_out__name_mangle(UnMangledId, Id).
% When generating references to RTTI, we need to mangle the
% module name if the RTTI is defined in C code by hand.
% If no data_name is provided, always do the mangling.
:- pred mangle_dataname_module(maybe(mlds__data_name), mlds_module_name,
mlds_module_name).
:- mode mangle_dataname_module(in, in, out) is det.
mangle_dataname_module(no, ModuleName0, ModuleName) :-
SymName0 = mlds_module_name_to_sym_name(ModuleName0),
(
SymName0 = qualified(Q, M0),
string__append(M0, "__c_code", M),
SymName = qualified(Q, M)
;
SymName0 = unqualified(M0),
string__append(M0, "__c_code", M),
SymName = unqualified(M)
),
ModuleName = mercury_module_name_to_mlds(SymName).
mangle_dataname_module(yes(DataName), ModuleName0, ModuleName) :-
(
SymName = mlds_module_name_to_sym_name(ModuleName0),
SymName = qualified(unqualified("mercury"),
LibModuleName0),
DataName = rtti(rtti_type_id(_, Name, Arity),
_RttiName),
( LibModuleName0 = "builtin",
(
Name = "int", Arity = 0
; Name = "string", Arity = 0
; Name = "float", Arity = 0
; Name = "character", Arity = 0
; Name = "void", Arity = 0
; Name = "c_pointer", Arity = 0
; Name = "pred", Arity = 0
; Name = "func", Arity = 0
)
; LibModuleName0 = "array",
(
Name = "array", Arity = 1
)
; LibModuleName0 = "std_util",
(
Name = "type_desc", Arity = 0
)
; LibModuleName0 = "private_builtin",
(
Name = "type_ctor_info", Arity = 1
; Name = "type_info", Arity = 1
; Name = "base_typeclass_info", Arity = 1
; Name = "typeclass_info", Arity = 1
)
)
->
string__append(LibModuleName0, "__c_code",
LibModuleName),
ModuleName = mercury_module_name_to_mlds(
qualified(unqualified("mercury"), LibModuleName))
;
ModuleName = ModuleName0
).
:- pred mangle_dataname(mlds__data_name, string).
:- mode mangle_dataname(in, out) is det.
mangle_dataname(var(Name), Name).
mangle_dataname(common(Int), MangledName) :-
string__format("common_%s", [i(Int)], MangledName).
mangle_dataname(rtti(RttiTypeId, RttiName), MangledName) :-
rtti__addr_to_string(RttiTypeId, RttiName, MangledName).
mangle_dataname(base_typeclass_info(ClassId, InstanceStr), MangledName) :-
llds_out__make_base_typeclass_info_name(ClassId, InstanceStr,
MangledName).
mangle_dataname(module_layout, _MangledName) :-
error("unimplemented: mangling module_layout").
mangle_dataname(proc_layout(_), _MangledName) :-
error("unimplemented: mangling proc_layout").
mangle_dataname(internal_layout(_, _), _MangledName) :-
error("unimplemented: mangling internal_layout").
mangle_dataname(tabling_pointer(_), _MangledName) :-
error("unimplemented: mangling tabling_pointer").
% We turn procedures into methods of classes.
mangle_mlds_proc_label(qual(ModuleName, PredLabel - ProcId), MaybeSeqNum,
ClassName, PredStr) :-
ClassName = mlds_module_name_to_class_name(ModuleName),
predlabel_to_id(PredLabel, ProcId, MaybeSeqNum, PredStr).
:- pred mangle_entity_name(mlds__entity_name, string).
:- mode mangle_entity_name(in, out) is det.
mangle_entity_name(type(_TypeName, _), _MangledName) :-
error("can't mangle type names").
mangle_entity_name(data(DataName), MangledName) :-
mangle_dataname(DataName, MangledName).
mangle_entity_name(function(_, _, _, _), _MangledName) :-
error("can't mangle function names").
mangle_entity_name(export(_), _MangledName) :-
error("can't mangle export names").
% Any valid Mercury identifier will be fine here too.
% We quote all identifiers before we output them, so
% even funny characters should be fine.
mangle_mlds_var(qual(_ModuleName, VarName), Str) :-
Str = VarName.
:- pred mlds_to_il__sym_name_to_string(sym_name, string).
:- mode mlds_to_il__sym_name_to_string(in, out) is det.
mlds_to_il__sym_name_to_string(SymName, String) :-
mlds_to_il__sym_name_to_string(SymName, ".", String).
:- pred mlds_to_il__sym_name_to_string(sym_name, string, string).
:- mode mlds_to_il__sym_name_to_string(in, in, out) is det.
mlds_to_il__sym_name_to_string(SymName, Separator, String) :-
mlds_to_il__sym_name_to_string_2(SymName, Separator, Parts, []),
string__append_list(Parts, String).
:- pred mlds_to_il__sym_name_to_string_2(sym_name, string, list(string),
list(string)).
:- mode mlds_to_il__sym_name_to_string_2(in, in, out, in) is det.
mlds_to_il__sym_name_to_string_2(qualified(ModuleSpec,Name), Separator) -->
mlds_to_il__sym_name_to_string_2(ModuleSpec, Separator),
[Separator, Name].
mlds_to_il__sym_name_to_string_2(unqualified(Name), _) -->
[Name].
mlds_module_name_to_class_name(MldsModuleName) = ClassName :-
SymName = mlds_module_name_to_sym_name(MldsModuleName),
sym_name_to_class_name(SymName, ClassName).
:- pred sym_name_to_class_name(sym_name, list(ilds__id)).
:- mode sym_name_to_class_name(in, out) is det.
sym_name_to_class_name(SymName, Ids) :-
sym_name_to_class_name_2(SymName, Ids0),
list__reverse(Ids0, Ids).
:- pred sym_name_to_class_name_2(sym_name, list(ilds__id)).
:- mode sym_name_to_class_name_2(in, out) is det.
sym_name_to_class_name_2(qualified(ModuleSpec, Name), [Name | Modules]) :-
sym_name_to_class_name_2(ModuleSpec, Modules).
sym_name_to_class_name_2(unqualified(Name), [Name]).
%-----------------------------------------------------------------------------%
%
% Predicates for checking various attributes of variables.
%
:- pred is_argument(mlds__var, il_info).
:- mode is_argument(in, in) is semidet.
is_argument(qual(_, VarName), Info) :-
list__member(VarName - _, Info ^ arguments).
:- pred is_local(string, il_info).
:- mode is_local(in, in) is semidet.
is_local(VarName, Info) :-
map__contains(Info ^ locals, VarName).
%-----------------------------------------------------------------------------%
%
% Preds and funcs to find the types of rvals.
%
% This gives us the type of an rval.
% This type is an MLDS type, but is with respect to the IL
% representation (that is, we map code address and data address
% constants to the MLDS version of their IL representation).
% This is so you can generate appropriate box rvals for
% rval_consts.
:- pred rval_to_type(mlds__rval::in, mlds__type::out,
il_info::in, il_info::out) is det.
rval_to_type(lval(Lval), Type, Info0, Info) :-
( Lval = var(Var),
mangle_mlds_var(Var, MangledVarStr),
il_info_get_mlds_type(MangledVarStr, Type, Info0, Info)
; Lval = field(_, _, _, Type, _),
Info = Info0
; Lval = mem_ref(_Rval, Type),
Info = Info0
).
% The following four conversions should never occur or be boxed
% anyway, but just in case they are we make them reference
% mercury.invalid which is a non-exisitant class. If we try to
% run this code, we'll get a runtime error.
% XXX can we just call error?
rval_to_type(mkword(_Tag, _Rval), Type, I, I) :-
ModuleName = mercury_module_name_to_mlds(unqualified("mercury")),
Type = mlds__class_type(qual(ModuleName, "invalid"),
0, mlds__class).
rval_to_type(unop(_, _), Type, I, I) :-
ModuleName = mercury_module_name_to_mlds(unqualified("mercury")),
Type = mlds__class_type(qual(ModuleName, "invalid"),
0, mlds__class).
rval_to_type(binop(_, _, _), Type, I, I) :-
ModuleName = mercury_module_name_to_mlds(unqualified("mercury")),
Type = mlds__class_type(qual(ModuleName, "invalid"),
0, mlds__class).
rval_to_type(mem_addr(_), Type, I, I) :-
ModuleName = mercury_module_name_to_mlds(unqualified("mercury")),
Type = mlds__class_type(qual(ModuleName, "invalid"),
0, mlds__class).
rval_to_type(const(Const), Type, I, I) :-
Type = rval_const_to_type(Const).
:- func rval_const_to_type(mlds__rval_const) = mlds__type.
rval_const_to_type(data_addr_const(_)) =
mlds__array_type(mlds__generic_type).
rval_const_to_type(code_addr_const(_)) = mlds__func_type(
mlds__func_params([], [])).
rval_const_to_type(int_const(_)) = mercury_type(
term__functor(term__atom("int"), [], context("", 0)), int_type).
rval_const_to_type(float_const(_)) = mercury_type(
term__functor(term__atom("float"), [], context("", 0)), float_type).
rval_const_to_type(false) = mlds__native_bool_type.
rval_const_to_type(true) = mlds__native_bool_type.
rval_const_to_type(string_const(_)) = mercury_type(
term__functor(term__atom("string"), [], context("", 0)), str_type).
rval_const_to_type(multi_string_const(_, _)) = mercury_type(
term__functor(term__atom("string"), [], context("", 0)), str_type).
rval_const_to_type(null(MldsType)) = MldsType.
%-----------------------------------------------------------------------------%
:- pred code_addr_constant_to_methodref(mlds__code_addr, methodref).
:- mode code_addr_constant_to_methodref(in, out) is det.
code_addr_constant_to_methodref(proc(ProcLabel, Sig), MethodRef) :-
mangle_mlds_proc_label(ProcLabel, no, ClassName, ProcLabelStr),
mlds_signature_to_ilds_type_params(Sig, TypeParams),
mlds_signature_to_il_return_param(Sig, ReturnParam),
MemberName = class_member_name(ClassName, id(ProcLabelStr)),
MethodRef = methoddef(call_conv(no, default), ReturnParam,
MemberName, TypeParams).
code_addr_constant_to_methodref(internal(ProcLabel, SeqNum, Sig), MethodRef) :-
mangle_mlds_proc_label(ProcLabel, yes(SeqNum), ClassName,
ProcLabelStr),
mlds_signature_to_ilds_type_params(Sig, TypeParams),
mlds_signature_to_il_return_param(Sig, ReturnParam),
MemberName = class_member_name(ClassName, id(ProcLabelStr)),
MethodRef = methoddef(call_conv(no, default), ReturnParam,
MemberName, TypeParams).
% Assumed to be a field of a class
:- pred data_addr_constant_to_fieldref(mlds__data_addr, fieldref).
:- mode data_addr_constant_to_fieldref(in, out) is det.
data_addr_constant_to_fieldref(data_addr(ModuleName, DataName), FieldRef) :-
mangle_dataname(DataName, FieldName),
mangle_dataname_module(yes(DataName), ModuleName, NewModuleName),
ClassName = mlds_module_name_to_class_name(NewModuleName),
FieldRef = make_fieldref(il_array_type, ClassName, FieldName).
%-----------------------------------------------------------------------------%
% when we generate mercury terms using classes, we should use
% this to reference the fields of the class.
% note this pred will handle named or offsets. It assumes that
% an offset is transformed into "f<num>".
% XXX should move towards using this code for *all* field name
% creation and referencing
% XXX we remove byrefs from fields here. Perhaps we ought to do
% this in a separate pass. See defn_to_class_decl which does
% the same thing when creating the fields.
:- pred get_fieldref(field_id, mlds__type, mlds__type, fieldref).
:- mode get_fieldref(in, in, in, out) is det.
get_fieldref(FieldNum, FieldType, ClassType, FieldRef) :-
FieldILType0 = mlds_type_to_ilds_type(FieldType),
ClassILType = mlds_type_to_ilds_type(ClassType),
( FieldILType0 = ilds__type(_, '&'(FieldILType1)) ->
FieldILType = FieldILType1
;
FieldILType = FieldILType0
),
( ClassILType = ilds__type(_,
class(ClassTypeName0))
->
ClassName = ClassTypeName0
;
ClassName = ["invalid_field_access_class"]
% unexpected(this_file, "not a class for field access")
),
(
FieldNum = offset(OffsetRval),
( OffsetRval = const(int_const(Num)) ->
string__format("f%d", [i(Num)], FieldId)
;
sorry(this_file,
"offsets for non-int_const rvals")
)
;
FieldNum = named_field(qual(_ModuleName, FieldId),
_Type)
),
FieldRef = make_fieldref(FieldILType, ClassName, FieldId).
%-----------------------------------------------------------------------------%
:- pred defn_to_local(mlds_module_name, mlds__defn,
pair(ilds__id, mlds__type)).
:- mode defn_to_local(in, in, out) is det.
defn_to_local(ModuleName,
mlds__defn(Name, _Context, _DeclFlags, Entity), Id - MLDSType) :-
( Name = data(DataName),
Entity = mlds__data(MLDSType0, _Initializer) ->
mangle_dataname(DataName, MangledDataName),
mangle_mlds_var(qual(ModuleName, MangledDataName), Id),
MLDSType0 = MLDSType
;
error("definition name was not data/1")
).
%-----------------------------------------------------------------------------%
%
% These functions are for converting to/from generic objects.
%
:- func convert_to_object(ilds__type) = methodref.
convert_to_object(Type) = methoddef(call_conv(no, default),
simple_type(il_generic_simple_type),
class_member_name(il_conversion_class_name, id("ToObject")),
[Type]).
:- func convert_from_object(ilds__type) = methodref.
convert_from_object(Type) =
methoddef(call_conv(no, default), simple_type(SimpleType),
class_member_name(il_conversion_class_name, id(Id)),
[il_generic_type]) :-
Type = ilds__type(_, SimpleType),
ValueClassName = simple_type_to_value_class_name(SimpleType),
string__append("To", ValueClassName, Id).
% XXX String and Array should be converted to/from Object using a
% cast, not a call to runtime convert. When that is done they can be
% removed from this list
:- func simple_type_to_value_class_name(simple_type) = string.
simple_type_to_value_class_name(int8) = "Int8".
simple_type_to_value_class_name(int16) = "Int16".
simple_type_to_value_class_name(int32) = "Int32".
simple_type_to_value_class_name(int64) = "Int64".
simple_type_to_value_class_name(uint8) = "Int8".
simple_type_to_value_class_name(uint16) = "UInt16".
simple_type_to_value_class_name(uint32) = "UInt32".
simple_type_to_value_class_name(uint64) = "UInt64".
simple_type_to_value_class_name(float32) = "Single".
simple_type_to_value_class_name(float64) = "Double".
simple_type_to_value_class_name(bool) = "Bool".
simple_type_to_value_class_name(char) = "Char".
simple_type_to_value_class_name(refany) = _ :-
error("no value class name for refany").
simple_type_to_value_class_name(class(Name)) = VCName :-
( Name = il_string_class_name ->
VCName = "String"
;
error("unknown class name")
).
simple_type_to_value_class_name(value_class(_)) = _ :-
error("no value class name for value_class").
simple_type_to_value_class_name(interface(_)) = _ :-
error("no value class name for interface").
simple_type_to_value_class_name('[]'(_, _)) = "Array".
simple_type_to_value_class_name('&'( _)) = _ :-
error("no value class name for '&'").
simple_type_to_value_class_name('*'(_)) = _ :-
error("no value class name for '*'").
simple_type_to_value_class_name(native_float) = _ :-
error("no value class name for native float").
simple_type_to_value_class_name(native_int) = _ :-
error("no value class name for native int").
simple_type_to_value_class_name(native_uint) = _ :-
error("no value class name for native uint").
%-----------------------------------------------------------------------------%
%
% The mapping to the string type.
%
:- func il_string_equals = methodref.
il_string_equals = get_static_methodref(il_string_class_name, id("Equals"),
simple_type(bool), [il_string_type, il_string_type]).
:- func il_string_compare = methodref.
il_string_compare = get_static_methodref(il_string_class_name, id("Compare"),
simple_type(int32), [il_string_type, il_string_type]).
:- func il_string_class_name = ilds__class_name.
il_string_class_name = il_system_name(["String"]).
:- func il_string_simple_type = simple_type.
il_string_simple_type = class(il_string_class_name).
:- func il_string_type = ilds__type.
il_string_type = ilds__type([], il_string_simple_type).
%-----------------------------------------------------------------------------%
%
% The mapping to the generic type (used like MR_Box).
%
:- func il_generic_type = ilds__type.
il_generic_type = ilds__type([], il_generic_simple_type).
:- func il_generic_simple_type = simple_type.
il_generic_simple_type = class(il_generic_class_name).
il_generic_class_name = il_system_name(["Object"]).
%-----------------------------------------------------------------------------%
%
% The mapping to the array type (used like MR_Word).
%
% il_array_type means array of System.Object.
:- func il_array_type = ilds__type.
il_array_type = ilds__type([], '[]'(il_generic_type, [])).
%-----------------------------------------------------------------------------%
%
% The class that performs conversion operations
%
:- func il_conversion_class_name = ilds__class_name.
il_conversion_class_name = ["mercury", "runtime", "Convert"].
%-----------------------------------------------------------------------------%
%
% The mapping to the exception type.
%
:- func il_exception_type = ilds__type.
il_exception_type = ilds__type([], il_exception_simple_type).
:- func il_exception_simple_type = simple_type.
il_exception_simple_type = class(il_exception_class_name).
:- func il_exception_class_name = ilds__class_name.
il_exception_class_name = ["mercury", "runtime", "Exception"].
%-----------------------------------------------------------------------------%
%
% The mapping to the environment type.
%
:- func il_envptr_type = ilds__type.
il_envptr_type = ilds__type([], il_envptr_simple_type).
:- func il_envptr_simple_type = simple_type.
il_envptr_simple_type = class(il_envptr_class_name).
:- func il_envptr_class_name = ilds__class_name.
il_envptr_class_name = ["mercury", "runtime", "Environment"].
%-----------------------------------------------------------------------------%
%
% The mapping to the commit type.
%
:- func il_commit_type = ilds__type.
il_commit_type = ilds__type([], il_commit_simple_type).
:- func il_commit_simple_type = simple_type.
il_commit_simple_type = class(il_commit_class_name).
:- func il_commit_class_name = ilds__class_name.
il_commit_class_name = ["mercury", "runtime", "Commit"].
%-----------------------------------------------------------------------------
% qualifiy a name with "[mscorlib]System."
:- func il_system_name(ilds__class_name) = ilds__class_name.
il_system_name(Name) =
[il_system_assembly_name, il_system_namespace_name | Name].
:- func il_system_assembly_name = string.
il_system_assembly_name = "mscorlib".
:- func il_system_namespace_name = string.
il_system_namespace_name = "System".
%-----------------------------------------------------------------------------
% Generate extern decls for any assembly we reference.
:- pred mlds_to_il__generate_extern_assembly(mlds__imports, list(decl)).
:- mode mlds_to_il__generate_extern_assembly(in, out) is det.
mlds_to_il__generate_extern_assembly(Imports, Decls) :-
Gen = (pred(Import::in, Decl::out) is semidet :-
ClassName = mlds_module_name_to_class_name(Import),
ClassName = [TopLevel | _],
Decl = extern_assembly(TopLevel)
),
list__filter_map(Gen, Imports, Decls0),
list__sort_and_remove_dups(Decls0, Decls).
%-----------------------------------------------------------------------------
:- func make_method_defn(instr_tree) = method_defn.
make_method_defn(InstrTree) = MethodDecls :-
Instrs = list__condense(tree__flatten(InstrTree)),
MethodDecls = [
% XXX should avoid hard-coding "100" for
% the maximum static size -- not sure if we even
% need this anymore.
maxstack(int32(100)),
% note that we only need .zeroinit to ensure
% verifiability; for nonverifiable code,
% we could omit that (it ensures that all
% variables are initialized to zero).
zeroinit,
instrs(Instrs)
].
% This is used to initialize nondet environments.
% When we move to high-level data it will need to be generalized
% to intialize any class.
:- pred make_constructor(list(ilds__id), mlds__class_defn,
ilasm__classdecl).
:- mode make_constructor(in, in, out) is det.
make_constructor(ClassName, mlds__class_defn(_, _Imports, Inherits,
_Implements, Defns), ILDecl) :-
( Inherits = [] ->
CtorMemberName = il_generic_class_name
;
% XXX this needs to be calculated correctly
% (i.e. according to the value of inherits)
CtorMemberName = il_envptr_class_name
),
list__map(call_field_constructor(ClassName), Defns,
FieldConstrInstrsLists),
list__condense(FieldConstrInstrsLists, FieldConstrInstrs),
Instrs = [load_this, call_constructor(CtorMemberName)],
MethodDecls = make_method_defn(tree__list(
[node(Instrs),
node(FieldConstrInstrs),
instr_node(ret)
])),
ILDecl = make_constructor_classdecl(MethodDecls).
% XXX This should really be generated at a higher level
% XXX For now we only call the constructor if it is an env_ptr
% or commit type.
:- pred call_field_constructor(list(ilds__id), mlds__defn, list(instr)).
:- mode call_field_constructor(in, in, out) is det.
call_field_constructor(ObjClassName, MLDSDefn, Instrs) :-
MLDSDefn = mlds__defn(EntityName, _Context, _DeclFlags, Entity),
(
Entity = mlds__data(Type, _Initializer),
EntityName = data(DataName)
->
ILType = mlds_type_to_ilds_type(Type),
mangle_dataname(DataName, MangledName),
FieldRef = make_fieldref(ILType, ObjClassName,
MangledName),
(
ILType = il_envptr_type
->
ClassName = il_envptr_class_name,
Instrs = [ldarg(index(0)),
newobj_constructor(ClassName),
stfld(FieldRef)]
;
ILType = il_commit_type
->
ClassName = il_commit_class_name,
Instrs = [ldarg(index(0)),
newobj_constructor(ClassName),
stfld(FieldRef)]
;
Instrs = []
)
;
Instrs = []
).
%-----------------------------------------------------------------------------
% Some useful functions for generating IL fragments.
:- func load_this = instr.
load_this = ldarg(index(0)).
:- func call_class_constructor(ilds__class_name) = instr.
call_class_constructor(CtorMemberName) =
call(get_static_methodref(CtorMemberName, cctor, void, [])).
:- func call_constructor(ilds__class_name) = instr.
call_constructor(CtorMemberName) =
call(get_constructor_methoddef(CtorMemberName)).
:- func throw_unimplemented(string) = instr_tree.
throw_unimplemented(String) =
node([
ldstr(String),
newobj(get_instance_methodref(il_exception_class_name,
ctor, void, [il_string_type])),
throw]
).
:- func newobj_constructor(ilds__class_name) = instr.
newobj_constructor(CtorMemberName) =
newobj(get_constructor_methoddef(CtorMemberName)).
:- func get_constructor_methoddef(ilds__class_name) = methodref.
get_constructor_methoddef(CtorMemberName) =
get_instance_methodref(CtorMemberName, ctor, void, []).
:- func get_instance_methodref(ilds__class_name, member_name, ret_type,
list(ilds__type)) = methodref.
get_instance_methodref(ClassName, MethodName, RetType, TypeParams) =
methoddef(call_conv(yes, default), RetType,
class_member_name(ClassName, MethodName), TypeParams).
:- func get_static_methodref(ilds__class_name, member_name, ret_type,
list(ilds__type)) = methodref.
get_static_methodref(ClassName, MethodName, RetType, TypeParams) =
methoddef(call_conv(no, default), RetType,
class_member_name(ClassName, MethodName), TypeParams).
:- func make_constructor_classdecl(method_defn) = classdecl.
make_constructor_classdecl(MethodDecls) = method(
methodhead([], ctor, signature(call_conv(no, default),
void, []), []), MethodDecls).
:- func make_fieldref(ilds__type, ilds__class_name, ilds__id) = fieldref.
make_fieldref(ILType, ClassName, Id) =
fieldref(ILType, class_member_name(ClassName, id(Id))).
:- func runtime_initialization_instrs = list(instr).
runtime_initialization_instrs = [
call(get_static_methodref(runtime_init_module_name,
runtime_init_method_name, void, []))
].
:- func runtime_init_module_name = ilds__class_name.
runtime_init_module_name = ["mercury", "private_builtin__c_code"].
:- func runtime_init_method_name = ilds__member_name.
runtime_init_method_name = id("init_runtime").
%-----------------------------------------------------------------------------%
%
% Predicates for manipulating il_info.
%
:- pred il_info_init(mlds_module_name, mlds__imports, il_info).
:- mode il_info_init(in, in, out) is det.
il_info_init(ModuleName, Imports,
il_info(ModuleName, Imports, no,
empty, empty, [], no, no,
map__init, empty, counter__init(1), counter__init(1), no,
Args, MethodName, DefaultSignature)) :-
Args = [],
DefaultSignature = signature(call_conv(no, default), void, []),
MethodName = id("").
% reset the il_info for processing a new method
:- pred il_info_new_method(arguments_map, signature, member_name,
il_info, il_info).
:- mode il_info_new_method(in, in, in, in, out) is det.
il_info_new_method(ILArgs, ILSignature, MethodName,
il_info(ModuleName, Imports, FileCCode,
AllocInstrs, InitInstrs, ClassDecls, HasMain, ClassCCode,
__Locals, _InstrTree, _LabelCounter, _BlockCounter, MethodCCode,
_Args, _Name, _Signature),
il_info(ModuleName, Imports, NewFileCCode,
AllocInstrs, InitInstrs, ClassDecls, HasMain, NewClassCCode,
map__init, empty, counter__init(1), counter__init(1), no,
ILArgs, MethodName, ILSignature)) :-
bool__or(ClassCCode, MethodCCode, NewClassCCode),
bool__or(FileCCode, MethodCCode, NewFileCCode).
:- pred il_info_set_arguments(assoc_list(ilds__id, mlds__type),
il_info, il_info).
:- mode il_info_set_arguments(in, in, out) is det.
il_info_set_arguments(Arguments, Info0, Info) :-
Info = Info0 ^ arguments := Arguments.
:- pred il_info_get_arguments(arguments_map, il_info, il_info).
:- mode il_info_get_arguments(out, in, out) is det.
il_info_get_arguments(Arguments, Info0, Info0) :-
Arguments = Info0 ^ arguments.
:- pred il_info_get_mlds_type(ilds__id, mlds__type, il_info, il_info).
:- mode il_info_get_mlds_type(in, out, in, out) is det.
il_info_get_mlds_type(Id, Type, Info0, Info0) :-
(
map__search(Info0 ^ locals, Id, Type0)
->
Type = Type0
;
assoc_list__search(Info0 ^ arguments, Id, Type0)
->
Type = Type0
;
% XXX If it isn't a local or an argument, it can only be a
% "global variable" -- used by RTTI.
Type = mlds_type_for_rtti_global
).
% RTTI creates global variables -- these all happen to be of
% type mlds__native_int_type.
:- func mlds_type_for_rtti_global = mlds__type.
mlds_type_for_rtti_global = native_int_type.
:- pred il_info_set_modulename(mlds_module_name, il_info, il_info).
:- mode il_info_set_modulename(in, in, out) is det.
il_info_set_modulename(ModuleName, Info0, Info) :-
Info = Info0 ^ module_name := ModuleName.
:- pred il_info_add_locals(assoc_list(ilds__id, mlds__type), il_info, il_info).
:- mode il_info_add_locals(in, in, out) is det.
il_info_add_locals(NewLocals, Info0, Info) :-
Info = Info0 ^ locals :=
map__det_insert_from_assoc_list(Info0 ^ locals, NewLocals).
:- pred il_info_remove_locals(assoc_list(ilds__id, mlds__type),
il_info, il_info).
:- mode il_info_remove_locals(in, in, out) is det.
il_info_remove_locals(RemoveLocals, Info0, Info) :-
assoc_list__keys(RemoveLocals, Keys),
map__delete_list(Info0 ^ locals, Keys, NewLocals),
Info = Info0 ^ locals := NewLocals.
:- pred il_info_add_classdecls(list(classdecl), il_info, il_info).
:- mode il_info_add_classdecls(in, in, out) is det.
il_info_add_classdecls(ClassDecls, Info0, Info) :-
Info = Info0 ^ classdecls :=
list__append(ClassDecls, Info0 ^ classdecls).
:- pred il_info_add_instructions(list(instr), il_info, il_info).
:- mode il_info_add_instructions(in, in, out) is det.
il_info_add_instructions(NewInstrs, Info0, Info) :-
Info = Info0 ^ instr_tree := tree(Info0 ^ instr_tree, node(NewInstrs)).
:- pred il_info_add_init_instructions(list(instr), il_info, il_info).
:- mode il_info_add_init_instructions(in, in, out) is det.
il_info_add_init_instructions(NewInstrs, Info0, Info) :-
Info = Info0 ^ init_instrs := tree(Info0 ^ init_instrs,
node(NewInstrs)).
:- pred il_info_add_alloc_instructions(list(instr), il_info, il_info).
:- mode il_info_add_alloc_instructions(in, in, out) is det.
il_info_add_alloc_instructions(NewInstrs, Info0, Info) :-
Info = Info0 ^ alloc_instrs := tree(Info0 ^ alloc_instrs,
node(NewInstrs)).
:- pred il_info_get_instructions(tree(list(instr)), il_info, il_info).
:- mode il_info_get_instructions(out, in, out) is det.
il_info_get_instructions(Instrs, Info, Info) :-
Instrs = Info ^ instr_tree.
:- pred il_info_get_locals_list(assoc_list(ilds__id, ilds__type),
il_info, il_info).
:- mode il_info_get_locals_list(out, in, out) is det.
il_info_get_locals_list(Locals, Info, Info) :-
map__map_values((pred(_K::in, V::in, W::out) is det :-
W = mlds_type_to_ilds_type(V)), Info ^ locals, LocalsMap),
map__to_assoc_list(LocalsMap, Locals).
:- pred il_info_get_module_name(mlds_module_name, il_info, il_info).
:- mode il_info_get_module_name(out, in, out) is det.
il_info_get_module_name(ModuleName, Info, Info) :-
ModuleName = Info ^ module_name.
:- pred il_info_get_next_block_id(blockid, il_info, il_info).
:- mode il_info_get_next_block_id(out, in, out) is det.
il_info_get_next_block_id(N, Info0, Info) :-
counter__allocate(N, Info0 ^ block_counter, NewCounter),
Info = Info0 ^ block_counter := NewCounter.
:- pred il_info_get_next_label_num(int, il_info, il_info).
:- mode il_info_get_next_label_num(out, in, out) is det.
il_info_get_next_label_num(N, Info0, Info) :-
counter__allocate(N, Info0 ^ label_counter, NewCounter),
Info = Info0 ^ label_counter := NewCounter.
:- pred il_info_make_next_label(ilds__label, il_info, il_info).
:- mode il_info_make_next_label(out, in, out) is det.
il_info_make_next_label(Label, Info0, Info) :-
il_info_get_next_label_num(LabelNnum, Info0, Info),
string__format("l%d", [i(LabelNnum)], Label).
%-----------------------------------------------------------------------------%
%
% General utility predicates.
%
:- pred dcg_set(T::in, T::unused, T::out) is det.
dcg_set(T, _, T).
%-----------------------------------------------------------------------------%
% Use this to make comments into trees easily.
:- func comment_node(string) = instr_tree.
comment_node(S) = node([comment(S)]).
% Use this to make instructions into trees easily.
:- func instr_node(instr) = instr_tree.
instr_node(I) = node([I]).
% Maybe fold T into U, and map it to V.
% U remains untouched if T is `no'.
:- pred maybe_map_fold(pred(T, V, U, U), maybe(T), V, V, U, U).
:- mode maybe_map_fold(pred(in, out, in, out) is det, in, in, out, in, out)
is det.
maybe_map_fold(_, no, V, V, U, U).
maybe_map_fold(P, yes(T), _, V, U0, U) :-
P(T, V, U0, U).
%-----------------------------------------------------------------------------%
:- func this_file = string.
this_file = "mlds_to_il.m".
:- end_module mlds_to_il.
|