1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
|
%-----------------------------------------------------------------------------%
% Copyright (C) 1994-2000 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: modes.m.
% Main author: fjh.
%
% This module contains the top level of the code for mode checking and mode
% inference. It uses code in the subsidiary modules mode_info, delay_info,
% inst_match, mode_errors, and mode_util.
%
% Basically what this module does is to traverse the HLDS, performing
% mode-checking or mode inference on each predicate. For each procedure, it
% will reorder the procedure body if necessary, annotate each sub_goal with
% its mode, and check that the procedure body is mode-correct,
% This pass also determines whether or not unifications can fail. It
% also converts unifications with higher-order predicate terms into
% unifications with lambda expressions.
%
% The input to this pass must be type-correct and in superhomogeneous form.
%
% This pass does not check that `unique' modes are not used in contexts
% which might require backtracking - that is done by unique_modes.m.
% N.B. Changes here may also require changes to unique_modes.m!
% IMPLEMENTATION DOCUMENTATION
% How does it all work? Well, mode checking/inference is basically a
% process of abstract interpretation. To perform this abstract
% interpretation on a procedure body, we need to know the initial insts of
% the arguments; then we can abstractly interpretet the goal to compute the
% final insts. For mode checking, we then just compare the inferred final
% insts with the declared final insts, and that's about all there is to it.
%
% For mode inference, it's a little bit trickier. When we see a call to a
% predicate for which the modes weren't declared, we first check whether the
% call matches any of the modes we've already inferred. If not, we create a
% new mode for the predicate, with the initial insts set to a "normalised"
% version of the insts of the call arguments. For a first approximation, we
% set the final insts to `not_reached'. What this means is that we don't
% yet have any information about what the final insts will be. We then keep
% iterating mode inference passes until we reach a fixpoint.
/*************************************
To mode-analyse a procedure:
1. Initialize the insts of the head variables.
2. Mode-analyse the goal.
3. a. If we're doing mode-checking:
Check that the final insts of the head variables
matches that specified in the mode declaration
b. If we're doing mode-inference:
Normalise the final insts of the head variables,
record the newly inferred normalised final insts
in the proc_info, and check whether they changed
(so that we know when we've reached the fixpoint).
To mode-analyse a goal:
If goal is
(a) a disjunction
Mode-analyse the sub-goals;
check that the final insts of all the non-local
variables are the same for all the sub-goals.
(b) a conjunction
Attempt to schedule each sub-goal. If a sub-goal can
be scheduled, then schedule it, otherwise delay it.
Continue with the remaining sub-goals until there are
no goals left. Every time a variable gets bound,
see whether we should wake up a delayed goal,
and if so, wake it up next time we get back to
the conjunction. If there are still delayed goals
hanging around at the end of the conjunction,
report a mode error.
(c) a negation
Mode-check the sub-goal.
Check that the sub-goal does not further instantiate
any non-local variables. (Actually, rather than
doing this check after we mode-analyse the subgoal,
we instead "lock" the non-local variables, and
disallow binding of locked variables.)
(d) a unification
Check that the unification doesn't attempt to unify
two free variables (or in general two free sub-terms)
unless one of them is dead. Split unifications
up if necessary to avoid complicated sub-unifications.
We also figure out at this point whether or not each
unification can fail.
(e) a predicate call
Check that there is a mode declaration for the
predicate which matches the current instantiation of
the arguments. (Also handle calls to implied modes.)
If the called predicate is one for which we must infer
the modes, then create a new mode for the called predicate
whose initial insts are the result of normalising
the current inst of the arguments.
(f) an if-then-else
Attempt to schedule the condition. If successful,
then check that it doesn't further instantiate any
non-local variables, mode-check the `then' part
and the `else' part, and then check that the final
insts match. (Perhaps also think about expanding
if-then-elses so that they can be run backwards,
if the condition can't be scheduled?)
To attempt to schedule a goal, first mode-check the goal. If mode-checking
succeeds, then scheduling succeeds. If mode-checking would report
an error due to the binding of a local variable, then scheduling
fails. (If mode-checking would report an error due to the binding of
a *local* variable, we could report the error right away --
but this idea has not yet been implemented.)
Note that the notion of liveness used here is different to that
used in liveness.m and the code generator. Here, we consider
a variable live if its value will be used later on in the computation.
******************************************/
% XXX we ought to allow unification of free with free even when both
% *variables* are live, if one of the particular *sub-nodes* is
% dead (causes problems handling e.g. `list__same_length').
% XXX we ought to break unifications into "micro-unifications", because
% some code can't be scheduled without splitting up unifications.
% For example, `p(X) :- X = f(A, B), B is A + 1.', where
% p is declared as `:- mode p(bound(f(ground,free))->ground).'.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- module modes.
:- interface.
:- import_module prog_data, hlds_goal, hlds_module, hlds_pred, (inst), instmap.
:- import_module bool, list, io.
% modecheck(HLDS0, HLDS, UnsafeToContinue):
% Perform mode inference and checking for a whole module.
% UnsafeToContinue = yes means that mode inference
% was halted prematurely, due to an error, and that
% we should therefore not perform determinism-checking, because we
% might get internal errors.
:- pred modecheck(module_info, module_info, bool, io__state, io__state).
:- mode modecheck(in, out, out, di, uo) is det.
% Mode-check or unique-mode-check the code for all the predicates
% in a module.
:- pred check_pred_modes(how_to_check_goal, may_change_called_proc,
module_info, module_info, bool, io__state, io__state).
:- mode check_pred_modes(in, in, in, out, out, di, uo) is det.
% Mode-check or unique-mode-check the code for single predicate.
:- pred modecheck_pred_mode(pred_id, pred_info, how_to_check_goal,
may_change_called_proc, module_info, module_info,
int, io__state, io__state).
:- mode modecheck_pred_mode(in, in, in, in, in, out, out, di, uo) is det.
% Mode-check the code for predicate in a given mode.
% Returns the number of errs found and a bool `Changed'
% which is true iff another pass of fixpoint analysis
% may be needed.
:- pred modecheck_proc(proc_id, pred_id, module_info, module_info, int, bool,
io__state, io__state).
:- mode modecheck_proc(in, in, in, out, out, out, di, uo) is det.
% Mode-check or unique-mode-check the code for predicate in a
% given mode.
% Returns the number of errs found and a bool `Changed'
% which is true iff another pass of fixpoint analysis
% may be needed.
:- pred modecheck_proc(proc_id, pred_id, how_to_check_goal,
may_change_called_proc, module_info, module_info, int, bool,
io__state, io__state).
:- mode modecheck_proc(in, in, in, in, in, out, out, out, di, uo) is det.
% Mode-check the code for predicate in a given mode.
:- pred modecheck_proc_info(proc_id, pred_id, module_info, proc_info,
module_info, proc_info, int, io__state, io__state).
:- mode modecheck_proc_info(in, in, in, in, out, out, out, di, uo) is det.
%-----------------------------------------------------------------------------%
% The following predicates are used by unique_modes.m.
:- import_module mode_info, hlds_data.
% Modecheck a unification.
% Given a list of variables, and a list of livenesses,
% select the live variables.
%
:- pred get_live_vars(list(prog_var), list(is_live), list(prog_var)).
:- mode get_live_vars(in, in, out) is det.
%
% calculate the argument number offset that needs to be passed to
% modecheck_var_list_is_live, modecheck_var_has_inst_list, and
% modecheck_set_var_inst_list. This offset number is calculated
% so that real arguments get positive argument numbers and
% type_info arguments get argument numbers less than or equal to 0.
%
:- pred compute_arg_offset(pred_info, int).
:- mode compute_arg_offset(in, out) is det.
% Given a list of variables and a list of expected liveness, ensure
% that the inst of each variable satisfies the corresponding expected
% liveness. If the bool argument is `yes', then require an exact
% match.
%
:- pred modecheck_var_list_is_live(list(prog_var), list(is_live), bool, int,
mode_info, mode_info).
:- mode modecheck_var_list_is_live(in, in, in, in, mode_info_di, mode_info_uo)
is det.
% Given a list of variables and a list of initial insts, ensure
% that the inst of each variable matches the corresponding initial
% inst. If the bool argument is `yes', then we require an exact
% match (using inst_matches_final), otherwise we allow the var
% to be more instantiated than the inst (using inst_matches_initial).
%
:- pred modecheck_var_has_inst_list(list(prog_var), list(inst), bool, int,
inst_var_sub, mode_info, mode_info).
:- mode modecheck_var_has_inst_list(in, in, in, in, out, mode_info_di, mode_info_uo)
is det.
:- pred modecheck_set_var_inst(prog_var, inst, mode_info, mode_info).
:- mode modecheck_set_var_inst(in, in, mode_info_di, mode_info_uo) is det.
:- pred modecheck_set_var_inst_list(list(prog_var), list(inst), list(inst),
int, list(prog_var), extra_goals, mode_info, mode_info).
:- mode modecheck_set_var_inst_list(in, in, in, in, out, out,
mode_info_di, mode_info_uo) is det.
% check that the final insts of the head vars of a lambda
% goal matches their expected insts
%
:- pred modecheck_final_insts(list(prog_var), list(inst), mode_info, mode_info).
:- mode modecheck_final_insts(in, in, mode_info_di, mode_info_uo) is det.
:- pred mode_info_add_goals_live_vars(list(hlds_goal), mode_info, mode_info).
:- mode mode_info_add_goals_live_vars(in, mode_info_di, mode_info_uo) is det.
:- pred mode_info_remove_goals_live_vars(list(hlds_goal), mode_info,
mode_info).
:- mode mode_info_remove_goals_live_vars(in, mode_info_di, mode_info_uo) is det.
% modecheck_functor_test(ConsId, Var):
% update the instmap to reflect the fact that
% Var was bound to ConsId.
% This is used for the functor tests in `switch' statements.
%
:- pred modecheck_functor_test(prog_var, cons_id, mode_info, mode_info).
:- mode modecheck_functor_test(in, in, mode_info_di, mode_info_uo) is det.
% compute_goal_instmap_delta(InstMap0, Goal,
% GoalInfo0, GoalInfo, ModeInfo0, ModeInfo).
%
% Work out the instmap_delta for a goal from
% the instmaps before and after the goal.
:- pred compute_goal_instmap_delta(instmap, hlds_goal_expr,
hlds_goal_info, hlds_goal_info, mode_info, mode_info).
:- mode compute_goal_instmap_delta(in, in, in, out,
mode_info_di, mode_info_uo) is det.
%-----------------------------------------------------------------------------%
% The following predicates are used by modecheck_unify.m.
:- pred modecheck_goal(hlds_goal, hlds_goal, mode_info, mode_info).
:- mode modecheck_goal(in, out, mode_info_di, mode_info_uo) is det.
% Mode-check a single goal-expression.
:- pred modecheck_goal_expr(hlds_goal_expr, hlds_goal_info, hlds_goal_expr,
mode_info, mode_info).
:- mode modecheck_goal_expr(in, in, out, mode_info_di, mode_info_uo) is det.
:- type extra_goals
---> no_extra_goals
; extra_goals(
list(hlds_goal), % goals to insert before
% the main goal
list(hlds_goal) % goals to append after
% the main goal
).
:- type after_goals
---> no_after_goals
; after_goals(
instmap, % instmap at end of main goal
list(hlds_goal) % goals to append after
% the main goal
).
% append_extra_goals inserts adds some goals to the
% list of goals to insert before/after the main goal.
%
:- pred append_extra_goals(extra_goals, extra_goals, extra_goals).
:- mode append_extra_goals(in, in, out) is det.
% handle_extra_goals combines MainGoal and ExtraGoals into a single
% hlds_goal_expr, rerunning mode analysis on the entire
% conjunction if ExtraGoals is not empty.
%
:- pred handle_extra_goals(hlds_goal_expr, extra_goals,
hlds_goal_info, list(prog_var), list(prog_var),
instmap, hlds_goal_expr, mode_info, mode_info).
:- mode handle_extra_goals(in, in, in, in, in, in, out,
mode_info_di, mode_info_uo) is det.
:- pred mode_context_to_unify_context(mode_context, mode_info, unify_context).
:- mode mode_context_to_unify_context(in, mode_info_ui, out) is det.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module make_hlds, hlds_data, unique_modes, mode_debug.
:- import_module mode_info, delay_info, mode_errors, inst_match, instmap.
:- import_module type_util, mode_util, code_util, unify_proc, special_pred.
:- import_module globals, options, mercury_to_mercury, hlds_out, int, set.
:- import_module passes_aux, typecheck, module_qual, clause_to_proc.
:- import_module modecheck_unify, modecheck_call, inst_util, purity.
:- import_module prog_out, term, varset.
:- import_module list, map, string, require, std_util.
:- import_module assoc_list.
%-----------------------------------------------------------------------------%
modecheck(Module0, Module, UnsafeToContinue) -->
globals__io_lookup_bool_option(statistics, Statistics),
globals__io_lookup_bool_option(verbose, Verbose),
io__stderr_stream(StdErr),
io__set_output_stream(StdErr, OldStream),
maybe_write_string(Verbose, "% Mode-checking clauses...\n"),
check_pred_modes(check_modes, may_change_called_proc,
Module0, Module, UnsafeToContinue),
maybe_report_stats(Statistics),
io__set_output_stream(OldStream, _).
%-----------------------------------------------------------------------------%
% Mode-check the code for all the predicates in a module.
check_pred_modes(WhatToCheck, MayChangeCalledProc,
ModuleInfo0, ModuleInfo, UnsafeToContinue) -->
{ module_info_predids(ModuleInfo0, PredIds) },
globals__io_lookup_int_option(mode_inference_iteration_limit,
MaxIterations),
modecheck_to_fixpoint(PredIds, MaxIterations, WhatToCheck,
MayChangeCalledProc, ModuleInfo0, ModuleInfo1,
UnsafeToContinue),
( { WhatToCheck = check_unique_modes },
write_mode_inference_messages(PredIds, yes, ModuleInfo1),
check_eval_methods(ModuleInfo1, ModuleInfo2)
; { WhatToCheck = check_modes },
( { UnsafeToContinue = yes } ->
write_mode_inference_messages(PredIds, no, ModuleInfo1)
;
[]
),
{ ModuleInfo2 = ModuleInfo1 }
),
{ ModuleInfo = ModuleInfo2 }.
% Iterate over the list of pred_ids in a module.
:- pred modecheck_to_fixpoint(list(pred_id), int, how_to_check_goal,
may_change_called_proc, module_info, module_info,
bool, io__state, io__state).
:- mode modecheck_to_fixpoint(in, in, in, in, in, out, out, di, uo) is det.
modecheck_to_fixpoint(PredIds, MaxIterations, WhatToCheck, MayChangeCalledProc,
ModuleInfo0, ModuleInfo, UnsafeToContinue) -->
{ ModuleInfo1 = ModuleInfo0 },
% save the old procedure bodies so that we can restore them for the
% next pass
{ module_info_preds(ModuleInfo0, OldPredTable0) },
% analyze everything which has the "can-process" flag set to `yes'
modecheck_pred_modes_2(PredIds, WhatToCheck, MayChangeCalledProc,
ModuleInfo1, ModuleInfo2, no, Changed1, 0, NumErrors),
% analyze the procedures whose "can-process" flag was no;
% those procedures were inserted into the unify requests queue.
modecheck_queued_procs(WhatToCheck, OldPredTable0,
ModuleInfo2, OldPredTable, ModuleInfo3, Changed2),
io__get_exit_status(ExitStatus),
{ bool__or(Changed1, Changed2, Changed) },
% stop if we have reached a fixpoint or found any errors
( { Changed = no ; NumErrors > 0 ; ExitStatus \= 0 } ->
{ ModuleInfo = ModuleInfo3 },
{ UnsafeToContinue = Changed }
;
% stop if we exceed the iteration limit
( { MaxIterations =< 1 } ->
report_max_iterations_exceeded,
{ ModuleInfo = ModuleInfo3 },
{ UnsafeToContinue = yes }
;
globals__io_lookup_bool_option(debug_modes, DebugModes),
( { DebugModes = yes } ->
write_mode_inference_messages(PredIds, no,
ModuleInfo3)
;
[]
),
%
% Mode analysis may have modified the procedure
% bodies, since it does some optimizations such
% as deleting unreachable code. But since we didn't
% reach a fixpoint yet, the mode information is not
% correct yet, and so those optimizations will have
% been done based on incomplete information, and so
% they may therefore produce incorrect results.
% Thus we need to restore the old procedure bodies.
%
( { WhatToCheck = check_modes } ->
% restore the proc_info goals from the
% clauses in the pred_info
{ copy_module_clauses_to_procs(PredIds,
ModuleInfo3, ModuleInfo4) }
;
% restore the proc_info goals from the
% proc_infos in the old module_info
{ copy_pred_bodies(OldPredTable, PredIds,
ModuleInfo3, ModuleInfo4) }
),
{ MaxIterations1 is MaxIterations - 1 },
modecheck_to_fixpoint(PredIds, MaxIterations1,
WhatToCheck, MayChangeCalledProc,
ModuleInfo4, ModuleInfo, UnsafeToContinue)
)
).
:- pred report_max_iterations_exceeded(io__state, io__state).
:- mode report_max_iterations_exceeded(di, uo) is det.
report_max_iterations_exceeded -->
io__set_exit_status(1),
io__write_strings([
"Mode analysis iteration limit exceeded.\n",
"You may need to declare the modes explicitly, or use the\n",
"`--mode-inference-iteration-limit' option to increase the limit.\n"
]),
globals__io_lookup_int_option(mode_inference_iteration_limit,
MaxIterations),
io__format("(The current limit is %d iterations.)\n",
[i(MaxIterations)]).
% copy_pred_bodies(OldPredTable, ProcId, ModuleInfo0, ModuleInfo):
% copy the procedure bodies for all procedures of the specified
% PredIds from OldPredTable into ModuleInfo0, giving ModuleInfo.
:- pred copy_pred_bodies(pred_table, list(pred_id), module_info, module_info).
:- mode copy_pred_bodies(in, in, in, out) is det.
copy_pred_bodies(OldPredTable, PredIds, ModuleInfo0, ModuleInfo) :-
module_info_preds(ModuleInfo0, PredTable0),
list__foldl(copy_pred_body(OldPredTable), PredIds,
PredTable0, PredTable),
module_info_set_preds(ModuleInfo0, PredTable, ModuleInfo).
% copy_pred_body(OldPredTable, ProcId, PredTable0, PredTable):
% copy the procedure bodies for all procedures of the specified
% PredId from OldPredTable into PredTable0, giving PredTable.
:- pred copy_pred_body(pred_table, pred_id, pred_table, pred_table).
:- mode copy_pred_body(in, in, in, out) is det.
copy_pred_body(OldPredTable, PredId, PredTable0, PredTable) :-
map__lookup(PredTable0, PredId, PredInfo0),
(
% don't copy type class methods, because their
% proc_infos are generated already mode-correct,
% and because copying from the clauses_info doesn't
% work for them.
pred_info_get_markers(PredInfo0, Markers),
check_marker(Markers, class_method)
->
PredTable = PredTable0
;
pred_info_procedures(PredInfo0, ProcTable0),
map__lookup(OldPredTable, PredId, OldPredInfo),
pred_info_procedures(OldPredInfo, OldProcTable),
map__keys(OldProcTable, OldProcIds),
list__foldl(copy_proc_body(OldProcTable), OldProcIds,
ProcTable0, ProcTable),
pred_info_set_procedures(PredInfo0, ProcTable, PredInfo),
map__set(PredTable0, PredId, PredInfo, PredTable)
).
% copy_proc_body(OldProcTable, ProcId, ProcTable0, ProcTable):
% copy the body of the specified ProcId from OldProcTable
% into ProcTable0, giving ProcTable.
:- pred copy_proc_body(proc_table, proc_id, proc_table, proc_table).
:- mode copy_proc_body(in, in, in, out) is det.
copy_proc_body(OldProcTable, ProcId, ProcTable0, ProcTable) :-
map__lookup(OldProcTable, ProcId, OldProcInfo),
proc_info_goal(OldProcInfo, OldProcBody),
map__lookup(ProcTable0, ProcId, ProcInfo0),
proc_info_set_goal(ProcInfo0, OldProcBody, ProcInfo),
map__set(ProcTable0, ProcId, ProcInfo, ProcTable).
:- pred modecheck_pred_modes_2(list(pred_id), how_to_check_goal,
may_change_called_proc, module_info, module_info,
bool, bool, int, int, io__state, io__state).
:- mode modecheck_pred_modes_2(in, in, in, in, out, in, out, in, out, di, uo)
is det.
modecheck_pred_modes_2([], _, _, ModuleInfo, ModuleInfo, Changed, Changed,
NumErrors, NumErrors) --> [].
modecheck_pred_modes_2([PredId | PredIds], WhatToCheck, MayChangeCalledProc,
ModuleInfo0, ModuleInfo, Changed0, Changed,
NumErrors0, NumErrors) -->
{ module_info_preds(ModuleInfo0, Preds0) },
{ map__lookup(Preds0, PredId, PredInfo0) },
(
(
%
% don't modecheck imported predicates
%
( { pred_info_is_imported(PredInfo0) }
; { pred_info_is_pseudo_imported(PredInfo0) }
)
;
%
% don't modecheck class methods, because they
% are generated already mode-correct and with
% correct instmap deltas.
%
{ pred_info_get_markers(PredInfo0, PredMarkers) },
{ check_marker(PredMarkers, class_method) }
)
->
{ ModuleInfo3 = ModuleInfo0 },
{ Changed1 = Changed0 },
{ NumErrors1 = NumErrors0 }
;
write_modes_progress_message(PredId, PredInfo0, ModuleInfo0,
WhatToCheck),
modecheck_pred_mode_2(PredId, PredInfo0, WhatToCheck,
MayChangeCalledProc, ModuleInfo0, ModuleInfo1,
Changed0, Changed1, ErrsInThisPred),
{ ErrsInThisPred = 0 ->
ModuleInfo3 = ModuleInfo1
;
module_info_num_errors(ModuleInfo1, ModNumErrors0),
ModNumErrors1 is ModNumErrors0 + ErrsInThisPred,
module_info_set_num_errors(ModuleInfo1, ModNumErrors1,
ModuleInfo2),
module_info_remove_predid(ModuleInfo2, PredId,
ModuleInfo3)
},
{ NumErrors1 is NumErrors0 + ErrsInThisPred }
),
modecheck_pred_modes_2(PredIds, WhatToCheck, MayChangeCalledProc,
ModuleInfo3, ModuleInfo, Changed1, Changed,
NumErrors1, NumErrors).
:- pred write_modes_progress_message(pred_id, pred_info, module_info,
how_to_check_goal, io__state, io__state).
:- mode write_modes_progress_message(in, in, in, in, di, uo) is det.
write_modes_progress_message(PredId, PredInfo, ModuleInfo, WhatToCheck) -->
{ pred_info_get_markers(PredInfo, Markers) },
( { check_marker(Markers, infer_modes) } ->
( { WhatToCheck = check_modes },
write_pred_progress_message("% Mode-analysing ",
PredId, ModuleInfo)
; { WhatToCheck = check_unique_modes },
write_pred_progress_message("% Unique-mode-analysing ",
PredId, ModuleInfo)
)
;
( { WhatToCheck = check_modes },
write_pred_progress_message("% Mode-checking ",
PredId, ModuleInfo)
; { WhatToCheck = check_unique_modes },
write_pred_progress_message("% Unique-mode-checking ",
PredId, ModuleInfo)
)
).
%-----------------------------------------------------------------------------%
% Mode-check the code for single predicate.
modecheck_pred_mode(PredId, PredInfo0, WhatToCheck, MayChangeCalledProc,
ModuleInfo0, ModuleInfo, NumErrors) -->
modecheck_pred_mode_2(PredId, PredInfo0, WhatToCheck,
MayChangeCalledProc, ModuleInfo0, ModuleInfo,
no, _Changed, NumErrors).
:- pred modecheck_pred_mode_2(pred_id, pred_info, how_to_check_goal,
may_change_called_proc, module_info, module_info,
bool, bool, int, io__state, io__state).
:- mode modecheck_pred_mode_2(in, in, in, in, in,
out, in, out, out, di, uo) is det.
modecheck_pred_mode_2(PredId, PredInfo0, WhatToCheck, MayChangeCalledProc,
ModuleInfo0, ModuleInfo, Changed0, Changed, NumErrors) -->
% Note that we use pred_info_procids rather than
% pred_info_all_procids here, which means that we
% don't process modes that have already been inferred
% as invalid.
{ pred_info_procids(PredInfo0, ProcIds) },
( { WhatToCheck = check_modes } ->
(
{ ProcIds = [] }
->
maybe_report_error_no_modes(PredId, PredInfo0,
ModuleInfo0),
{ NumErrors0 = 0 }
;
{ special_pred_name_arity(unify, _, PredName,
PredArity) },
{ pred_info_name(PredInfo0, PredName) },
{ pred_info_arity(PredInfo0, PredArity) }
->
% Don't check for indistinguishable modes in unification
% predicates. The default (in, in) mode must be
% semidet, but for single-value types we also want to
% create a det mode which will be indistinguishable
% from the semidet mode.
% (When the type is known, the det mode is called,
% but the polymorphic unify needs to be able to call
% the semidet mode.)
{ NumErrors0 = 0 }
;
check_for_indistinguishable_modes(ProcIds, PredId,
PredInfo0, ModuleInfo0, 0, NumErrors0)
)
;
{ NumErrors0 = 0 }
),
modecheck_procs(ProcIds, PredId, WhatToCheck, MayChangeCalledProc,
ModuleInfo0, Changed0, NumErrors0,
ModuleInfo, Changed, NumErrors).
% Iterate over the list of modes for a predicate.
:- pred modecheck_procs(list(proc_id), pred_id, how_to_check_goal,
may_change_called_proc, module_info, bool, int,
module_info, bool, int, io__state, io__state).
:- mode modecheck_procs(in, in, in, in, in, in, in,
out, out, out, di, uo) is det.
modecheck_procs([], _PredId, _, _, ModuleInfo, Changed, Errs,
ModuleInfo, Changed, Errs) --> [].
modecheck_procs([ProcId|ProcIds], PredId, WhatToCheck, MayChangeCalledProc,
ModuleInfo0, Changed0, Errs0,
ModuleInfo, Changed, Errs) -->
% mode-check that mode of the predicate
modecheck_proc_2(ProcId, PredId, WhatToCheck, MayChangeCalledProc,
ModuleInfo0, Changed0,
ModuleInfo1, Changed1, NumErrors),
{ Errs1 is Errs0 + NumErrors },
% recursively process the remaining modes
modecheck_procs(ProcIds, PredId, WhatToCheck, MayChangeCalledProc,
ModuleInfo1, Changed1, Errs1,
ModuleInfo, Changed, Errs).
%-----------------------------------------------------------------------------%
:- pred check_for_indistinguishable_modes(list(proc_id),
pred_id, pred_info, module_info, int, int,
io__state, io__state).
:- mode check_for_indistinguishable_modes(in, in, in, in, in, out,
di, uo) is det.
check_for_indistinguishable_modes([], _, _, _, NumErrors, NumErrors) --> [].
check_for_indistinguishable_modes([ProcId | ProcIds],
PredId, PredInfo, ModuleInfo, NumErrors0, NumErrors) -->
check_for_indistinguishable_mode(ProcIds, ProcId,
PredId, PredInfo, ModuleInfo, NumErrors0, NumErrors1),
check_for_indistinguishable_modes(ProcIds,
PredId, PredInfo, ModuleInfo, NumErrors1, NumErrors).
:- pred check_for_indistinguishable_mode(list(proc_id), proc_id,
pred_id, pred_info, module_info, int, int,
io__state, io__state).
:- mode check_for_indistinguishable_mode(in, in, in, in, in, in, out,
di, uo) is det.
% For each mode in the list, check that either that mode is the
% new mode we just added, or that it is distinguishable from the
% new mode. If we find a mode that is indistinguishable from the
% one we just added, report an error.
check_for_indistinguishable_mode([], _, _, _, _, NumErrors, NumErrors) --> [].
check_for_indistinguishable_mode([ProcId | ProcIds], NewProcId,
PredId, PredInfo, ModuleInfo, NumErrors0, NumErrors) -->
(
{
ProcId = NewProcId
;
\+ modes_are_indistinguishable(ProcId, NewProcId,
PredInfo, ModuleInfo)
}
->
check_for_indistinguishable_mode(ProcIds, NewProcId,
PredId, PredInfo, ModuleInfo, NumErrors0, NumErrors)
;
report_indistinguishable_modes_error(ProcId, NewProcId,
PredId, PredInfo, ModuleInfo),
{ NumErrors is NumErrors0 + 1 }
).
%-----------------------------------------------------------------------------%
% Mode-check the code for predicate in a given mode.
modecheck_proc(ProcId, PredId, ModuleInfo0, ModuleInfo, NumErrors, Changed) -->
modecheck_proc(ProcId, PredId, check_modes, may_change_called_proc,
ModuleInfo0, ModuleInfo, NumErrors, Changed).
modecheck_proc(ProcId, PredId, WhatToCheck, MayChangeCalledProc, ModuleInfo0,
ModuleInfo, NumErrors, Changed) -->
modecheck_proc_2(ProcId, PredId, WhatToCheck, MayChangeCalledProc,
ModuleInfo0, no, ModuleInfo, Changed, NumErrors).
:- pred modecheck_proc_2(proc_id, pred_id, how_to_check_goal,
may_change_called_proc, module_info, bool,
module_info, bool, int, io__state, io__state).
:- mode modecheck_proc_2(in, in, in, in, in, in, out, out, out, di, uo) is det.
modecheck_proc_2(ProcId, PredId, WhatToCheck, MayChangeCalledProc,
ModuleInfo0, Changed0, ModuleInfo, Changed, NumErrors) -->
% get the proc_info from the module_info
{ module_info_pred_proc_info(ModuleInfo0, PredId, ProcId,
_PredInfo0, ProcInfo0) },
( { proc_info_can_process(ProcInfo0, no) } ->
{ ModuleInfo = ModuleInfo0 },
{ Changed = Changed0 },
{ NumErrors = 0 }
;
% modecheck it
modecheck_proc_3(ProcId, PredId, WhatToCheck,
MayChangeCalledProc, ModuleInfo0, ProcInfo0, Changed0,
ModuleInfo1, ProcInfo, Changed, NumErrors),
% save the proc_info back in the module_info
{ module_info_preds(ModuleInfo1, Preds1) },
{ map__lookup(Preds1, PredId, PredInfo1) },
{ pred_info_procedures(PredInfo1, Procs1) },
{ map__set(Procs1, ProcId, ProcInfo, Procs) },
{ pred_info_set_procedures(PredInfo1, Procs, PredInfo) },
{ map__set(Preds1, PredId, PredInfo, Preds) },
{ module_info_set_preds(ModuleInfo1, Preds, ModuleInfo) }
).
modecheck_proc_info(ProcId, PredId, ModuleInfo0, ProcInfo0,
ModuleInfo, ProcInfo, NumErrors) -->
{ WhatToCheck = check_modes },
modecheck_proc_3(ProcId, PredId, WhatToCheck, may_change_called_proc,
ModuleInfo0, ProcInfo0, no,
ModuleInfo, ProcInfo, _Changed, NumErrors).
:- pred modecheck_proc_3(proc_id, pred_id, how_to_check_goal,
may_change_called_proc, module_info, proc_info, bool,
module_info, proc_info, bool, int, io__state, io__state).
:- mode modecheck_proc_3(in, in, in, in, in, in, in,
out, out, out, out, di, uo) is det.
modecheck_proc_3(ProcId, PredId, WhatToCheck, MayChangeCalledProc,
ModuleInfo0, ProcInfo0, Changed0,
ModuleInfo, ProcInfo, Changed, NumErrors,
IOState0, IOState) :-
% extract the useful fields in the proc_info
proc_info_headvars(ProcInfo0, HeadVars),
proc_info_argmodes(ProcInfo0, ArgModes0),
proc_info_arglives(ProcInfo0, ModuleInfo0, ArgLives0),
proc_info_goal(ProcInfo0, Body0),
% We use the context of the first clause, unless
% there weren't any clauses at all, in which case
% we use the context of the mode declaration.
module_info_pred_info(ModuleInfo0, PredId, PredInfo),
pred_info_clauses_info(PredInfo, ClausesInfo),
clauses_info_clauses(ClausesInfo, ClauseList),
( ClauseList = [FirstClause | _] ->
FirstClause = clause(_, _, Context)
;
proc_info_context(ProcInfo0, Context)
),
%
% modecheck the clause - first set the initial instantiation
% of the head arguments, mode-check the body, and
% then check that the final instantiation matches that in
% the mode declaration
%
% construct the initial instmap
mode_list_get_initial_insts(ArgModes0, ModuleInfo0, ArgInitialInsts),
assoc_list__from_corresponding_lists(HeadVars, ArgInitialInsts, InstAL),
instmap__from_assoc_list(InstAL, InstMap0),
% construct the initial set of live vars:
% initially, only the non-clobbered head variables are live
get_live_vars(HeadVars, ArgLives0, LiveVarsList),
set__list_to_set(LiveVarsList, LiveVars),
% initialize the mode info
mode_info_init(IOState0, ModuleInfo0, PredId, ProcId, Context,
LiveVars, InstMap0, WhatToCheck,
MayChangeCalledProc, ModeInfo0),
mode_info_set_changed_flag(Changed0, ModeInfo0, ModeInfo1),
% modecheck the procedure body
( WhatToCheck = check_unique_modes ->
unique_modes__check_goal(Body0, Body, ModeInfo1, ModeInfo2)
;
modecheck_goal(Body0, Body, ModeInfo1, ModeInfo2)
),
% check that final insts match those specified in the
% mode declaration
mode_list_get_final_insts(ArgModes0, ModuleInfo0, ArgFinalInsts0),
pred_info_get_markers(PredInfo, Markers),
( check_marker(Markers, infer_modes) ->
InferModes = yes
;
InferModes = no
),
modecheck_final_insts_2(HeadVars, ArgFinalInsts0, ModeInfo2,
InferModes, ArgFinalInsts, ModeInfo3),
( InferModes = yes ->
% For inferred predicates, we don't report the
% error(s) here; instead we just save them in the
% proc_info, thus marking that procedure as invalid.
ModeInfo = ModeInfo3,
% This is sometimes handy for debugging:
% report_mode_errors(ModeInfo3, ModeInfo),
mode_info_get_errors(ModeInfo, ModeErrors),
ProcInfo1 = ProcInfo0 ^ mode_errors := ModeErrors,
NumErrors = 0
;
% report any errors we found
report_mode_errors(ModeInfo3, ModeInfo),
mode_info_get_num_errors(ModeInfo, NumErrors),
ProcInfo1 = ProcInfo0
),
% save away the results
inst_lists_to_mode_list(ArgInitialInsts, ArgFinalInsts, ArgModes),
mode_info_get_changed_flag(ModeInfo, Changed),
mode_info_get_module_info(ModeInfo, ModuleInfo),
mode_info_get_io_state(ModeInfo, IOState),
mode_info_get_varset(ModeInfo, VarSet),
mode_info_get_var_types(ModeInfo, VarTypes),
proc_info_set_goal(ProcInfo1, Body, ProcInfo2),
proc_info_set_varset(ProcInfo2, VarSet, ProcInfo3),
proc_info_set_vartypes(ProcInfo3, VarTypes, ProcInfo4),
proc_info_set_argmodes(ProcInfo4, ArgModes, ProcInfo).
% modecheck_final_insts for a lambda expression
modecheck_final_insts(HeadVars, ArgFinalInsts, ModeInfo0, ModeInfo) :-
% for lambda expressions, modes must always be
% declared, we never infer them.
InferModes = no,
modecheck_final_insts_2(HeadVars, ArgFinalInsts, ModeInfo0,
InferModes, _NewFinalInsts, ModeInfo).
:- pred modecheck_final_insts_2(list(prog_var), list(inst), mode_info, bool,
list(inst), mode_info).
:- mode modecheck_final_insts_2(in, in, mode_info_di, in,
out, mode_info_uo) is det.
% check that the final insts of the head vars matches their
% expected insts
%
modecheck_final_insts_2(HeadVars, FinalInsts0, ModeInfo0, InferModes,
FinalInsts, ModeInfo) :-
mode_info_get_module_info(ModeInfo0, ModuleInfo),
mode_info_get_errors(ModeInfo0, Errors),
% If there were any mode errors, use an unreachable instmap.
% This ensures that we don't get unwanted flow-on errors.
% This is not strictly necessary, since we only report the
% first mode error anyway, and the resulting FinalInsts
% will not be used; but it improves the readability of the
% rejected modes.
( Errors \= [] ->
% If there were any mode errors, something must have
% changed, since if the procedure had mode errors
% in a previous pass then it wouldn't have been
% processed at all in this pass.
Changed0 = yes,
instmap__init_unreachable(InstMap)
;
Changed0 = no,
mode_info_get_instmap(ModeInfo0, InstMap)
),
mode_info_get_var_types(ModeInfo0, VarTypes),
instmap__lookup_vars(HeadVars, InstMap, VarFinalInsts1),
map__apply_to_list(HeadVars, VarTypes, ArgTypes),
( InferModes = yes ->
normalise_insts(VarFinalInsts1, ArgTypes, ModuleInfo,
VarFinalInsts2),
%
% make sure we set the final insts of any variables which
% we assumed were dead to `clobbered'.
%
mode_info_get_preds(ModeInfo0, Preds),
mode_info_get_predid(ModeInfo0, PredId),
map__lookup(Preds, PredId, PredInfo),
pred_info_procedures(PredInfo, Procs),
mode_info_get_procid(ModeInfo0, ProcId),
map__lookup(Procs, ProcId, ProcInfo),
proc_info_arglives(ProcInfo, ModuleInfo, ArgLives),
maybe_clobber_insts(VarFinalInsts2, ArgLives, FinalInsts),
check_final_insts(HeadVars, FinalInsts0, FinalInsts,
InferModes, 1, ModuleInfo, no, Changed1,
ModeInfo0, ModeInfo1),
mode_info_get_changed_flag(ModeInfo1, Changed2),
bool__or_list([Changed0, Changed1, Changed2], Changed),
mode_info_set_changed_flag(Changed, ModeInfo1, ModeInfo)
;
check_final_insts(HeadVars, FinalInsts0, VarFinalInsts1,
InferModes, 1, ModuleInfo, no, _Changed1,
ModeInfo0, ModeInfo),
FinalInsts = FinalInsts0
).
:- pred maybe_clobber_insts(list(inst), list(is_live), list(inst)).
:- mode maybe_clobber_insts(in, in, out) is det.
maybe_clobber_insts([], [_|_], _) :-
error("maybe_clobber_insts: length mismatch").
maybe_clobber_insts([_|_], [], _) :-
error("maybe_clobber_insts: length mismatch").
maybe_clobber_insts([], [], []).
maybe_clobber_insts([Inst0 | Insts0], [IsLive | IsLives], [Inst | Insts]) :-
( IsLive = dead ->
Inst = ground(clobbered, none)
;
Inst = Inst0
),
maybe_clobber_insts(Insts0, IsLives, Insts).
:- pred check_final_insts(list(prog_var), list(inst), list(inst), bool, int,
module_info, bool, bool, mode_info, mode_info).
:- mode check_final_insts(in, in, in, in, in, in, in, out, mode_info_di,
mode_info_uo) is det.
check_final_insts(Vars, Insts, VarInsts, InferModes, ArgNum, ModuleInfo,
Changed0, Changed) -->
( { Vars = [], Insts = [], VarInsts = [] } ->
{ Changed = Changed0 }
; { Vars = [Var|Vars1], Insts = [Inst|Insts1],
VarInsts = [VarInst|VarInsts1] } ->
=(ModeInfo),
{ mode_info_get_var_types(ModeInfo, VarTypes) },
{ map__lookup(VarTypes, Var, Type) },
( { inst_matches_final(VarInst, Inst, Type, ModuleInfo) } ->
{ Changed1 = Changed0 }
;
{ Changed1 = yes },
( { InferModes = yes } ->
% if we're inferring the mode, then don't report
% an error, just set changed to yes to make sure
% that we will do another fixpoint pass
[]
;
% XXX this might need to be reconsidered now
% we have unique modes
( { inst_matches_initial(VarInst, Inst,
Type, ModuleInfo) } ->
{ Reason = too_instantiated }
; { inst_matches_initial(Inst, VarInst,
Type, ModuleInfo) } ->
{ Reason = not_instantiated_enough }
;
% I don't think this can happen.
% But just in case...
{ Reason = wrongly_instantiated }
),
{ set__init(WaitingVars) },
mode_info_error(WaitingVars,
mode_error_final_inst(ArgNum,
Var, VarInst, Inst, Reason))
)
),
{ ArgNum1 is ArgNum + 1 },
check_final_insts(Vars1, Insts1, VarInsts1, InferModes, ArgNum1,
ModuleInfo, Changed1, Changed)
;
{ error("check_final_insts: length mismatch") }
).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
% Modecheck a goal by abstractly interpreteting it, as explained
% at the top of this file.
% Note: any changes here may need to be duplicated in unique_modes.m.
% Input-output: InstMap - Stored in the ModeInfo, which is passed as an
% argument pair
% DelayInfo - Stored in the ModeInfo
% Goal - Passed as an argument pair
% Input only: Symbol tables (constant)
% - Stored in the ModuleInfo which is in the ModeInfo
% Context Info (changing as we go along the clause)
% - Stored in the ModeInfo
% Output only: Error Message(s)
% - Output directly to stdout.
modecheck_goal(Goal0 - GoalInfo0, Goal - GoalInfo, ModeInfo0, ModeInfo) :-
%
% store the current context in the mode_info
%
goal_info_get_context(GoalInfo0, Context),
term__context_init(EmptyContext),
( Context = EmptyContext ->
ModeInfo1 = ModeInfo0
;
mode_info_set_context(Context, ModeInfo0, ModeInfo1)
),
%
% modecheck the goal, and then store the changes in
% instantiation of the vars in the delta_instmap
% in the goal's goal_info.
%
mode_info_get_instmap(ModeInfo1, InstMap0),
modecheck_goal_expr(Goal0, GoalInfo0, Goal, ModeInfo1, ModeInfo2),
compute_goal_instmap_delta(InstMap0, Goal, GoalInfo0, GoalInfo,
ModeInfo2, ModeInfo).
compute_goal_instmap_delta(InstMap0, Goal,
GoalInfo0, GoalInfo, ModeInfo0, ModeInfo) :-
( Goal = conj([]) ->
%
% When modecheck_unify.m replaces a unification with a
% dead variable with `true', make sure the instmap_delta
% of the goal is empty. The code generator and
% mode_util__recompute_instmap_delta can be confused
% by references to the dead variable in the instmap_delta,
% resulting in calls to error/1.
%
instmap_delta_init_reachable(DeltaInstMap),
mode_info_set_instmap(InstMap0, ModeInfo0, ModeInfo)
;
ModeInfo = ModeInfo0,
goal_info_get_nonlocals(GoalInfo0, NonLocals),
mode_info_get_instmap(ModeInfo, InstMap),
compute_instmap_delta(InstMap0, InstMap,
NonLocals, DeltaInstMap)
),
goal_info_set_instmap_delta(GoalInfo0, DeltaInstMap, GoalInfo).
modecheck_goal_expr(conj(List0), GoalInfo0, Goal) -->
mode_checkpoint(enter, "conj"),
( { List0 = [] } -> % for efficiency, optimize common case
{ Goal = conj([]) }
;
modecheck_conj_list(List0, List),
{ conj_list_to_goal(List, GoalInfo0, Goal - _GoalInfo) }
),
mode_checkpoint(exit, "conj").
% To modecheck a parallel conjunction, we modecheck each
% conjunct independently (just like for disjunctions).
% To make sure that we don't try to bind a variable more than
% once (by binding it in more than one conjunct), we maintain a
% datastructure that keeps track of three things:
% the set of variables that are nonlocal to the conjuncts
% (which may be a superset of the nonlocals of the par_conj
% as a whole);
% the set of nonlocal variables that have been bound in the
% current conjunct; and
% the set of variables that were bound in previous conjuncts.
% When binding a variable, we check that it wasn't in the set of
% variables bound in other conjuncts, and we add it to the set of
% variables bound in this conjunct.
% At the end of the conjunct, we add the set of variables bound in
% this conjunct to the set of variables bound in previous conjuncts
% and set the set of variables bound in the current conjunct to
% empty.
% A stack of these structures is maintained to handle nested parallel
% conjunctions properly.
modecheck_goal_expr(par_conj(List0, SM), GoalInfo0, par_conj(List, SM)) -->
mode_checkpoint(enter, "par_conj"),
{ goal_info_get_nonlocals(GoalInfo0, NonLocals) },
modecheck_par_conj_list(List0, List, NonLocals, InstMapNonlocalList),
instmap__unify(NonLocals, InstMapNonlocalList),
mode_checkpoint(exit, "par_conj").
modecheck_goal_expr(disj(List0, SM), GoalInfo0, Goal) -->
mode_checkpoint(enter, "disj"),
( { List0 = [] } -> % for efficiency, optimize common case
{ Goal = disj(List0, SM) },
{ instmap__init_unreachable(InstMap) },
mode_info_set_instmap(InstMap)
;
{ goal_info_get_nonlocals(GoalInfo0, NonLocals) },
modecheck_disj_list(List0, List, InstMapList),
instmap__merge(NonLocals, InstMapList, disj),
{ disj_list_to_goal(List, GoalInfo0, Goal - _GoalInfo) }
),
mode_checkpoint(exit, "disj").
modecheck_goal_expr(if_then_else(Vs, A0, B0, C0, SM), GoalInfo0, Goal) -->
mode_checkpoint(enter, "if-then-else"),
{ goal_info_get_nonlocals(GoalInfo0, NonLocals) },
{ goal_get_nonlocals(B0, B_Vars) },
mode_info_dcg_get_instmap(InstMap0),
%
% We need to lock the non-local variables, to ensure
% that the condition of the if-then-else does not bind them.
%
mode_info_lock_vars(if_then_else, NonLocals),
mode_info_add_live_vars(B_Vars),
modecheck_goal(A0, A),
mode_info_dcg_get_instmap(InstMapA),
mode_info_remove_live_vars(B_Vars),
mode_info_unlock_vars(if_then_else, NonLocals),
( { instmap__is_reachable(InstMapA) } ->
modecheck_goal(B0, B),
mode_info_dcg_get_instmap(InstMapB)
;
% We should not mode-analyse the goal, since it is unreachable.
% Instead we optimize the goal away, so that later passes
% won't complain about it not having mode information.
{ true_goal(B) },
{ InstMapB = InstMapA }
),
mode_info_set_instmap(InstMap0),
modecheck_goal(C0, C),
mode_info_dcg_get_instmap(InstMapC),
mode_info_set_instmap(InstMap0),
instmap__merge(NonLocals, [InstMapB, InstMapC], if_then_else),
{ Goal = if_then_else(Vs, A, B, C, SM) },
mode_checkpoint(exit, "if-then-else").
modecheck_goal_expr(not(A0), GoalInfo0, not(A)) -->
mode_checkpoint(enter, "not"),
{ goal_info_get_nonlocals(GoalInfo0, NonLocals) },
mode_info_dcg_get_instmap(InstMap0),
%
% when analyzing a negated goal, nothing is forward-live
% (live on forward executution after that goal), because
% if the goal succeeds then execution will immediately backtrack.
% So we need to set the live variables set to empty here.
% This allows those variables to be backtrackably
% destructively updated. (If you try to do non-backtrackable
% destructive update on such a variable, it will be caught
% later on by unique_modes.m.)
%
=(ModeInfo),
{ mode_info_get_live_vars(ModeInfo, LiveVars0) },
mode_info_set_live_vars([]),
%
% We need to lock the non-local variables, to ensure
% that the negation does not bind them.
%
mode_info_lock_vars(negation, NonLocals),
modecheck_goal(A0, A),
mode_info_set_live_vars(LiveVars0),
mode_info_unlock_vars(negation, NonLocals),
mode_info_set_instmap(InstMap0),
mode_checkpoint(exit, "not").
modecheck_goal_expr(some(Vs, CanRemove, G0), _, some(Vs, CanRemove, G)) -->
mode_checkpoint(enter, "some"),
modecheck_goal(G0, G),
mode_checkpoint(exit, "some").
modecheck_goal_expr(call(PredId, ProcId0, Args0, _, Context, PredName),
GoalInfo0, Goal) -->
{ prog_out__sym_name_to_string(PredName, PredNameString) },
{ string__append("call ", PredNameString, CallString) },
mode_checkpoint(enter, CallString),
=(ModeInfo0),
{ mode_info_get_call_id(ModeInfo0, PredId, CallId) },
mode_info_set_call_context(call(call(CallId))),
=(ModeInfo1),
{ mode_info_get_instmap(ModeInfo1, InstMap0) },
{ DeterminismKnown = no },
modecheck_call_pred(PredId, ProcId0, Args0, DeterminismKnown,
Mode, Args, ExtraGoals),
=(ModeInfo),
{ mode_info_get_module_info(ModeInfo, ModuleInfo) },
{ code_util__builtin_state(ModuleInfo, PredId, Mode, Builtin) },
{ Call = call(PredId, Mode, Args, Builtin, Context, PredName) },
handle_extra_goals(Call, ExtraGoals, GoalInfo0, Args0, Args,
InstMap0, Goal),
mode_info_unset_call_context,
mode_checkpoint(exit, CallString).
modecheck_goal_expr(generic_call(GenericCall, Args0, Modes0, _),
GoalInfo0, Goal) -->
mode_checkpoint(enter, "generic_call"),
mode_info_dcg_get_instmap(InstMap0),
{ hlds_goal__generic_call_id(GenericCall, CallId) },
mode_info_set_call_context(call(CallId)),
(
{ GenericCall = higher_order(PredVar, PredOrFunc, _) },
modecheck_higher_order_call(PredOrFunc, PredVar,
Args0, Modes, Det, Args, ExtraGoals),
{ AllArgs0 = [PredVar | Args0] },
{ AllArgs = [PredVar | Args] }
;
% Class method calls are added by polymorphism.m.
% XXX We should probably fill this in so that
% rerunning mode analysis works on code with typeclasses.
{ GenericCall = class_method(_, _, _, _) },
{ error("modecheck_goal_expr: class_method_call") }
;
{ GenericCall = aditi_builtin(AditiBuiltin, UpdatedCallId) },
modecheck_aditi_builtin(AditiBuiltin, UpdatedCallId,
Args0, Modes0, Det, Args, ExtraGoals),
{ Modes = Modes0 },
{ AllArgs0 = Args0 },
{ AllArgs = Args }
),
{ Goal1 = generic_call(GenericCall, Args, Modes, Det) },
handle_extra_goals(Goal1, ExtraGoals, GoalInfo0, AllArgs0, AllArgs,
InstMap0, Goal),
mode_info_unset_call_context,
mode_checkpoint(exit, "generic_call").
modecheck_goal_expr(unify(A0, B0, _, UnifyInfo0, UnifyContext), GoalInfo0, Goal)
-->
mode_checkpoint(enter, "unify"),
mode_info_set_call_context(unify(UnifyContext)),
modecheck_unification(A0, B0, UnifyInfo0, UnifyContext, GoalInfo0,
Goal),
mode_info_unset_call_context,
mode_checkpoint(exit, "unify").
modecheck_goal_expr(switch(Var, CanFail, Cases0, SM), GoalInfo0,
switch(Var, CanFail, Cases, SM)) -->
mode_checkpoint(enter, "switch"),
( { Cases0 = [] } ->
{ Cases = [] },
{ instmap__init_unreachable(InstMap) },
mode_info_set_instmap(InstMap)
;
{ goal_info_get_nonlocals(GoalInfo0, NonLocals) },
modecheck_case_list(Cases0, Var, Cases, InstMapList),
instmap__merge(NonLocals, InstMapList, disj)
),
mode_checkpoint(exit, "switch").
% to modecheck a pragma_c_code, we just modecheck the proc for
% which it is the goal.
modecheck_goal_expr(pragma_foreign_code(Attributes, PredId, ProcId0,
Args0, ArgNameMap, OrigArgTypes, PragmaCode),
GoalInfo, Goal) -->
mode_checkpoint(enter, "pragma_foreign_code"),
=(ModeInfo0),
{ mode_info_get_call_id(ModeInfo0, PredId, CallId) },
{ mode_info_get_instmap(ModeInfo0, InstMap0) },
{ DeterminismKnown = no },
mode_info_set_call_context(call(call(CallId))),
modecheck_call_pred(PredId, ProcId0, Args0, DeterminismKnown,
ProcId, Args, ExtraGoals),
{ Pragma = pragma_foreign_code(Attributes, PredId, ProcId,
Args0, ArgNameMap, OrigArgTypes, PragmaCode) },
handle_extra_goals(Pragma, ExtraGoals, GoalInfo, Args0, Args,
InstMap0, Goal),
mode_info_unset_call_context,
mode_checkpoint(exit, "pragma_foreign_code").
modecheck_goal_expr(bi_implication(_, _), _, _) -->
% these should have been expanded out by now
{ error("modecheck_goal_expr: unexpected bi_implication") }.
append_extra_goals(no_extra_goals, ExtraGoals, ExtraGoals).
append_extra_goals(extra_goals(BeforeGoals, AfterGoals),
no_extra_goals, extra_goals(BeforeGoals, AfterGoals)).
append_extra_goals(extra_goals(BeforeGoals0, AfterGoals0),
extra_goals(BeforeGoals1, AfterGoals1),
extra_goals(BeforeGoals, AfterGoals)) :-
list__append(BeforeGoals0, BeforeGoals1, BeforeGoals),
list__append(AfterGoals0, AfterGoals1, AfterGoals).
handle_extra_goals(MainGoal, no_extra_goals, _GoalInfo0, _Args0, _Args,
_InstMap0, MainGoal, ModeInfo, ModeInfo).
handle_extra_goals(MainGoal, extra_goals(BeforeGoals0, AfterGoals0),
GoalInfo0, Args0, Args, InstMap0, Goal, ModeInfo0, ModeInfo) :-
mode_info_get_errors(ModeInfo0, Errors),
(
% There's no point adding extra goals if the code is
% unreachable anyway.
instmap__is_reachable(InstMap0),
% If we recorded errors processing the goal, it will
% have to be reprocessed anyway, so don't add the extra
% goals now.
Errors = []
->
%
% We need to be careful to update the delta-instmaps
% correctly, using the appropriate instmaps:
%
% % InstMapAtStart is here
% BeforeGoals,
% % we don't know the instmap here,
% % but as it happens we don't need it
% main goal,
% % InstMapAfterMain is here
% AfterGoals
% % InstMapAtEnd (from the ModeInfo) is here
%
% recompute the new set of non-local variables for the main goal
goal_info_get_nonlocals(GoalInfo0, NonLocals0),
set__list_to_set(Args0, OldArgVars),
set__list_to_set(Args, NewArgVars),
set__difference(NewArgVars, OldArgVars, IntroducedVars),
set__union(NonLocals0, IntroducedVars, OutsideVars),
set__intersect(OutsideVars, NewArgVars, NonLocals),
goal_info_set_nonlocals(GoalInfo0, NonLocals, GoalInfo),
% combine the main goal and the extra goals into a conjunction
Goal0 = MainGoal - GoalInfo,
goal_info_get_context(GoalInfo0, Context),
handle_extra_goals_contexts(BeforeGoals0, Context, BeforeGoals),
handle_extra_goals_contexts(AfterGoals0, Context, AfterGoals),
list__append(BeforeGoals, [Goal0 | AfterGoals], GoalList0),
mode_info_get_may_change_called_proc(ModeInfo0,
MayChangeCalledProc0),
% Make sure we don't go into an infinite loop if
% there is a bug in the code to add extra goals.
mode_info_set_checking_extra_goals(yes, ModeInfo0, ModeInfo1),
% We've already worked out which procedure should be called,
% we don't need to do it again.
mode_info_set_may_change_called_proc(
may_not_change_called_proc, ModeInfo1, ModeInfo2),
mode_info_set_instmap(InstMap0, ModeInfo2, ModeInfo3),
% Recheck the goals to compute the instmap_deltas.
%
% This can fail even if the original check on the goal
% succeeded in the case of a unification procedure which
% binds a partially instantiated variable, because adding
% the extra goals can make the partially instantiated
% variables `live' after the main goal.
% The other thing to beware of in this case is that delaying
% must be disabled while processing the extra goals. If it
% is not, the main unification will be delayed until after the
% argument unifications, which turns them into assignments,
% and we end up repeating the process forever.
mode_info_add_goals_live_vars(GoalList0, ModeInfo3, ModeInfo4),
modecheck_conj_list_no_delay(GoalList0, GoalList,
ModeInfo4, ModeInfo5),
Goal = conj(GoalList),
mode_info_set_checking_extra_goals(no, ModeInfo5, ModeInfo6),
mode_info_set_may_change_called_proc(MayChangeCalledProc0,
ModeInfo6, ModeInfo)
;
Goal = MainGoal,
ModeInfo = ModeInfo0
).
:- pred handle_extra_goals_contexts(list(hlds_goal), prog_context,
list(hlds_goal)).
:- mode handle_extra_goals_contexts(in, in, out) is det.
handle_extra_goals_contexts([], _Context, []).
handle_extra_goals_contexts([Goal0 | Goals0], Context, [Goal | Goals]) :-
Goal0 = Expr - GoalInfo0,
Goal = Expr - GoalInfo,
goal_info_set_context(GoalInfo0, Context, GoalInfo),
handle_extra_goals_contexts(Goals0, Context, Goals).
%-----------------------------------------------------------------------------%
% Modecheck a conjunction without doing any reordering.
% This is used by handle_extra_goals above.
:- pred modecheck_conj_list_no_delay(list(hlds_goal), list(hlds_goal),
mode_info, mode_info).
:- mode modecheck_conj_list_no_delay(in, out,
mode_info_di, mode_info_uo) is det.
modecheck_conj_list_no_delay([], []) --> [].
modecheck_conj_list_no_delay([Goal0 | Goals0], [Goal | Goals]) -->
{ goal_get_nonlocals(Goal0, NonLocals) },
mode_info_remove_live_vars(NonLocals),
modecheck_goal(Goal0, Goal),
mode_info_dcg_get_instmap(InstMap),
( { instmap__is_unreachable(InstMap) } ->
% We should not mode-analyse the remaining goals, since they
% are unreachable. Instead we optimize them away, so that
% later passes won't complain about them not having mode
% information.
mode_info_remove_goals_live_vars(Goals0),
{ Goals = [] }
;
modecheck_conj_list_no_delay(Goals0, Goals)
).
%-----------------------------------------------------------------------------%
:- pred modecheck_conj_list(list(hlds_goal), list(hlds_goal),
mode_info, mode_info).
:- mode modecheck_conj_list(in, out, mode_info_di, mode_info_uo) is det.
modecheck_conj_list(Goals0, Goals) -->
=(ModeInfo0),
{ mode_info_get_errors(ModeInfo0, OldErrors) },
mode_info_set_errors([]),
=(ModeInfo1),
{ mode_info_get_live_vars(ModeInfo1, LiveVars1) },
{ mode_info_get_delay_info(ModeInfo1, DelayInfo1) },
{ delay_info__enter_conj(DelayInfo1, DelayInfo2) },
mode_info_set_delay_info(DelayInfo2),
mode_info_add_goals_live_vars(Goals0),
modecheck_conj_list_2(Goals0, [], Goals, RevImpurityErrors),
=(ModeInfo3),
{ mode_info_get_errors(ModeInfo3, NewErrors) },
{ list__append(OldErrors, NewErrors, Errors) },
mode_info_set_errors(Errors),
=(ModeInfo4),
{ mode_info_get_delay_info(ModeInfo4, DelayInfo4) },
{ delay_info__leave_conj(DelayInfo4, DelayedGoals, DelayInfo5) },
mode_info_set_delay_info(DelayInfo5),
( { DelayedGoals \= [] } ->
% the variables in the delayed goals should not longer
% be considered live (the conjunction itself will
% delay, and its nonlocals will be made live)
mode_info_set_live_vars(LiveVars1)
;
[]
),
% we only report impurity errors if there were no other errors
( { DelayedGoals = [] } ->
%
% report all the impurity errors
% (making sure we report the errors in the correct order)
%
{ list__reverse(RevImpurityErrors, ImpurityErrors) },
=(ModeInfo5),
{ mode_info_get_errors(ModeInfo5, Errors5) },
{ list__append(Errors5, ImpurityErrors, Errors6) },
mode_info_set_errors(Errors6)
; { DelayedGoals = [delayed_goal(_DVars, Error, _DGoal)] } ->
mode_info_add_error(Error)
;
{ get_all_waiting_vars(DelayedGoals, Vars) },
mode_info_error(Vars,
mode_error_conj(DelayedGoals, conj_floundered))
).
mode_info_add_goals_live_vars([]) --> [].
mode_info_add_goals_live_vars([Goal | Goals]) -->
% We add the live vars for the goals in the goal list
% in reverse order, because this ensures that in the
% common case (where there is no delaying), when we come
% to remove the live vars for the first goal
% they will have been added last and will thus be
% at the start of the list of live vars sets, which
% makes them cheaper to remove.
mode_info_add_goals_live_vars(Goals),
{ goal_get_nonlocals(Goal, NonLocals) },
mode_info_add_live_vars(NonLocals).
mode_info_remove_goals_live_vars([]) --> [].
mode_info_remove_goals_live_vars([Goal | Goals]) -->
{ goal_get_nonlocals(Goal, NonLocals) },
mode_info_remove_live_vars(NonLocals),
mode_info_remove_goals_live_vars(Goals).
:- type impurity_errors == list(mode_error_info).
:- pred modecheck_conj_list_2(list(hlds_goal), impurity_errors,
list(hlds_goal), impurity_errors,
mode_info, mode_info).
:- mode modecheck_conj_list_2(in, in, out, out, mode_info_di, mode_info_uo)
is det.
% Schedule a conjunction.
% If it's empty, then there is nothing to do.
% For non-empty conjunctions, we attempt to schedule the first
% goal in the conjunction. If successful, we wakeup a newly
% pending goal (if any), and if not, we delay the goal. Then we
% continue attempting to schedule all the rest of the goals.
modecheck_conj_list_2([], ImpurityErrors, [], ImpurityErrors) --> [].
modecheck_conj_list_2([Goal0 | Goals0], ImpurityErrors0,
Goals, ImpurityErrors) -->
{ Goal0 = _GoalExpr - GoalInfo0 },
( { goal_info_is_impure(GoalInfo0) } ->
{ Impure = yes },
check_for_impurity_error(Goal0, ImpurityErrors0,
ImpurityErrors1)
;
{ Impure = no },
{ ImpurityErrors1 = ImpurityErrors0 }
),
% Hang onto the original instmap, delay_info, and live_vars
mode_info_dcg_get_instmap(InstMap0),
=(ModeInfo0),
{ mode_info_get_delay_info(ModeInfo0, DelayInfo0) },
% Modecheck the goal, noting first that the non-locals
% which occur in the goal might not be live anymore.
{ goal_get_nonlocals(Goal0, NonLocalVars) },
mode_info_remove_live_vars(NonLocalVars),
modecheck_goal(Goal0, Goal),
% Now see whether the goal was successfully scheduled.
% If we didn't manage to schedule the goal, then we
% restore the original instmap, delay_info and livevars
% here, and delay the goal.
=(ModeInfo1),
{ mode_info_get_errors(ModeInfo1, Errors) },
( { Errors = [ FirstErrorInfo | _] } ->
mode_info_set_errors([]),
mode_info_set_instmap(InstMap0),
mode_info_add_live_vars(NonLocalVars),
{ delay_info__delay_goal(DelayInfo0, FirstErrorInfo,
Goal0, DelayInfo1) },
% delaying an impure goal is an impurity error
( { Impure = yes } ->
{ FirstErrorInfo = mode_error_info(Vars, _, _, _) },
{ ImpureError = mode_error_conj(
[delayed_goal(Vars, FirstErrorInfo, Goal0)],
goal_itself_was_impure) },
=(ModeInfo2),
{ mode_info_get_context(ModeInfo2, Context) },
{ mode_info_get_mode_context(ModeInfo2, ModeContext) },
{ ImpureErrorInfo = mode_error_info( Vars, ImpureError,
Context, ModeContext) },
{ ImpurityErrors2 = [ImpureErrorInfo |
ImpurityErrors1] }
;
{ ImpurityErrors2 = ImpurityErrors1 }
)
;
{ mode_info_get_delay_info(ModeInfo1, DelayInfo1) },
{ ImpurityErrors2 = ImpurityErrors1 }
),
% Next, we attempt to wake up any pending goals,
% and then continue scheduling the rest of the goal.
{ delay_info__wakeup_goals(DelayInfo1, WokenGoals, DelayInfo) },
{ list__append(WokenGoals, Goals0, Goals1) },
( { WokenGoals = [] } ->
[]
; { WokenGoals = [_] } ->
mode_checkpoint(wakeup, "goal")
;
mode_checkpoint(wakeup, "goals")
),
mode_info_set_delay_info(DelayInfo),
mode_info_dcg_get_instmap(InstMap),
( { instmap__is_unreachable(InstMap) } ->
% We should not mode-analyse the remaining goals, since they
% are unreachable. Instead we optimize them away, so that
% later passes won't complain about them not having mode
% information.
mode_info_remove_goals_live_vars(Goals1),
{ Goals2 = [] },
{ ImpurityErrors = ImpurityErrors2 }
;
modecheck_conj_list_2(Goals1, ImpurityErrors2,
Goals2, ImpurityErrors)
),
( { Errors = [] } ->
% we successfully scheduled this goal, so insert
% it in the list of successfully scheduled goals
{ Goals = [Goal | Goals2] }
;
% we delayed this goal -- it will be stored in the delay_info
{ Goals = Goals2 }
).
% check whether there are any delayed goals (other than headvar unifications)
% at the point where we are about to schedule an impure goal. If so, that is
% an error. Headvar unifications are allowed to be delayed because in the
% case of output arguments, they cannot be scheduled until the variable value
% is known. If headvar unifications couldn't be delayed past impure goals,
% impure predicates wouldn't be able to have outputs!
:- pred check_for_impurity_error(hlds_goal, impurity_errors, impurity_errors,
mode_info, mode_info).
:- mode check_for_impurity_error(in, in, out, mode_info_di, mode_info_uo)
is det.
check_for_impurity_error(Goal, ImpurityErrors0, ImpurityErrors) -->
=(ModeInfo0),
{ mode_info_get_delay_info(ModeInfo0, DelayInfo0) },
{ delay_info__leave_conj(DelayInfo0, DelayedGoals,
DelayInfo1) },
{ delay_info__enter_conj(DelayInfo1, DelayInfo) },
{ mode_info_get_module_info(ModeInfo0, ModuleInfo) },
{ mode_info_get_predid(ModeInfo0, PredId) },
{ module_info_pred_info(ModuleInfo, PredId, PredInfo) },
{ pred_info_clauses_info(PredInfo, ClausesInfo) },
{ clauses_info_headvars(ClausesInfo, HeadVars) },
( { no_non_headvar_unification_goals(DelayedGoals, HeadVars) } ->
{ ImpurityErrors = ImpurityErrors0 }
;
mode_info_set_delay_info(DelayInfo),
{ get_all_waiting_vars(DelayedGoals, Vars) },
{ ModeError = mode_error_conj(DelayedGoals,
goals_followed_by_impure_goal(Goal)) },
=(ModeInfo1),
{ mode_info_get_context(ModeInfo1, Context) },
{ mode_info_get_mode_context(ModeInfo1, ModeContext) },
{ ImpurityError = mode_error_info(Vars, ModeError,
Context, ModeContext) },
{ ImpurityErrors = [ImpurityError | ImpurityErrors0] }
).
:- pred no_non_headvar_unification_goals(list(delayed_goal), list(prog_var)).
:- mode no_non_headvar_unification_goals(in, in) is semidet.
no_non_headvar_unification_goals([], _).
no_non_headvar_unification_goals([delayed_goal(_,_,Goal-_)|Goals], HeadVars) :-
Goal = unify(Var,Rhs,_,_,_),
( member(Var, HeadVars)
; Rhs = var(OtherVar),
member(OtherVar, HeadVars)
),
no_non_headvar_unification_goals(Goals, HeadVars).
:- pred dcg_set_state(T, T, T).
:- mode dcg_set_state(in, in, out) is det.
dcg_set_state(Val, _OldVal, Val).
% Given an association list of Vars - Goals,
% combine all the Vars together into a single set.
:- pred get_all_waiting_vars(list(delayed_goal), set(prog_var)).
:- mode get_all_waiting_vars(in, out) is det.
get_all_waiting_vars(DelayedGoals, Vars) :-
set__init(Vars0),
get_all_waiting_vars_2(DelayedGoals, Vars0, Vars).
:- pred get_all_waiting_vars_2(list(delayed_goal), set(prog_var),
set(prog_var)).
:- mode get_all_waiting_vars_2(in, in, out) is det.
get_all_waiting_vars_2([], Vars, Vars).
get_all_waiting_vars_2([delayed_goal(Vars1, _, _) | Rest], Vars0, Vars) :-
set__union(Vars0, Vars1, Vars2),
get_all_waiting_vars_2(Rest, Vars2, Vars).
%-----------------------------------------------------------------------------%
:- pred modecheck_disj_list(list(hlds_goal), list(hlds_goal), list(instmap),
mode_info, mode_info).
:- mode modecheck_disj_list(in, out, out, mode_info_di, mode_info_uo) is det.
modecheck_disj_list([], [], []) --> [].
modecheck_disj_list([Goal0 | Goals0], Goals, [InstMap | InstMaps]) -->
mode_info_dcg_get_instmap(InstMap0),
modecheck_goal(Goal0, Goal),
mode_info_dcg_get_instmap(InstMap),
mode_info_set_instmap(InstMap0),
modecheck_disj_list(Goals0, Goals1, InstMaps),
%
% If Goal is a nested disjunction,
% then merge it with the outer disjunction.
% If Goal is `fail', this will delete it.
%
{ goal_to_disj_list(Goal, DisjList) },
{ list__append(DisjList, Goals1, Goals) }.
:- pred modecheck_case_list(list(case), prog_var, list(case), list(instmap),
mode_info, mode_info).
:- mode modecheck_case_list(in, in, out, out, mode_info_di, mode_info_uo)
is det.
modecheck_case_list([], _Var, [], []) --> [].
modecheck_case_list([Case0 | Cases0], Var,
[Case | Cases], [InstMap | InstMaps]) -->
{ Case0 = case(ConsId, Goal0) },
{ Case = case(ConsId, Goal) },
mode_info_dcg_get_instmap(InstMap0),
% record the fact that Var was bound to ConsId in the
% instmap before processing this case
modecheck_functor_test(Var, ConsId),
% modecheck this case (if it is reachable)
mode_info_dcg_get_instmap(InstMap1),
( { instmap__is_reachable(InstMap1) } ->
modecheck_goal(Goal0, Goal1),
mode_info_dcg_get_instmap(InstMap)
;
% We should not mode-analyse the goal, since it is unreachable.
% Instead we optimize the goal away, so that later passes
% won't complain about it not having mode information.
{ true_goal(Goal1) },
{ InstMap = InstMap1 }
),
% Don't lose the information added by the functor test above.
{ fixup_switch_var(Var, InstMap0, InstMap, Goal1, Goal) },
mode_info_set_instmap(InstMap0),
modecheck_case_list(Cases0, Var, Cases, InstMaps).
% modecheck_functor_test(ConsId, Var):
% update the instmap to reflect the fact that
% Var was bound to ConsId.
% This is used for the functor tests in `switch' statements.
%
modecheck_functor_test(Var, ConsId) -->
% figure out the arity of this constructor,
% _including_ any type-infos or typeclass-infos
% inserted for existential data types.
=(ModeInfo0),
{ mode_info_get_module_info(ModeInfo0, ModuleInfo) },
{ mode_info_get_var_types(ModeInfo0, VarTypes) },
{ map__lookup(VarTypes, Var, Type) },
{ AdjustedArity = cons_id_adjusted_arity(ModuleInfo, Type, ConsId) },
% record the fact that Var was bound to ConsId in the instmap
{ list__duplicate(AdjustedArity, free, ArgInsts) },
modecheck_set_var_inst(Var,
bound(unique, [functor(ConsId, ArgInsts)])).
%-----------------------------------------------------------------------------%
:- pred modecheck_par_conj_list(list(hlds_goal), list(hlds_goal),
set(prog_var), list(pair(instmap, set(prog_var))),
mode_info, mode_info).
:- mode modecheck_par_conj_list(in, out, in, out,
mode_info_di, mode_info_uo) is det.
modecheck_par_conj_list([], [], _NonLocals, []) --> [].
modecheck_par_conj_list([Goal0 | Goals0], [Goal|Goals], NonLocals,
[InstMap - GoalNonLocals | InstMaps]) -->
mode_info_dcg_get_instmap(InstMap0),
{ Goal0 = _ - GoalInfo },
{ goal_info_get_nonlocals(GoalInfo, GoalNonLocals) },
mode_info_get_parallel_vars(PVars0),
{ set__init(Bound0) },
mode_info_set_parallel_vars([NonLocals - Bound0|PVars0]),
modecheck_goal(Goal0, Goal),
mode_info_get_parallel_vars(PVars1),
(
{ PVars1 = [_ - Bound1|PVars2] },
(
{ PVars2 = [OuterNonLocals - OuterBound0|PVars3] },
{ set__intersect(OuterNonLocals, Bound1, Bound) },
{ set__union(OuterBound0, Bound, OuterBound) },
{ PVars = [OuterNonLocals - OuterBound|PVars3] },
mode_info_set_parallel_vars(PVars)
;
{ PVars2 = [] },
mode_info_set_parallel_vars(PVars2)
)
;
{ PVars1 = [] },
{ error("lost parallel vars") }
),
mode_info_dcg_get_instmap(InstMap),
mode_info_set_instmap(InstMap0),
mode_info_lock_vars(par_conj, Bound1),
modecheck_par_conj_list(Goals0, Goals, NonLocals, InstMaps),
mode_info_unlock_vars(par_conj, Bound1).
%-----------------------------------------------------------------------------%
%
% calculate the argument number offset that needs to be passed to
% modecheck_var_list_is_live, modecheck_var_has_inst_list, and
% modecheck_set_var_inst_list. This offset number is calculated
% so that real arguments get positive argument numbers and
% type_info arguments get argument numbers less than or equal to 0.
%
compute_arg_offset(PredInfo, ArgOffset) :-
pred_info_arity(PredInfo, OrigArity),
pred_info_arg_types(PredInfo, ArgTypes),
list__length(ArgTypes, CurrentArity),
ArgOffset = OrigArity - CurrentArity.
%-----------------------------------------------------------------------------%
% Given a list of variables and a list of expected livenesses,
% ensure the liveness of each variable satisfies the corresponding
% expected liveness.
modecheck_var_list_is_live([_|_], [], _, _) -->
{ error("modecheck_var_list_is_live: length mismatch") }.
modecheck_var_list_is_live([], [_|_], _, _) -->
{ error("modecheck_var_list_is_live: length mismatch") }.
modecheck_var_list_is_live([], [], _NeedExactMatch, _ArgNum) --> [].
modecheck_var_list_is_live([Var|Vars], [IsLive|IsLives], NeedExactMatch,
ArgNum0) -->
{ ArgNum is ArgNum0 + 1 },
mode_info_set_call_arg_context(ArgNum),
modecheck_var_is_live(Var, IsLive, NeedExactMatch),
modecheck_var_list_is_live(Vars, IsLives, NeedExactMatch, ArgNum).
:- pred modecheck_var_is_live(prog_var, is_live, bool, mode_info, mode_info).
:- mode modecheck_var_is_live(in, in, in, mode_info_di, mode_info_uo) is det.
% `live' means possibly used later on, and
% `dead' means definitely not used later on.
% If you don't need an exact match, then
% the only time you get an error is if you pass a variable
% which is live to a predicate that expects the variable to
% be dead; the predicate may use destructive update to clobber
% the variable, so we must be sure that it is dead after the call.
modecheck_var_is_live(VarId, ExpectedIsLive, NeedExactMatch,
ModeInfo0, ModeInfo) :-
mode_info_var_is_live(ModeInfo0, VarId, VarIsLive),
(
( ExpectedIsLive = dead, VarIsLive = live
; NeedExactMatch = yes, VarIsLive \= ExpectedIsLive
)
->
set__singleton_set(WaitingVars, VarId),
mode_info_error(WaitingVars, mode_error_var_is_live(VarId),
ModeInfo0, ModeInfo)
;
ModeInfo = ModeInfo0
).
%-----------------------------------------------------------------------------%
% Given a list of variables and a list of initial insts, ensure
% that the inst of each variable matches the corresponding initial
% inst.
modecheck_var_has_inst_list(Vars, Insts, NeedEaxctMatch, ArgNum, Subst) -->
{ map__init(Subst0) },
modecheck_var_has_inst_list_2(Vars, Insts, NeedEaxctMatch, ArgNum,
Subst0, Subst).
:- pred modecheck_var_has_inst_list_2(list(prog_var), list(inst), bool, int,
inst_var_sub, inst_var_sub, mode_info, mode_info).
:- mode modecheck_var_has_inst_list_2(in, in, in, in, in, out,
mode_info_di, mode_info_uo) is det.
modecheck_var_has_inst_list_2([_|_], [], _, _, _, _) -->
{ error("modecheck_var_has_inst_list: length mismatch") }.
modecheck_var_has_inst_list_2([], [_|_], _, _, _, _) -->
{ error("modecheck_var_has_inst_list: length mismatch") }.
modecheck_var_has_inst_list_2([], [], _Exact, _ArgNum, Subst, Subst) --> [].
modecheck_var_has_inst_list_2([Var|Vars], [Inst|Insts],
NeedExactMatch, ArgNum0, Subst0, Subst) -->
{ ArgNum is ArgNum0 + 1 },
mode_info_set_call_arg_context(ArgNum),
modecheck_var_has_inst(Var, Inst, NeedExactMatch, Subst0, Subst1),
modecheck_var_has_inst_list_2(Vars, Insts,
NeedExactMatch, ArgNum, Subst1, Subst).
:- pred modecheck_var_has_inst(prog_var, inst, bool,
inst_var_sub, inst_var_sub, mode_info, mode_info).
:- mode modecheck_var_has_inst(in, in, in,
in, out, mode_info_di, mode_info_uo) is det.
modecheck_var_has_inst(VarId, Inst, NeedExactMatch, Subst0, Subst,
ModeInfo0, ModeInfo) :-
mode_info_get_instmap(ModeInfo0, InstMap),
instmap__lookup_var(InstMap, VarId, VarInst),
mode_info_get_var_types(ModeInfo0, VarTypes),
map__lookup(VarTypes, VarId, Type),
mode_info_get_module_info(ModeInfo0, ModuleInfo0),
(
(
NeedExactMatch = no,
inst_matches_initial(VarInst, Inst, Type, ModuleInfo0,
ModuleInfo, Subst0, Subst1)
;
NeedExactMatch = yes,
inst_matches_final(VarInst, Inst, Type, ModuleInfo0),
ModuleInfo = ModuleInfo0,
Subst1 = Subst0
% WARNING:
% The code above (Subst1 = Subst0) assumes that there
% are no inst variables in the mode of the callee.
% Currently this will always true, since
% `NeedExactMatch' will be `yes' only if we are
% doing mode inference on the callee, and mode
% inference currently will not infer polymorphic modes.
% But that assumption might not always hold in future.
% An alternative would be to call inst_matches_initial
% here too, just to calculate the inst substitution.
% But that would be less efficient, so (at least
% for now) we don't do it.
)
->
Subst = Subst1,
mode_info_set_module_info(ModeInfo0, ModuleInfo, ModeInfo)
;
Subst = Subst0,
set__singleton_set(WaitingVars, VarId),
mode_info_error(WaitingVars,
mode_error_var_has_inst(VarId, VarInst, Inst),
ModeInfo0, ModeInfo)
).
%-----------------------------------------------------------------------------%
modecheck_set_var_inst_list(Vars0, InitialInsts, FinalInsts, ArgOffset,
Vars, Goals) -->
(
modecheck_set_var_inst_list_2(Vars0, InitialInsts, FinalInsts,
no_extra_goals, ArgOffset, Vars1, Goals1)
->
{ Vars = Vars1, Goals = Goals1 }
;
{ error("modecheck_set_var_inst_list: length mismatch") }
).
:- pred modecheck_set_var_inst_list_2(list(prog_var), list(inst), list(inst),
extra_goals, int, list(prog_var), extra_goals,
mode_info, mode_info).
:- mode modecheck_set_var_inst_list_2(in, in, in, in, in, out, out,
mode_info_di, mode_info_uo) is semidet.
modecheck_set_var_inst_list_2([], [], [], ExtraGoals, _, [], ExtraGoals) -->
[].
modecheck_set_var_inst_list_2([Var0 | Vars0], [InitialInst | InitialInsts],
[FinalInst | FinalInsts], ExtraGoals0, ArgNum0,
[Var | Vars], ExtraGoals) -->
{ ArgNum is ArgNum0 + 1 },
mode_info_set_call_arg_context(ArgNum),
modecheck_set_var_inst(Var0, InitialInst, FinalInst,
Var, ExtraGoals0, ExtraGoals1),
modecheck_set_var_inst_list_2(Vars0, InitialInsts, FinalInsts,
ExtraGoals1, ArgNum, Vars, ExtraGoals).
:- pred modecheck_set_var_inst(prog_var, inst, inst, prog_var, extra_goals,
extra_goals, mode_info, mode_info).
:- mode modecheck_set_var_inst(in, in, in, out, in, out,
mode_info_di, mode_info_uo) is det.
modecheck_set_var_inst(Var0, InitialInst, FinalInst, Var,
ExtraGoals0, ExtraGoals, ModeInfo0, ModeInfo) :-
mode_info_get_instmap(ModeInfo0, InstMap0),
( instmap__is_reachable(InstMap0) ->
% The new inst must be computed by unifying the
% old inst and the proc's final inst
instmap__lookup_var(InstMap0, Var0, VarInst0),
handle_implied_mode(Var0, VarInst0, InitialInst,
Var, ExtraGoals0, ExtraGoals, ModeInfo0, ModeInfo1),
modecheck_set_var_inst(Var0, FinalInst, ModeInfo1, ModeInfo2),
( Var = Var0 ->
ModeInfo = ModeInfo2
;
modecheck_set_var_inst(Var, FinalInst,
ModeInfo2, ModeInfo)
)
;
Var = Var0,
ExtraGoals = ExtraGoals0,
ModeInfo = ModeInfo0
).
% Note that there are two versions of modecheck_set_var_inst,
% one with arity 7 and one with arity 4.
% The former is used for predicate calls, where we may need
% to introduce unifications to handle calls to implied modes.
modecheck_set_var_inst(Var0, FinalInst, ModeInfo00, ModeInfo) :-
mode_info_get_instmap(ModeInfo0, InstMap0),
mode_info_get_parallel_vars(PVars0, ModeInfo00, ModeInfo0),
( instmap__is_reachable(InstMap0) ->
% The new inst must be computed by unifying the
% old inst and the proc's final inst
instmap__lookup_var(InstMap0, Var0, Inst0),
mode_info_get_module_info(ModeInfo0, ModuleInfo0),
(
abstractly_unify_inst(dead, Inst0, FinalInst,
fake_unify, ModuleInfo0,
UnifyInst, _Det, ModuleInfo1)
->
ModuleInfo = ModuleInfo1,
Inst = UnifyInst
;
error("modecheck_set_var_inst: unify_inst failed")
),
mode_info_set_module_info(ModeInfo0, ModuleInfo, ModeInfo1),
(
% if the top-level inst of the variable is not_reached,
% then the instmap as a whole must be unreachable
inst_expand(ModuleInfo, Inst, not_reached)
->
instmap__init_unreachable(InstMap),
mode_info_set_instmap(InstMap, ModeInfo1, ModeInfo3)
;
% If we haven't added any information and
% we haven't bound any part of the var, then
% the only thing we can have done is lose uniqueness.
mode_info_get_var_types(ModeInfo1, VarTypes),
map__lookup(VarTypes, Var0, Type),
inst_matches_initial(Inst0, Inst, Type, ModuleInfo)
->
instmap__set(InstMap0, Var0, Inst, InstMap),
mode_info_set_instmap(InstMap, ModeInfo1, ModeInfo3)
;
% We must have either added some information,
% lost some uniqueness, or bound part of the var.
% The call to inst_matches_binding will succeed
% only if we haven't bound any part of the var.
mode_info_get_var_types(ModeInfo1, VarTypes),
map__lookup(VarTypes, Var0, Type),
inst_matches_binding(Inst, Inst0, Type, ModuleInfo)
->
% We've just added some information
% or lost some uniqueness.
instmap__set(InstMap0, Var0, Inst, InstMap),
mode_info_set_instmap(InstMap, ModeInfo1, ModeInfo2),
mode_info_get_delay_info(ModeInfo2, DelayInfo0),
delay_info__bind_var(DelayInfo0, Var0, DelayInfo),
mode_info_set_delay_info(DelayInfo,
ModeInfo2, ModeInfo3)
;
% We've bound part of the var. If the var was locked,
% then we need to report an error.
mode_info_var_is_locked(ModeInfo1, Var0, Reason0)
->
set__singleton_set(WaitingVars, Var0),
mode_info_error(WaitingVars,
mode_error_bind_var(Reason0, Var0, Inst0, Inst),
ModeInfo1, ModeInfo3
)
;
instmap__set(InstMap0, Var0, Inst, InstMap),
mode_info_set_instmap(InstMap, ModeInfo1, ModeInfo2),
mode_info_get_delay_info(ModeInfo2, DelayInfo0),
delay_info__bind_var(DelayInfo0, Var0, DelayInfo),
mode_info_set_delay_info(DelayInfo,
ModeInfo2, ModeInfo3)
)
;
ModeInfo3 = ModeInfo0
),
(
PVars0 = [],
ModeInfo = ModeInfo3
;
PVars0 = [NonLocals - Bound0|PVars1],
( set__member(Var0, NonLocals) ->
set__insert(Bound0, Var0, Bound),
PVars = [NonLocals - Bound|PVars1]
;
PVars = PVars0
),
mode_info_set_parallel_vars(PVars, ModeInfo3, ModeInfo)
).
% If this was a call to an implied mode for that variable, then we need to
% introduce a fresh variable.
:- pred handle_implied_mode(prog_var, inst, inst, prog_var,
extra_goals, extra_goals, mode_info, mode_info).
:- mode handle_implied_mode(in, in, in, out, in, out,
mode_info_di, mode_info_uo) is det.
handle_implied_mode(Var0, VarInst0, InitialInst0, Var,
ExtraGoals0, ExtraGoals, ModeInfo0, ModeInfo) :-
mode_info_get_module_info(ModeInfo0, ModuleInfo0),
inst_expand(ModuleInfo0, InitialInst0, InitialInst),
inst_expand(ModuleInfo0, VarInst0, VarInst1),
mode_info_get_var_types(ModeInfo0, VarTypes0),
map__lookup(VarTypes0, Var0, VarType),
(
% If the initial inst of the variable matches_final
% the initial inst specified in the pred's mode declaration,
% then it's not a call to an implied mode, it's an exact
% match with a genuine mode.
inst_matches_final(VarInst1, InitialInst, VarType, ModuleInfo0)
->
Var = Var0,
ExtraGoals = ExtraGoals0,
ModeInfo = ModeInfo0
;
% This is the implied mode case.
% We do not yet handle implied modes for partially
% instantiated vars, since that would require
% doing a partially instantiated deep copy, and we
% don't know how to do that yet.
(
InitialInst = any(_),
inst_is_free(ModuleInfo0, VarInst1)
->
% This is the simple case of implied `any' modes,
% where the declared mode was `any -> ...'
% and the argument passed was `free'
Var = Var0,
% Create code to initialize the variable to
% inst `any', by calling <mod>:<type>_init_any/1,
% where <mod>:<type> is the type of the variable.
% XXX We ought to use a more elegant method
% XXX than hard-coding the name `<foo>_init_any'.
mode_info_get_context(ModeInfo0, Context),
mode_info_get_mode_context(ModeInfo0, ModeContext),
mode_context_to_unify_context(ModeContext, ModeInfo0,
UnifyContext),
CallUnifyContext = yes(call_unify_context(
Var, var(Var), UnifyContext)),
(
type_to_type_id(VarType, TypeId, _TypeArgs),
TypeId = qualified(TypeModule, TypeName) -
_TypeArity,
string__append(TypeName, "_init_any", PredName),
modes__build_call(TypeModule, PredName, [Var],
Context, CallUnifyContext, ModuleInfo0,
BeforeGoal - GoalInfo0)
->
set__singleton_set(NonLocals, Var),
goal_info_set_nonlocals(GoalInfo0,
NonLocals, GoalInfo1),
InstmapDeltaAL = [Var - InitialInst],
instmap_delta_from_assoc_list(InstmapDeltaAL,
InstmapDelta),
goal_info_set_instmap_delta(GoalInfo1,
InstmapDelta, GoalInfo),
NewExtraGoal = extra_goals(
[BeforeGoal - GoalInfo], []),
append_extra_goals(ExtraGoals0, NewExtraGoal,
ExtraGoals),
ModeInfo0 = ModeInfo
;
% If the type is a type variable,
% or there isn't any <mod>:<type>_init_any/1
% predicate, then give up.
ExtraGoals = ExtraGoals0,
set__singleton_set(WaitingVars, Var0),
mode_info_error(WaitingVars,
mode_error_implied_mode(Var0, VarInst0,
InitialInst),
ModeInfo0, ModeInfo
)
)
;
inst_is_bound(ModuleInfo0, InitialInst)
->
% This is the case we can't handle
Var = Var0,
ExtraGoals = ExtraGoals0,
set__singleton_set(WaitingVars, Var0),
mode_info_error(WaitingVars,
mode_error_implied_mode(Var0, VarInst0,
InitialInst),
ModeInfo0, ModeInfo
)
;
% This is the simple case of implied modes,
% where the declared mode was free -> ...
% Introduce a new variable
mode_info_get_varset(ModeInfo0, VarSet0),
varset__new_var(VarSet0, Var, VarSet),
map__set(VarTypes0, Var, VarType, VarTypes),
mode_info_set_varset(VarSet, ModeInfo0, ModeInfo1),
mode_info_set_var_types(VarTypes, ModeInfo1, ModeInfo),
% Construct the code to do the unification
modecheck_unify__create_var_var_unification(Var0, Var,
VarType, ModeInfo, ExtraGoal),
% append the goals together in the appropriate order:
% ExtraGoals0, then NewUnify
NewUnifyExtraGoal = extra_goals([], [ExtraGoal]),
append_extra_goals(ExtraGoals0, NewUnifyExtraGoal,
ExtraGoals)
)
).
:- pred modes__build_call(module_name, string, list(prog_var),
prog_context, maybe(call_unify_context), module_info,
hlds_goal).
:- mode modes__build_call(in, in, in, in, in, in, out) is semidet.
modes__build_call(Module, Name, ArgVars, Context, CallUnifyContext, ModuleInfo,
Goal) :-
module_info_get_predicate_table(ModuleInfo, PredicateTable),
list__length(ArgVars, Arity),
predicate_table_search_pred_m_n_a(PredicateTable, Module, Name, Arity,
[PredId]),
hlds_pred__proc_id_to_int(ModeId, 0), % first mode
Call = call(PredId, ModeId, ArgVars, not_builtin, CallUnifyContext,
qualified(Module, Name)),
goal_info_init(GoalInfo0),
goal_info_set_context(GoalInfo0, Context, GoalInfo),
Goal = Call - GoalInfo.
%-----------------------------------------------------------------------------%
mode_context_to_unify_context(unify(UnifyContext, _), _, UnifyContext).
mode_context_to_unify_context(call(CallId, Arg), _ModeInfo,
unify_context(call(CallId, Arg), [])).
mode_context_to_unify_context(uninitialized, _, _) :-
error("mode_context_to_unify_context: uninitialized context").
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
% check that the evaluation method is OK for the given mode(s).
% we also check the mode of main/2 here.
:- pred check_eval_methods(module_info, module_info, io__state, io__state).
:- mode check_eval_methods(in, out, di, uo) is det.
check_eval_methods(ModuleInfo0, ModuleInfo) -->
{ module_info_predids(ModuleInfo0, PredIds) },
pred_check_eval_methods(PredIds, ModuleInfo0, ModuleInfo).
:- pred pred_check_eval_methods(list(pred_id), module_info, module_info,
io__state, io__state).
:- mode pred_check_eval_methods(in, in, out, di, uo) is det.
pred_check_eval_methods([], M, M) --> [].
pred_check_eval_methods([PredId|Rest], ModuleInfo0, ModuleInfo) -->
{ module_info_preds(ModuleInfo0, Preds) },
{ map__lookup(Preds, PredId, PredInfo) },
{ pred_info_procids(PredInfo, ProcIds) },
proc_check_eval_methods(ProcIds, PredId, ModuleInfo0, ModuleInfo1),
pred_check_eval_methods(Rest, ModuleInfo1, ModuleInfo).
:- pred proc_check_eval_methods(list(proc_id), pred_id, module_info,
module_info, io__state, io__state).
:- mode proc_check_eval_methods(in, in, in, out, di, uo) is det.
proc_check_eval_methods([], _, M, M) --> [].
proc_check_eval_methods([ProcId|Rest], PredId, ModuleInfo0, ModuleInfo) -->
{ module_info_pred_proc_info(ModuleInfo0, PredId, ProcId,
PredInfo, ProcInfo) },
{ proc_info_eval_method(ProcInfo, EvalMethod) },
{ proc_info_argmodes(ProcInfo, Modes) },
(
{ eval_method_requires_ground_args(EvalMethod) = yes },
\+ { only_fully_in_out_modes(Modes, ModuleInfo0) }
->
report_eval_method_requires_ground_args(ProcInfo,
ModuleInfo0, ModuleInfo1)
;
{ ModuleInfo1 = ModuleInfo0 }
),
(
{ eval_method_destroys_uniqueness(EvalMethod) = yes },
\+ { only_nonunique_modes(Modes, ModuleInfo1) }
->
report_eval_method_destroys_uniqueness(ProcInfo,
ModuleInfo1, ModuleInfo2)
;
{ ModuleInfo2 = ModuleInfo1 }
),
(
{ pred_info_name(PredInfo, "main") },
{ pred_info_arity(PredInfo, 2) },
{ pred_info_is_exported(PredInfo) },
{ \+ check_mode_of_main(Modes, ModuleInfo2) }
->
report_wrong_mode_for_main(ProcInfo,
ModuleInfo2, ModuleInfo3)
;
{ ModuleInfo3 = ModuleInfo2 }
),
proc_check_eval_methods(Rest, PredId, ModuleInfo3, ModuleInfo).
:- pred only_fully_in_out_modes(list(mode), module_info).
:- mode only_fully_in_out_modes(in, in) is semidet.
only_fully_in_out_modes([], _).
only_fully_in_out_modes([Mode|Rest], ModuleInfo) :-
mode_get_insts(ModuleInfo, Mode, InitialInst, FinalInst),
(
inst_is_ground(ModuleInfo, InitialInst)
;
inst_is_free(ModuleInfo, InitialInst),
(
inst_is_free(ModuleInfo, FinalInst)
;
inst_is_ground(ModuleInfo, FinalInst)
)
),
only_fully_in_out_modes(Rest, ModuleInfo).
:- pred only_nonunique_modes(list(mode), module_info).
:- mode only_nonunique_modes(in, in) is semidet.
only_nonunique_modes([], _).
only_nonunique_modes([Mode|Rest], ModuleInfo) :-
mode_get_insts(ModuleInfo, Mode, InitialInst, FinalInst),
inst_is_not_partly_unique(ModuleInfo, InitialInst),
inst_is_not_partly_unique(ModuleInfo, FinalInst),
only_nonunique_modes(Rest, ModuleInfo).
:- pred check_mode_of_main(list(mode), module_info).
:- mode check_mode_of_main(in, in) is semidet.
check_mode_of_main([Di, Uo], ModuleInfo) :-
mode_get_insts(ModuleInfo, Di, DiInitialInst, DiFinalInst),
mode_get_insts(ModuleInfo, Uo, UoInitialInst, UoFinalInst),
%
% Note that we hard-code these tests,
% rather than using `inst_is_free', `inst_is_unique', etc.,
% since for main/2 we're looking for an exact match
% (modulo inst synonyms) with what the language reference
% manual specifies, rather than looking for a particular
% abstract property.
%
inst_expand(ModuleInfo, DiInitialInst, ground(unique, none)),
inst_expand(ModuleInfo, DiFinalInst, ground(clobbered, none)),
inst_expand(ModuleInfo, UoInitialInst, Free),
( Free = free ; Free = free(_Type) ),
inst_expand(ModuleInfo, UoFinalInst, ground(unique, none)).
:- pred report_eval_method_requires_ground_args(proc_info,
module_info, module_info, io__state, io__state).
:- mode report_eval_method_requires_ground_args(in, in, out, di, uo) is det.
report_eval_method_requires_ground_args(ProcInfo, ModuleInfo0, ModuleInfo) -->
{ proc_info_eval_method(ProcInfo, EvalMethod) },
{ proc_info_context(ProcInfo, Context) },
{ eval_method_to_string(EvalMethod, EvalMethodS) },
globals__io_lookup_bool_option(verbose_errors, VerboseErrors),
prog_out__write_context(Context),
io__write_string("Sorry, not implemented: `pragma "),
io__write_string(EvalMethodS),
io__write_string("'\n"),
prog_out__write_context(Context),
io__write_string(
" declaration not allowed for procedure with\n"),
prog_out__write_context(Context),
io__write_string(
" partially instantiated modes.\n"),
( { VerboseErrors = yes } ->
io__write_string(
" Tabling of predicates/functions with partially instantiated modes
is not currently implemented.\n")
;
[]
),
{ module_info_incr_errors(ModuleInfo0, ModuleInfo) }.
:- pred report_eval_method_destroys_uniqueness(proc_info,
module_info, module_info, io__state, io__state).
:- mode report_eval_method_destroys_uniqueness(in, in, out, di, uo) is det.
report_eval_method_destroys_uniqueness(ProcInfo, ModuleInfo0, ModuleInfo) -->
{ proc_info_eval_method(ProcInfo, EvalMethod) },
{ proc_info_context(ProcInfo, Context) },
{ eval_method_to_string(EvalMethod, EvalMethodS) },
globals__io_lookup_bool_option(verbose_errors, VerboseErrors),
prog_out__write_context(Context),
io__write_string("Error: `pragma "),
io__write_string(EvalMethodS),
io__write_string("'\n"),
prog_out__write_context(Context),
io__write_string(
" declaration not allowed for procedure with\n"),
prog_out__write_context(Context),
io__write_string(" unique modes.\n"),
( { VerboseErrors = yes } ->
io__write_string(
" Tabling of predicates/functions with unique modes is not allowed
as this would lead to a copying of the unique arguments which
would result in them no longer being unique.\n")
;
[]
),
{ module_info_incr_errors(ModuleInfo0, ModuleInfo) }.
:- pred report_wrong_mode_for_main(proc_info,
module_info, module_info, io__state, io__state).
:- mode report_wrong_mode_for_main(in, in, out, di, uo) is det.
report_wrong_mode_for_main(ProcInfo, ModuleInfo0, ModuleInfo) -->
{ proc_info_context(ProcInfo, Context) },
prog_out__write_context(Context),
io__write_string("Error: main/2 must have mode `(di, uo)'.\n"),
{ module_info_incr_errors(ModuleInfo0, ModuleInfo) }.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
% Given a list of variables, and a list of livenesses,
% select the live variables.
get_live_vars([_|_], [], _) :- error("get_live_vars: length mismatch").
get_live_vars([], [_|_], _) :- error("get_live_vars: length mismatch").
get_live_vars([], [], []).
get_live_vars([Var|Vars], [IsLive|IsLives], LiveVars) :-
( IsLive = live ->
LiveVars = [Var | LiveVars0]
;
LiveVars = LiveVars0
),
get_live_vars(Vars, IsLives, LiveVars0).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
% XXX - At the moment we don't check for circular modes or insts.
% (If they aren't used, the compiler will probably not
% detect the error; if they are, it will probably go into
% an infinite loop).
:- pred check_circular_modes(module_info, module_info, io__state, io__state).
:- mode check_circular_modes(in, out, di, uo) is det.
check_circular_modes(Module0, Module) -->
{ Module = Module0 }.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
|