File: module_qual.m

package info (click to toggle)
mercury 0.10.1-3
  • links: PTS
  • area: main
  • in suites: woody
  • size: 21,984 kB
  • ctags: 11,923
  • sloc: objc: 187,634; ansic: 66,107; sh: 7,570; lisp: 1,568; cpp: 1,337; makefile: 614; perl: 511; awk: 274; asm: 252; exp: 32; xml: 12; fortran: 3; csh: 1
file content (1725 lines) | stat: -rw-r--r-- 65,703 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
%-----------------------------------------------------------------------------%
% Copyright (C) 1996-2000 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
:- module module_qual.
%	Main authors: stayl, fjh.
%
%	Module qualifies types, insts and modes within declaration items.
%	The head of all declarations should be module qualified in prog_io.m.
%	This module qualifies the bodies of the declarations.
%	Checks for undefined types, insts and modes.
%	Uses two passes over the item list, one to collect all type, mode
%	and inst ids and a second to do the qualification and report errors.
%	If the --warn-interface-imports option is set, warns about modules
%	imported in the interface that do not need to be in the interface.
%	The modes of lambda expressions are qualified in modes.m.
%
:- interface.

:- import_module prog_data.
:- import_module bool, list, io.

	% module_qualify_items(Items0, Items, ModuleName, ReportUndefErrors,
	%			MQ_Info, NumErrors, UndefTypes, UndefModes):
	%
	% Items is Items0 with all items module qualified as much
	% as possible. If ReportUndefErrors is yes, then
	% report undefined types, insts and modes. 
	% ReportUndefErrors should be no when module qualifying the
	% short interface.
:- pred module_qual__module_qualify_items(item_list, item_list,
		module_name, bool, mq_info, int, bool, bool,
		io__state, io__state).
:- mode module_qual__module_qualify_items(in, out, in, in,
		out, out, out, out, di, uo) is det.

	% This is called from make_hlds.m to qualify the mode of a lambda
	% expression.
:- pred module_qual__qualify_lambda_mode_list(list(mode), list(mode),
		prog_context, mq_info, mq_info,
		io__state, io__state) is det.
:- mode module_qual__qualify_lambda_mode_list(in, out, 
		in, in, out, di, uo) is det.

	% This is called from make_hlds.m to qualify an 
	% explicit type qualification.
:- pred module_qual__qualify_type_qualification(type, type, prog_context,
		mq_info, mq_info, io__state, io__state).
:- mode module_qual__qualify_type_qualification(in, out, in, in,
		out, di, uo) is det.

	% The type mq_info holds information needed for doing module
	% qualification.
:- type mq_info.

:- pred mq_info_get_num_errors(mq_info::in, int::out) is det.
:- pred mq_info_get_type_error_flag(mq_info::in, bool::out) is det.
:- pred mq_info_get_mode_error_flag(mq_info::in, bool::out) is det.
:- pred mq_info_set_need_qual_flag(mq_info::in, 
		need_qualifier::in, mq_info::out) is det.
:- pred mq_info_get_need_qual_flag(mq_info::in, need_qualifier::out) is det.
:- pred mq_info_get_partial_qualifier_info(mq_info::in,
		partial_qualifier_info::out) is det.

	% The type partial_qualifier_info holds info need for computing which
	% partial quantifiers are visible -- see get_partial_qualifiers/3.
:- type partial_qualifier_info.

% Suppose we are processing a definition which defines the symbol
% foo:bar:baz:quux/1.  Then we insert the following symbols
% into the symbol table:
%	- if the current value of the NeedQual flag at this point
%		is `may_be_unqualified',
%		i.e. module `foo:bar:baz' was imported
%		then we insert the fully unqualified symbol quux/1;
%	- if module `foo:bar:baz' occurs in the "imported" section,
%		i.e. if module `foo:bar' was imported,
%		then we insert the partially qualified symbol baz:quux/1;
%	- if module `foo:bar' occurs in the "imported" section,
%		i.e. if module `foo' was imported,
%		then we insert the partially qualified symbol bar:baz:quux/1;
%	- we always insert the fully qualified symbol foo:bar:baz:quux/1.
%
% The predicate `get_partial_qualifiers' returns all of the
% partial qualifiers for which we need to insert definitions,
% i.e. all the ones which are visible.  For example,
% given as input `foo:bar:baz', it returns a list containing
%	(1) `baz', iff `foo:bar' is imported
% and 	(2) `bar:baz', iff `foo' is imported.
% Note that the caller will still need to handle the fully-qualified
% and fully-unqualified versions separately.

:- pred get_partial_qualifiers(module_name, partial_qualifier_info,
		list(module_name)).
:- mode get_partial_qualifiers(in, in, out) is det.

%-----------------------------------------------------------------------------%
:- implementation.

:- import_module type_util, prog_io, prog_out.
:- import_module prog_util, mercury_to_mercury, modules, globals, options.
:- import_module (inst), instmap.
:- import_module int, map, require, set, std_util, string, term, varset.
:- import_module assoc_list.

module_qual__module_qualify_items(Items0, Items, ModuleName, ReportErrors,
			Info, NumErrors, UndefTypes, UndefModes) -->
	globals__io_get_globals(Globals),
	{ init_mq_info(Items0, Globals, ReportErrors, ModuleName, Info0) },
	{ collect_mq_info(Items0, Info0, Info1) },
	do_module_qualify_items(Items0, Items, Info1, Info),
	{ mq_info_get_type_error_flag(Info, UndefTypes) },
	{ mq_info_get_mode_error_flag(Info, UndefModes) },
	( { ReportErrors = yes } ->
		{ mq_info_get_unused_interface_modules(Info, UnusedImports0) },
		{ set__to_sorted_list(UnusedImports0, UnusedImports) },
		maybe_warn_unused_interface_imports(ModuleName, UnusedImports)
	;
		[]
	),
	{ mq_info_get_num_errors(Info, NumErrors) }.

module_qual__qualify_lambda_mode_list(Modes0, Modes, Context, Info0, Info) -->
	{ mq_info_set_error_context(Info0, lambda_expr - Context, Info1) },
	qualify_mode_list(Modes0, Modes, Info1, Info).

module_qual__qualify_type_qualification(Type0, Type, Context, Info0, Info) -->
	{ mq_info_set_error_context(Info0, type_qual - Context, Info1) },
	qualify_type(Type0, Type, Info1, Info).

:- type mq_info
	--->	mq_info(
				% Modules which have been imported or used,
				% i.e. ones for which there was a
				% `:- import_module' or `:- use_module'
				% declaration in this module.
			imported_modules::set(module_name),

				% Sets of all modules, types, insts, modes,
				% and typeclasses visible in this module.
			modules::module_id_set,
			types::type_id_set,
			insts::inst_id_set,
			modes::mode_id_set,
			classes::class_id_set,

			unused_interface_modules::set(module_name), 
				% modules imported in the
				% interface that are not definitely
				% needed in the interface.

				% import status of the current item.
			import_status::import_status, 

			num_errors::int,% number of errors found.

				% are there any undefined types or typeclasses.
			type_error_flag::bool,	
				% are there any undefined insts or modes.
			mode_error_flag::bool,	
				% do we want to report errors.
			report_error_flag::bool, 	
				% context of the current item.
			error_context::error_context,	
				% name of the current module
			this_module::module_name,  
				% must uses of the current item be 
				% explicitly module qualified.
			need_qual_flag::need_qualifier	
	).

:- type partial_qualifier_info --->
	partial_qualifier_info(module_id_set).

mq_info_get_partial_qualifier_info(MQInfo, QualifierInfo) :-
	mq_info_get_modules(MQInfo, ModuleIdSet),
	QualifierInfo = partial_qualifier_info(ModuleIdSet).

	% We only need to keep track of what is exported and what isn't,
	% so we use a simpler data type here than hlds_pred__import_status.
:- type import_status
	--->	exported
	;	not_exported.
		
	% Pass over the item list collecting all defined module, type, mode and
	% inst ids, all module synonym definitions, and the names of all
	% modules imported in the interface.
:- pred collect_mq_info(item_list::in, mq_info::in, mq_info::out) is det.

collect_mq_info([], Info, Info).
collect_mq_info([Item - _ | Items], Info0, Info) :-
	collect_mq_info_2(Item, Info0, Info1),
	collect_mq_info(Items, Info1, Info).

:- pred collect_mq_info_2(item::in, mq_info::in, mq_info::out) is det.

collect_mq_info_2(pred_clause(_,_,_,_), Info, Info).
collect_mq_info_2(func_clause(_,_,_,_,_), Info, Info).
collect_mq_info_2(type_defn(_, TypeDefn, _), Info0, Info) :-
	add_type_defn(TypeDefn, Info0, Info).
collect_mq_info_2(inst_defn(_, InstDefn, _), Info0, Info) :-
	add_inst_defn(InstDefn, Info0, Info).
collect_mq_info_2(mode_defn(_, ModeDefn, _), Info0, Info) :-
	add_mode_defn(ModeDefn, Info0, Info).
collect_mq_info_2(module_defn(_, ModuleDefn), Info0, Info) :-
	process_module_defn(ModuleDefn, Info0, Info).
collect_mq_info_2(pred(_,__,_,_,_,_,_,_,_), Info, Info).
collect_mq_info_2(func(_,_,__,_,_,_,_,_,_,_), Info, Info).
collect_mq_info_2(pred_mode(_,_,_,_,_), Info, Info).
collect_mq_info_2(func_mode(_,_,_,_,_,_), Info, Info).
collect_mq_info_2(pragma(_), Info, Info).
collect_mq_info_2(assertion(Goal, _ProgVarSet), Info0, Info) :-
	process_assert(Goal, SymNames, Success),
	(
		Success = yes,
		list__foldl((pred(SymName::in, I0::in, I::out) is det :- 
				(
					SymName = qualified(ModuleName, _)
				->
					mq_info_set_module_used(I0,
							ModuleName, I)
				;
					error("collect_mq_info_2: SymName not qualified.")
				)
			), 
			SymNames, Info0, Info)
	;
			% Any unqualified symbol in the assertion might
			% come from *any* of the imported modules.
			% There's no way for us to tell which ones.  So
			% we conservatively assume that it uses all of
			% them. 
		Success = no,
		set__init(UnusedInterfaceModules),
		mq_info_set_unused_interface_modules(Info0,
				UnusedInterfaceModules, Info)
	).
collect_mq_info_2(nothing, Info, Info).
collect_mq_info_2(typeclass(_, Name, Vars, _, _), Info0, Info) :-
	add_typeclass_defn(Name, Vars, Info0, Info).
collect_mq_info_2(instance(_,_,_,_,_,_), Info, Info).


% Predicates to add the type, inst, mode and typeclass ids visible
% in this module to the mq_info.

:- pred add_type_defn(type_defn::in, mq_info::in, mq_info::out) is det.

add_type_defn(TypeDefn, Info0, Info) :-
	(	TypeDefn = du_type(SymName, Params, _, _EqualityPred)
	;	TypeDefn = uu_type(SymName, Params, _)
	;	TypeDefn = eqv_type(SymName, Params, _)
	;	TypeDefn = abstract_type(SymName, Params)
	),
	list__length(Params, Arity),
	mq_info_get_types(Info0, Types0),
	mq_info_get_need_qual_flag(Info0, NeedQualifier),
	id_set_insert(NeedQualifier, SymName - Arity, Types0, Types),
	mq_info_set_types(Info0, Types, Info).

:- pred add_inst_defn(inst_defn::in, mq_info::in, mq_info::out) is det.

add_inst_defn(InstDefn, Info0, Info) :-
	(	InstDefn = eqv_inst(SymName, Params, _)
	;	InstDefn = abstract_inst(SymName, Params)
	),
	list__length(Params, Arity),
	mq_info_get_insts(Info0, Insts0),
	mq_info_get_need_qual_flag(Info0, NeedQualifier),
	id_set_insert(NeedQualifier, SymName - Arity, Insts0, Insts),
	mq_info_set_insts(Info0, Insts, Info).

:- pred add_mode_defn(mode_defn::in, mq_info::in, mq_info::out) is det.

add_mode_defn(eqv_mode(SymName, Params, _), Info0, Info) :-
	list__length(Params, Arity),
	mq_info_get_modes(Info0, Modes0),
	mq_info_get_need_qual_flag(Info0, NeedQualifier),
	id_set_insert(NeedQualifier, SymName - Arity, Modes0, Modes),
	mq_info_set_modes(Info0, Modes, Info).

:- pred add_typeclass_defn(sym_name::in, list(tvar)::in, 
	mq_info::in, mq_info::out) is det.

add_typeclass_defn(SymName, Params, Info0, Info) :-
	list__length(Params, Arity),
	mq_info_get_classes(Info0, Classes0),
	mq_info_get_need_qual_flag(Info0, NeedQualifier),
	id_set_insert(NeedQualifier, SymName - Arity, Classes0, Classes),
	mq_info_set_classes(Info0, Classes, Info).

	% process_module_defn:
	%
	% - Update the import status.
	%
	% - For sub-module definitions (whether nested or separate,
	%   i.e. either `:- module foo.' or `:- include_module foo.'),
	%   add the module id to the module_id_set.
	%
	% - For import declarations (`:- import_module' or `:- use_module'),
	%   if we're currently in the interface section, then add the
	%   imported modules to the unused_interface_modules list.

:- pred process_module_defn(module_defn::in, mq_info::in, mq_info::out) is det.

process_module_defn(module(ModuleName), Info0, Info) :-
	add_module_defn(ModuleName, Info0, Info).
process_module_defn(include_module(ModuleNameList), Info0, Info) :-
	list__foldl(add_module_defn, ModuleNameList, Info0, Info).
process_module_defn(interface, Info0, Info) :-
	mq_info_set_import_status(Info0, exported, Info).
process_module_defn(private_interface, Info0, Info) :-
	mq_info_set_import_status(Info0, not_exported, Info).
process_module_defn(implementation, Info0, Info) :-
	mq_info_set_import_status(Info0, not_exported, Info).
process_module_defn(imported(_), Info0, Info) :-
	mq_info_set_import_status(Info0, not_exported, Info1),
	mq_info_set_need_qual_flag(Info1, may_be_unqualified, Info).
process_module_defn(used(_), Info0, Info) :-
	mq_info_set_import_status(Info0, not_exported, Info1),
	mq_info_set_need_qual_flag(Info1, must_be_qualified, Info).
process_module_defn(opt_imported, Info0, Info) :-
	mq_info_set_import_status(Info0, not_exported, Info1),
	mq_info_set_need_qual_flag(Info1, must_be_qualified, Info).
process_module_defn(external(_), Info, Info).
process_module_defn(end_module(_), Info, Info).
process_module_defn(export(_), Info, Info).
process_module_defn(import(Imports), Info0, Info) :-
	add_imports(Imports, Info0, Info).
process_module_defn(use(Imports), Info0, Info) :-
	add_imports(Imports, Info0, Info).

:- pred add_module_defn(module_name, mq_info, mq_info).
:- mode add_module_defn(in, in, out) is det.

add_module_defn(ModuleName, Info0, Info) :-
	mq_info_get_modules(Info0, Modules0),
	mq_info_get_need_qual_flag(Info0, NeedQualifier),
	Arity = 0,
	id_set_insert(NeedQualifier, ModuleName - Arity, Modules0, Modules),
	mq_info_set_modules(Info0, Modules, Info).

:- pred add_imports(sym_list::in, mq_info::in, mq_info::out) is det.

add_imports(Imports, Info0, Info) :-
	( Imports = module(ImportedModules) ->
		mq_info_add_imported_modules(Info0, ImportedModules, Info1),
		( mq_info_get_import_status(Info1, exported) ->
			mq_info_add_unused_interface_modules(Info1,
				ImportedModules, Info)
		;
			Info = Info1
		)
	;
		Info = Info0
	).

%------------------------------------------------------------------------------

	% process_assert(G, SNs, B)
	%
	% Scan the goal, G, building the list of qualified symbols, SNs.
	% If there exists a single unqualifed symbol in G, the bool, B,
	% will be set to no.
:- pred process_assert(goal::in, list(sym_name)::out, bool::out) is det.

	% AAA Some more stuff to do accumulator introduction on, it
	% would be better to rewrite using maybes and then to declare
	% the maybe_and predicate to be associative.
	% NB. accumulator introduction doesn't work on this case yet.
process_assert((GA , GB) - _, Symbols, Success) :-
	process_assert(GA, SymbolsA, SuccessA),
	process_assert(GB, SymbolsB, SuccessB),
	list__append(SymbolsA, SymbolsB, Symbols),
	bool__and(SuccessA, SuccessB, Success).
process_assert(true - _, [], yes).
process_assert((GA & GB) - _, Symbols, Success) :-
	process_assert(GA, SymbolsA, SuccessA),
	process_assert(GB, SymbolsB, SuccessB),
	list__append(SymbolsA, SymbolsB, Symbols),
	bool__and(SuccessA, SuccessB, Success).
process_assert((GA ; GB) - _, Symbols, Success) :-
	process_assert(GA, SymbolsA, SuccessA),
	process_assert(GB, SymbolsB, SuccessB),
	list__append(SymbolsA, SymbolsB, Symbols),
	bool__and(SuccessA, SuccessB, Success).
process_assert(fail - _, [], yes).
process_assert(some(_, G) - _, Symbols, Success) :-
	process_assert(G, Symbols, Success).
process_assert(all(_, G) - _, Symbols, Success) :-
	process_assert(G, Symbols, Success).
process_assert(implies(GA, GB) - _, Symbols, Success) :-
	process_assert(GA, SymbolsA, SuccessA),
	process_assert(GB, SymbolsB, SuccessB),
	list__append(SymbolsA, SymbolsB, Symbols),
	bool__and(SuccessA, SuccessB, Success).
process_assert(equivalent(GA, GB) - _, Symbols, Success) :-
	process_assert(GA, SymbolsA, SuccessA),
	process_assert(GB, SymbolsB, SuccessB),
	list__append(SymbolsA, SymbolsB, Symbols),
	bool__and(SuccessA, SuccessB, Success).
process_assert(not(G) - _, Symbols, Success) :-
	process_assert(G, Symbols, Success).
process_assert(if_then(_, GA, GB) - _, Symbols, Success) :-
	process_assert(GA, SymbolsA, SuccessA),
	process_assert(GB, SymbolsB, SuccessB),
	list__append(SymbolsA, SymbolsB, Symbols),
	bool__and(SuccessA, SuccessB, Success).
process_assert(if_then_else(_, GA, GB, GC) - _, Symbols, Success) :-
	process_assert(GA, SymbolsA, SuccessA),
	process_assert(GB, SymbolsB, SuccessB),
	process_assert(GC, SymbolsC, SuccessC),
	list__append(SymbolsA, SymbolsB, Symbols0),
	list__append(Symbols0, SymbolsC, Symbols),
	bool__and(SuccessA, SuccessB, Success0),
	bool__and(Success0, SuccessC, Success).
process_assert(call(SymName, Args0, _Purity) - _, Symbols, Success) :-
	(
		SymName = qualified(_, _)
	->
		list__map(term__coerce, Args0, Args),
		(
			term_qualified_symbols_list(Args, Symbols0)
		->
			Symbols = [SymName | Symbols0],
			Success = yes
		;
			Symbols = [],
			Success = no
		)
	;
		Symbols = [],
		Success = no
	).
process_assert(unify(LHS0, RHS0, _Purity) - _, Symbols, Success) :-
	term__coerce(LHS0, LHS),
	term__coerce(RHS0, RHS),
	(
		term_qualified_symbols(LHS, SymbolsL),
		term_qualified_symbols(RHS, SymbolsR)
	->
		list__append(SymbolsL, SymbolsR, Symbols),
		Success = yes
	;
		Symbols = [],
		Success = no
	).

	% term_qualified_symbols(T, S)
	%
	% Given a term, T, return the list of all the sym_names, S, in
	% the term.  The predicate fails if any sub-term of T is
	% unqualified.
:- pred term_qualified_symbols(term::in, list(sym_name)::out) is semidet.

term_qualified_symbols(Term, Symbols) :-
	(
		sym_name_and_args(Term, SymName, Args)
	->
		SymName = qualified(_, _),
		term_qualified_symbols_list(Args, Symbols0),
		Symbols = [SymName | Symbols0]
	;
		Symbols = []
	).

:- pred term_qualified_symbols_list(list(term)::in,
		list(sym_name)::out) is semidet.

	% Yeah one more place where accumulators will be introduced!
term_qualified_symbols_list([], []).
term_qualified_symbols_list([Term | Terms], Symbols) :-
	term_qualified_symbols(Term, TermSymbols),
	term_qualified_symbols_list(Terms, Symbols0),
	list__append(Symbols0, TermSymbols, Symbols).

%------------------------------------------------------------------------------

	% Iterate over the item list module qualifying all declarations.
	% Stop when the :- imported or :- opt_imported pseudo-declaration
	% is reached, since imported declarations should already be
	% module qualified.
:- pred do_module_qualify_items(item_list::in, item_list::out,
		mq_info::in, mq_info::out, io__state::di, io__state::uo) is det.

do_module_qualify_items([], [], Info, Info) --> [].
do_module_qualify_items([Item0 | Items0], [Item | Items], Info0, Info) -->
	module_qualify_item(Item0, Item, Info0, Info1, Continue),
	( { Continue = yes } ->
		do_module_qualify_items(Items0, Items, Info1, Info)
	;
		{ Items = Items0 },
		{ Info = Info1 }
	).

	% Call predicates to qualify a single item.
:- pred module_qualify_item(item_and_context::in, item_and_context::out,
		mq_info::in, mq_info::out, bool::out,
		io__state::di, io__state::uo) is det.

module_qualify_item(pred_clause(A,B,C,D) - Con, pred_clause(A,B,C,D) - Con,
			Info, Info, yes) --> [].

module_qualify_item(func_clause(A,B,C,D,E) - Con, func_clause(A,B,C,D,E) - Con,
			Info, Info, yes) --> [].

module_qualify_item(type_defn(A, TypeDefn0, C) - Context,
		type_defn(A, TypeDefn, C) - Context, Info0, Info, yes) --> 
	qualify_type_defn(TypeDefn0, TypeDefn, Info0, Info, Context).  

module_qualify_item(inst_defn(A, InstDefn0, C) - Context,
		inst_defn(A, InstDefn, C) - Context, Info0, Info, yes) --> 
	qualify_inst_defn(InstDefn0, InstDefn, Info0, Info, Context).

module_qualify_item(mode_defn(A, ModeDefn0, C) - Context,
		mode_defn(A, ModeDefn, C) - Context, Info0, Info, yes) -->
	qualify_mode_defn(ModeDefn0, ModeDefn, Info0, Info, Context).

module_qualify_item(module_defn(A, ModuleDefn) - Context,
		module_defn(A, ModuleDefn) - Context, Info0, Info, Continue) -->
	{ update_import_status(ModuleDefn, Info0, Info, Continue) }.

module_qualify_item(
		pred(A, IVs, B, SymName, TypesAndModes0, C, D, E,
			Constraints0) - Context,
		pred(A, IVs, B, SymName, TypesAndModes,  C, D, E,
			Constraints) - Context,
		Info0, Info, yes) -->
	{ list__length(TypesAndModes0, Arity) },
	{ mq_info_set_error_context(Info0, pred(SymName - Arity) - Context,
								Info1) },
	qualify_types_and_modes(TypesAndModes0, TypesAndModes, Info1, Info2),
	qualify_class_constraints(Constraints0, Constraints, Info2, Info).

module_qualify_item(
		func(A, IVs, B, SymName, TypesAndModes0, TypeAndMode0, F, G, H,
			Constraints0) - Context,
		func(A, IVs, B, SymName, TypesAndModes, TypeAndMode, F, G, H,
			Constraints) - Context,
		Info0, Info, yes) -->
	{ list__length(TypesAndModes0, Arity) },
	{ mq_info_set_error_context(Info0, func(SymName - Arity) - Context,
								Info1) },
	qualify_types_and_modes(TypesAndModes0, TypesAndModes, Info1, Info2),
	qualify_type_and_mode(TypeAndMode0, TypeAndMode, Info2, Info3),
	qualify_class_constraints(Constraints0, Constraints, Info3, Info).

module_qualify_item(pred_mode(A, SymName, Modes0, C, D) - Context,
		 	pred_mode(A, SymName, Modes, C, D) - Context,
			Info0, Info, yes) -->
	{ list__length(Modes0, Arity) },
	{ mq_info_set_error_context(Info0, pred_mode(SymName - Arity) - Context,
								 Info1) },
	qualify_mode_list(Modes0, Modes, Info1, Info).

module_qualify_item(func_mode(A, SymName, Modes0, Mode0, C, D) - Context, 
		func_mode(A, SymName, Modes, Mode, C, D) - Context,
		Info0, Info, yes) -->
	{ list__length(Modes0, Arity) },
	{ mq_info_set_error_context(Info0, func_mode(SymName - Arity) - Context,
								 Info1) },
	qualify_mode_list(Modes0, Modes, Info1, Info2),
	qualify_mode(Mode0, Mode, Info2, Info).

module_qualify_item(pragma(Pragma0) - Context, pragma(Pragma) - Context,
						Info0, Info, yes) -->
	{ mq_info_set_error_context(Info0, (pragma) - Context, Info1) },
	qualify_pragma(Pragma0, Pragma, Info1, Info).
module_qualify_item(assertion(G, V) - Context, assertion(G, V) - Context,
						Info, Info, yes) --> [].
module_qualify_item(nothing - Context, nothing - Context,
						Info, Info, yes) --> [].
module_qualify_item(typeclass(Constraints0, Name, Vars, Interface0, VarSet) -
			Context, 
		typeclass(Constraints, Name, Vars, Interface, VarSet) -
			Context, 
		Info0, Info, yes) -->
	{ list__length(Vars, Arity) },
	{ Id = Name - Arity },
	{ mq_info_set_error_context(Info0, class(Id) - Context, Info1) },
	qualify_class_constraint_list(Constraints0, Constraints, Info1, Info2),
	qualify_class_interface(Interface0, Interface, Info2, Info).

module_qualify_item(instance(Constraints0, Name0, Types0, Body0, VarSet,
		ModName) - Context, 
		instance(Constraints, Name, Types, Body, VarSet, ModName) -
			Context, 
		Info0, Info, yes) -->
	{ list__length(Types0, Arity) },
	{ Id = Name0 - Arity },
	{ mq_info_set_error_context(Info0, instance(Id) - Context, Info1) },
		% We don't qualify the implementation yet, since that requires
		% us to resolve overloading.
	qualify_class_constraint_list(Constraints0, Constraints, Info1, Info2),
	qualify_class_name(Id, Name - _, Info2, Info3),
	qualify_type_list(Types0, Types, Info3, Info),
	{ qualify_instance_body(Name, Body0, Body) }.

:- pred update_import_status(module_defn::in, mq_info::in, mq_info::out,
							bool::out) is det.

update_import_status(opt_imported, Info, Info, no).
update_import_status(module(_), Info, Info, yes).
update_import_status(interface, Info0, Info, yes) :-
	mq_info_set_import_status(Info0, exported, Info).
update_import_status(implementation, Info0, Info, yes) :-
	mq_info_set_import_status(Info0, not_exported, Info).
update_import_status(private_interface, Info0, Info, yes) :-
	mq_info_set_import_status(Info0, not_exported, Info).
update_import_status(imported(_), Info, Info, no).
update_import_status(used(_), Info, Info, no).
update_import_status(external(_), Info, Info, yes).
update_import_status(end_module(_), Info, Info, yes).
update_import_status(export(_), Info, Info, yes).
update_import_status(import(_), Info, Info, yes).
update_import_status(use(_), Info, Info, yes).
update_import_status(include_module(_), Info0, Info, yes) :-
	% The sub-module might make use of *any* of the imported modules.
	% There's no way for us to tell which ones.
	% So we conservatively assume that it uses all of them.
	set__init(UnusedInterfaceModules),
	mq_info_set_unused_interface_modules(Info0, UnusedInterfaceModules,
		Info).

	% Qualify the constructors or other types in a type definition.	
:- pred qualify_type_defn(type_defn::in, type_defn::out, mq_info::in,
	mq_info::out, prog_context::in, io__state::di, io__state::uo) is det.

qualify_type_defn(du_type(SymName, Params, Ctors0, MaybeEqualityPred0),
		du_type(SymName, Params, Ctors, MaybeEqualityPred),
		Info0, Info, Context) -->
	{ list__length(Params, Arity) },
	{ mq_info_set_error_context(Info0, type(SymName - Arity) - Context,
								Info1) },
	qualify_constructors(Ctors0, Ctors, Info1, Info),

	% User-defined equality pred names will be converted into
	% predicate calls and then module-qualified after type analysis
	% (during mode analysis).  That way they get full type overloading
	% resolution, etc.  Thus we don't module-qualify them here.
	{ MaybeEqualityPred = MaybeEqualityPred0 }.

qualify_type_defn(uu_type(SymName, Params, Types0),
		uu_type(SymName, Params, Types), Info0, Info, Context) -->
	{ list__length(Params, Arity) },
	{ mq_info_set_error_context(Info0, type(SymName - Arity) - Context,
								Info1) },
	qualify_type_list(Types0, Types, Info1, Info).	

qualify_type_defn(eqv_type(SymName, Params, Type0),
		eqv_type(SymName, Params, Type),
		Info0, Info, Context) -->
	{ list__length(Params, Arity) },
	{ mq_info_set_error_context(Info0, type(SymName - Arity) - Context,
								Info1) },
	qualify_type(Type0, Type, Info1, Info).	

qualify_type_defn(abstract_type(SymName, Params),
		abstract_type(SymName, Params), Info, Info, _) --> [].

:- pred qualify_constructors(list(constructor)::in, list(constructor)::out,
		mq_info::in, mq_info::out, io__state::di, io__state::uo) is det.
				
qualify_constructors([], [], Info, Info) --> [].
qualify_constructors([Ctor0 | Ctors0], [Ctor | Ctors], Info0, Info) -->
	{ Ctor0 = ctor(ExistQVars, Constraints0, SymName, Args0) },
	{ Ctor = ctor(ExistQVars, Constraints, SymName, Args) },
	qualify_constructor_arg_list(Args0, Args, Info0, Info1),
	qualify_constructors(Ctors0, Ctors, Info1, Info2),
	qualify_class_constraint_list(Constraints0, Constraints, Info2, Info).

	% Qualify the inst parameters of an inst definition.
:- pred qualify_inst_defn(inst_defn::in, inst_defn::out, mq_info::in,
	mq_info::out, prog_context::in, io__state::di, io__state::uo) is det.

qualify_inst_defn(eqv_inst(SymName, Params, Inst0),
		eqv_inst(SymName, Params, Inst), Info0, Info, Context) -->
	{ list__length(Params, Arity) },
	{ mq_info_set_error_context(Info0, inst(SymName - Arity) - Context,
								Info1) },
	qualify_inst(Inst0, Inst, Info1, Info).	

qualify_inst_defn(abstract_inst(SymName, Params),
	 abstract_inst(SymName, Params), Info, Info, _) --> [].

	% Qualify the mode parameter of an equivalence mode definition.
:- pred qualify_mode_defn(mode_defn::in, mode_defn::out, mq_info::in,
	mq_info::out, prog_context::in, io__state::di, io__state::uo) is det.

qualify_mode_defn(eqv_mode(SymName, Params, Mode0),
		eqv_mode(SymName, Params, Mode), Info0, Info, Context) -->
	{ list__length(Params, Arity) },
	{ mq_info_set_error_context(Info0, mode(SymName - Arity) - Context,
								Info1) },
	qualify_mode(Mode0, Mode, Info1, Info).	

	% Qualify a list of items of the form Type::Mode, as in a
	% predicate declaration.
:- pred qualify_types_and_modes(list(type_and_mode)::in,
		list(type_and_mode)::out, mq_info::in, mq_info::out,
		io__state::di, io__state::uo) is det.

qualify_types_and_modes([], [], Info, Info) --> [].
qualify_types_and_modes([TypeAndMode0 | TypesAndModes0],
		[TypeAndMode | TypesAndModes], Info0, Info) -->
	qualify_type_and_mode(TypeAndMode0, TypeAndMode, Info0, Info1),
	qualify_types_and_modes(TypesAndModes0, TypesAndModes, Info1, Info).

:- pred qualify_type_and_mode(type_and_mode::in, type_and_mode::out,
	mq_info::in, mq_info::out, io__state::di, io__state::uo) is det.

qualify_type_and_mode(type_only(Type0), type_only(Type), Info0, Info) -->
	qualify_type(Type0, Type, Info0, Info).

qualify_type_and_mode(type_and_mode(Type0, Mode0), type_and_mode(Type, Mode),
			Info0, Info) -->
	qualify_type(Type0, Type, Info0, Info1),
	qualify_mode(Mode0, Mode, Info1, Info).

:- pred qualify_mode_list(list(mode)::in, list(mode)::out, mq_info::in,
		mq_info::out, io__state::di, io__state::uo) is det.

qualify_mode_list([], [], Info, Info) --> [].
qualify_mode_list([Mode0 | Modes0], [Mode | Modes], Info0, Info) -->
	qualify_mode(Mode0, Mode, Info0, Info1),
	qualify_mode_list(Modes0, Modes, Info1, Info).

:- pred qualify_mode((mode)::in, (mode)::out, mq_info::in, mq_info::out,
			io__state::di, io__state::uo) is det.

qualify_mode((Inst0a -> Inst1a), (Inst0 -> Inst1), Info0, Info) -->
	qualify_inst(Inst0a, Inst0, Info0, Info1),
	qualify_inst(Inst1a, Inst1, Info1, Info).	

qualify_mode(user_defined_mode(SymName0, Insts0),
		user_defined_mode(SymName, Insts), Info0, Info) -->
	qualify_inst_list(Insts0, Insts, Info0, Info1),
	{ list__length(Insts, Arity) },
	{ mq_info_get_modes(Info1, Modes) },
	find_unique_match(SymName0 - Arity, SymName - _, Modes,
						mode_id, Info1, Info).
	
:- pred qualify_inst_list(list(inst)::in, list(inst)::out, mq_info::in,
		mq_info::out, io__state::di, io__state::uo) is det.

qualify_inst_list([], [], Info, Info) --> [].
qualify_inst_list([Inst0 | Insts0], [Inst | Insts], Info0, Info) -->
	qualify_inst(Inst0, Inst, Info0, Info1),
	qualify_inst_list(Insts0, Insts, Info1, Info).

	% Qualify a single inst.
:- pred qualify_inst((inst)::in, (inst)::out, mq_info::in, mq_info::out,
			io__state::di, io__state::uo) is det.

qualify_inst(any(A), any(A), Info, Info) --> [].
qualify_inst(free, free, Info, Info) --> [].
qualify_inst(not_reached, not_reached, Info, Info) --> [].
qualify_inst(free(_), _, _, _) -->
	{ error("compiler generated inst not expected") }.
qualify_inst(bound(Uniq, BoundInsts0), bound(Uniq, BoundInsts),
				Info0, Info) -->
	qualify_bound_inst_list(BoundInsts0, BoundInsts, Info0, Info).
qualify_inst(ground(Uniq, GroundInstInfo0), ground(Uniq, GroundInstInfo),
				Info0, Info) -->
	(
		{ GroundInstInfo0 = higher_order(pred_inst_info(A, Modes0,
				Det)) },
		qualify_mode_list(Modes0, Modes, Info0, Info),
		{ GroundInstInfo = higher_order(pred_inst_info(A, Modes, Det)) }
	;
		{ GroundInstInfo0 = constrained_inst_var(Var) },
		{ GroundInstInfo = constrained_inst_var(Var) },
		{ Info = Info0 }
	;
		{ GroundInstInfo0 = none },
		{ GroundInstInfo = none },
		{ Info = Info0 }
	).
qualify_inst(inst_var(Var), inst_var(Var), Info, Info) --> [].
qualify_inst(defined_inst(InstName0), defined_inst(InstName), Info0, Info) -->
	qualify_inst_name(InstName0, InstName, Info0, Info).
qualify_inst(abstract_inst(Name, Args0), abstract_inst(Name, Args),
				Info0, Info) -->
	qualify_inst_list(Args0, Args, Info0, Info).

	% Find the unique inst_id that matches this inst, and qualify
	% the argument insts.
:- pred qualify_inst_name(inst_name::in, inst_name::out, mq_info::in,
		mq_info::out, io__state::di, io__state::uo) is det.

qualify_inst_name(user_inst(SymName0, Insts0), user_inst(SymName, Insts),
				Info0, Info) -->
	qualify_inst_list(Insts0, Insts, Info0, Info1),
	{ mq_info_get_insts(Info1, InstIds) },
	{ list__length(Insts0, Arity) },
	find_unique_match(SymName0 - Arity, SymName - _,
				InstIds, inst_id, Info1, Info).
qualify_inst_name(merge_inst(_, _), _, _, _) -->
	{ error("compiler generated inst unexpected") }.
qualify_inst_name(unify_inst(_, _, _, _), _, _, _) -->
	{ error("compiler generated inst unexpected") }.
qualify_inst_name(ground_inst(_, _, _, _), _, _, _) -->
	{ error("compiler generated inst unexpected") }.
qualify_inst_name(any_inst(_, _, _, _), _, _, _) -->
	{ error("compiler generated inst unexpected") }.
qualify_inst_name(shared_inst(_), _, _, _) -->
	{ error("compiler generated inst unexpected") }.
qualify_inst_name(mostly_uniq_inst(_), _, _, _) -->
	{ error("compiler generated inst unexpected") }.
qualify_inst_name(typed_ground(_, _), _, _, _) -->
	{ error("compiler generated inst unexpected") }.
qualify_inst_name(typed_inst(_, _), _, _, _) -->
	{ error("compiler generated inst unexpected") }.

	% Qualify an inst of the form bound(functor(...)).
:- pred qualify_bound_inst_list(list(bound_inst)::in, list(bound_inst)::out,
	mq_info::in, mq_info::out, io__state::di, io__state::uo) is det.

qualify_bound_inst_list([], [], Info, Info) --> [].
qualify_bound_inst_list([functor(ConsId, Insts0) | BoundInsts0],
		 [functor(ConsId, Insts) | BoundInsts], Info0, Info) -->
	qualify_inst_list(Insts0, Insts, Info0, Info1),
	qualify_bound_inst_list(BoundInsts0, BoundInsts, Info1, Info).

:- pred qualify_constructor_arg_list(list(constructor_arg)::in,
	list(constructor_arg)::out, mq_info::in, mq_info::out,
	io__state::di, io__state::uo) is det.

qualify_constructor_arg_list([], [], Info, Info) --> [].
qualify_constructor_arg_list([Name - Type0 | Args0], [Name - Type | Args],
		Info0, Info) -->
	qualify_type(Type0, Type, Info0, Info1),
	qualify_constructor_arg_list(Args0, Args, Info1, Info).

:- pred qualify_type_list(list(type)::in, list(type)::out, mq_info::in,
			mq_info::out, io__state::di, io__state::uo) is det.

qualify_type_list([], [], Info, Info) --> [].
qualify_type_list([Type0 | Types0], [Type | Types], Info0, Info) -->
	qualify_type(Type0, Type, Info0, Info1),
	qualify_type_list(Types0, Types, Info1, Info).

	% Qualify a type and its argument types.
:- pred qualify_type((type)::in, (type)::out, mq_info::in, mq_info::out,
				io__state::di, io__state::uo) is det.

qualify_type(term__variable(Var), term__variable(Var), Info, Info) --> [].
qualify_type(Type0, Type, Info0, Info) -->
	{ Type0 = term__functor(_, _, _) },
	( { type_to_type_id(Type0, TypeId0, Args0) } ->
		( { is_builtin_atomic_type(TypeId0) } ->
			{ TypeId = TypeId0 },
			{ Info1 = Info0 }
		; { type_id_is_higher_order(TypeId0, _, _) } ->
			{ TypeId = TypeId0 },
			{ Info1 = Info0 }
		; { type_id_is_tuple(TypeId0) } ->
			{ TypeId = TypeId0 },
			{ Info1 = Info0 }
		;
			{ mq_info_get_types(Info0, Types) },
			find_unique_match(TypeId0, TypeId, Types,
						type_id, Info0, Info1)
		),
		qualify_type_list(Args0, Args, Info1, Info2),
		{ construct_type(TypeId, Args, Type) }	
	;
		{ mq_info_get_error_context(Info0, ErrorContext) },
		report_invalid_type(Type0, ErrorContext),
		{ Type = Type0 },
		{ Info2 = Info0 }
	),
	%
	% The types `int', `float', and `string' are builtin types,
	% defined by the compiler, but arguably they ought to be
	% defined in int.m, float.m, and string.m, and so if someone
	% uses the type `int' in the interface, then we don't want
	% to warn about `import_module int' in the interface.
	%
	{
		Type = term__functor(term__atom(Typename), [], _),
		( Typename = "int"
		; Typename = "string"
		; Typename = "float"
		)
	->
		% -- not yet:
		% StdLibraryModule = qualified(unqualified("std"), Typename),
		StdLibraryModule = unqualified(Typename),
		mq_info_set_module_used(Info2, StdLibraryModule, Info)
	;
		Info = Info2
	}.

	% Qualify the modes in a pragma c_code(...) decl.
:- pred qualify_pragma((pragma_type)::in, (pragma_type)::out,
		mq_info::in, mq_info::out, io__state::di, io__state::uo) is det.

qualify_pragma(source_file(File), source_file(File), Info, Info) --> [].
qualify_pragma(foreign_decl(L, Code), foreign_decl(L, Code), Info, Info) --> [].
qualify_pragma(foreign(L, C), foreign(L, C), Info, Info) --> [].
qualify_pragma(
	    foreign(Rec, SymName, PredOrFunc, PragmaVars0, Varset, Code),
	    foreign(Rec, SymName, PredOrFunc, PragmaVars, Varset, Code), 
		Info0, Info) -->
	qualify_pragma_vars(PragmaVars0, PragmaVars, Info0, Info).
qualify_pragma(tabled(A, B, C, D, MModes0), tabled(A, B, C, D, MModes), 
	Info0, Info) --> 
	(
		{ MModes0 = yes(Modes0) }
	->
		qualify_mode_list(Modes0, Modes, Info0, Info),
		{ MModes = yes(Modes) }
	;
		{ Info = Info0 },
		{ MModes = no }
	).
qualify_pragma(inline(A, B), inline(A, B), Info, Info) --> [].
qualify_pragma(no_inline(A, B), no_inline(A, B), Info, Info) --> [].
qualify_pragma(obsolete(A, B), obsolete(A, B), Info, Info) --> [].
qualify_pragma(import(Name, PredOrFunc, Modes0, Attributes, CFunc),
		import(Name, PredOrFunc, Modes, Attributes, CFunc),
		Info0, Info) -->
	qualify_mode_list(Modes0, Modes, Info0, Info).
qualify_pragma(export(Name, PredOrFunc, Modes0, CFunc),
		export(Name, PredOrFunc, Modes, CFunc), Info0, Info) -->
	qualify_mode_list(Modes0, Modes, Info0, Info).
qualify_pragma(unused_args(A, B, C, D, E), unused_args(A, B, C, D, E),
				Info, Info) --> [].
qualify_pragma(type_spec(A, B, C, D, MaybeModes0, Subst0, G),
		type_spec(A, B, C, D, MaybeModes, Subst, G), Info0, Info) -->
	(
		{ MaybeModes0 = yes(Modes0) }
	->
		qualify_mode_list(Modes0, Modes, Info0, Info1),
		{ MaybeModes = yes(Modes) }
	;
		{ Info1 = Info0 },
		{ MaybeModes = no }
	),
	qualify_type_spec_subst(Subst0, Subst, Info1, Info).
qualify_pragma(fact_table(SymName, Arity, FileName),
		fact_table(SymName, Arity, FileName), Info, Info) --> [].
qualify_pragma(aditi(SymName, Arity), aditi(SymName, Arity),
		Info, Info) --> [].
qualify_pragma(base_relation(SymName, Arity), base_relation(SymName, Arity),
		Info, Info) --> [].
qualify_pragma(aditi_index(SymName, Arity, Index),
		aditi_index(SymName, Arity, Index), Info, Info) --> [].
qualify_pragma(supp_magic(SymName, Arity), supp_magic(SymName, Arity),
		Info, Info) --> [].
qualify_pragma(context(SymName, Arity), context(SymName, Arity),
		Info, Info) --> [].
qualify_pragma(aditi_memo(A, B), aditi_memo(A, B), Info, Info) --> [].
qualify_pragma(aditi_no_memo(SymName, Arity), aditi_no_memo(SymName, Arity),
		Info, Info) --> [].
qualify_pragma(naive(SymName, Arity), naive(SymName, Arity),
		Info, Info) --> [].
qualify_pragma(psn(SymName, Arity), psn(SymName, Arity),
		Info, Info) --> [].
qualify_pragma(owner(SymName, Arity, Owner), owner(SymName, Arity, Owner),
		Info, Info) --> [].
qualify_pragma(promise_pure(SymName, Arity), promise_pure(SymName, Arity),
		Info, Info) --> [].
qualify_pragma(termination_info(PredOrFunc, SymName, ModeList0, Args, Term), 
		termination_info(PredOrFunc, SymName, ModeList, Args, Term), 
		Info0, Info) --> 
	qualify_mode_list(ModeList0, ModeList, Info0, Info).
qualify_pragma(terminates(A, B), terminates(A, B), Info, Info) --> [].
qualify_pragma(does_not_terminate(A, B), does_not_terminate(A, B), 
		Info, Info) --> [].
qualify_pragma(check_termination(A, B), check_termination(A, B), Info, 
		Info) --> [].

:- pred qualify_pragma_vars(list(pragma_var)::in, list(pragma_var)::out,
		mq_info::in, mq_info::out, io__state::di, io__state::uo) is det.

qualify_pragma_vars([], [], Info, Info) --> [].
qualify_pragma_vars([pragma_var(Var, Name, Mode0) | PragmaVars0],
		[pragma_var(Var, Name, Mode) | PragmaVars], Info0, Info) -->
	qualify_mode(Mode0, Mode, Info0, Info1),
	qualify_pragma_vars(PragmaVars0, PragmaVars, Info1, Info).

:- pred qualify_type_spec_subst(assoc_list(tvar, type)::in,
		assoc_list(tvar, type)::out, mq_info::in, mq_info::out,
		io__state::di, io__state::uo) is det.

qualify_type_spec_subst([], [], Info, Info) --> [].
qualify_type_spec_subst([Var - Type0 |  Subst0], [Var - Type | Subst],
		Info0, Info) -->
	qualify_type(Type0, Type, Info0, Info1),
	qualify_type_spec_subst(Subst0, Subst, Info1, Info).

:- pred qualify_class_constraints(class_constraints::in,
	class_constraints::out, mq_info::in, mq_info::out, io__state::di,
	io__state::uo) is det. 

qualify_class_constraints(constraints(UnivCs0, ExistCs0),
			constraints(UnivCs, ExistCs), MQInfo0, MQInfo) -->
	qualify_class_constraint_list(UnivCs0, UnivCs, MQInfo0, MQInfo1),
	qualify_class_constraint_list(ExistCs0, ExistCs, MQInfo1, MQInfo).

:- pred qualify_class_constraint_list(list(class_constraint)::in,
	list(class_constraint)::out, mq_info::in, mq_info::out, io__state::di,
	io__state::uo) is det. 

qualify_class_constraint_list([], [], MQInfo, MQInfo) --> [].
qualify_class_constraint_list([C0|C0s], [C|Cs], MQInfo0, MQInfo) -->
	qualify_class_constraint(C0, C, MQInfo0, MQInfo1),
	qualify_class_constraint_list(C0s, Cs, MQInfo1, MQInfo).

:- pred qualify_class_constraint(class_constraint::in, class_constraint::out,
	mq_info::in, mq_info::out, io__state::di, io__state::uo) is det.

qualify_class_constraint(constraint(ClassName0, Types0), 
	constraint(ClassName, Types), MQInfo0, MQInfo) -->
	{ list__length(Types0, Arity) },
	qualify_class_name(ClassName0 - Arity, ClassName - _, MQInfo0, MQInfo1),
	qualify_type_list(Types0, Types, MQInfo1, MQInfo).

:- pred qualify_class_name(pair(class_name, arity)::in, 
	pair(class_name, arity)::out, mq_info::in, mq_info::out, 
	io__state::di, io__state::uo) is det.

qualify_class_name(Class0, Class, MQInfo0, MQInfo) -->
	{ mq_info_get_classes(MQInfo0, ClassIdSet) },
	find_unique_match(Class0, Class, ClassIdSet, class_id,
		MQInfo0, MQInfo).

:- pred qualify_class_interface(class_interface::in, class_interface::out,
	mq_info::in, mq_info::out, io__state::di, io__state::uo) is det. 

qualify_class_interface([], [], MQInfo, MQInfo) --> [].
qualify_class_interface([M0|M0s], [M|Ms], MQInfo0, MQInfo) -->
	qualify_class_method(M0, M, MQInfo0, MQInfo1),
	qualify_class_interface(M0s, Ms, MQInfo1, MQInfo).

:- pred qualify_class_method(class_method::in, class_method::out,
	mq_info::in, mq_info::out, io__state::di, io__state::uo) is det. 

	% There is no need to qualify the method name, since that is
	% done when the item is parsed.
qualify_class_method(
		pred(TypeVarset, InstVarset, ExistQVars, Name, TypesAndModes0,
			MaybeDet, Cond, Purity, ClassContext0, Context), 
		pred(TypeVarset, InstVarset, ExistQVars, Name, TypesAndModes,
			MaybeDet, Cond, Purity, ClassContext, Context), 
		MQInfo0, MQInfo
		) -->
	qualify_types_and_modes(TypesAndModes0, TypesAndModes, 
		MQInfo0, MQInfo1),
	qualify_class_constraints(ClassContext0, ClassContext, 
		MQInfo1, MQInfo).
qualify_class_method(
		func(TypeVarset, InstVarset, ExistQVars, Name, TypesAndModes0,
			ReturnMode0, MaybeDet, Cond, Purity, ClassContext0,
			Context), 
		func(TypeVarset, InstVarset, ExistQVars, Name, TypesAndModes,
			ReturnMode, MaybeDet, Cond, Purity, ClassContext,
			Context), 
		MQInfo0, MQInfo
		) -->
	qualify_types_and_modes(TypesAndModes0, TypesAndModes, 
		MQInfo0, MQInfo1),
	qualify_type_and_mode(ReturnMode0, ReturnMode, MQInfo1, MQInfo2),
	qualify_class_constraints(ClassContext0, ClassContext, 
		MQInfo2, MQInfo).
qualify_class_method(
		pred_mode(Varset, Name, Modes0, MaybeDet, Cond, Context), 
		pred_mode(Varset, Name, Modes, MaybeDet, Cond, Context), 
		MQInfo0, MQInfo
		) -->
	qualify_mode_list(Modes0, Modes, MQInfo0, MQInfo).
qualify_class_method(
		func_mode(Varset, Name, Modes0, ReturnMode0, MaybeDet, Cond,
			Context), 
		func_mode(Varset, Name, Modes, ReturnMode, MaybeDet, Cond,
			Context), 
		MQInfo0, MQInfo
		) -->
	qualify_mode_list(Modes0, Modes, MQInfo0, MQInfo1),
	qualify_mode(ReturnMode0, ReturnMode, MQInfo1, MQInfo).

:- pred qualify_instance_body(sym_name::in, instance_body::in, 
	instance_body::out) is det. 

qualify_instance_body(_ClassName, abstract, abstract).
qualify_instance_body(ClassName, concrete(M0s), concrete(Ms)) :-
	( ClassName = unqualified(_) ->
		Ms = M0s
	;
		sym_name_get_module_name(ClassName, unqualified(""), Module),
		Qualify = lambda([M0::in, M::out] is det, (
			M0 = instance_method(A, Method0, C, D, E),
			add_module_qualifier(Module, Method0, Method),
			M = instance_method(A, Method, C, D, E)
		)),
		list__map(Qualify, M0s, Ms)
	).

:- pred add_module_qualifier(sym_name::in, sym_name::in, sym_name::out) is det.

add_module_qualifier(Module, unqualified(SymName), qualified(Module, SymName)).
add_module_qualifier(DefaultModule, qualified(SymModule, SymName),
			qualified(Module, SymName)) :-
	( match_sym_name(SymModule, DefaultModule) ->
		Module = DefaultModule
	;
		% This case is an error.  The user must have written something
		% like
		%	:- instance foo:bar(some_type) where [
		%		pred(baz:p/1) is q
		%	].
		% where the module qualifier on the pred or func in the
		% instance (`baz:') does not match the qualifier for the 
		% class name (`foo:').
		%
		% We don't report the error here, we just leave the original
		% module qualifier intact so that the error can be reported
		% later on.

		Module = SymModule
	).

	% Find the unique match in the current name space for a given id
	% from a list of ids. If none exists, either because no match was
	% found or multiple matches were found, report an error.
	% This predicate assumes that type_ids, inst_ids, mode_ids and
	% class_ids have the same representation.
:- pred find_unique_match(id::in, id::out, id_set::in, id_type::in,
		mq_info::in, mq_info::out, io__state::di, io__state::uo) is det.

find_unique_match(Id0, Id, Ids, TypeOfId, Info0, Info) -->

	% Find all IDs which match the current id.
	{ Id0 = SymName - Arity },
	{ mq_info_get_modules(Info0, Modules) },
	{ id_set_search_sym_arity(Ids, SymName, Arity, Modules,
		MatchingModules) },

	( { MatchingModules = [] } ->
		% No matches for this id.
		{ Id = Id0 },
		( { mq_info_get_report_error_flag(Info0, yes) } ->
			report_undefined(Info0, Id0, TypeOfId),
			{ mq_info_set_error_flag(Info0, TypeOfId, Info1) },
			{ mq_info_incr_errors(Info1, Info) }
		;
			{ Info = Info0 }
		)
	; { MatchingModules = [Module] } ->
		% A unique match for this ID.
		{ unqualify_name(SymName, IdName) },
		{ Id = qualified(Module, IdName) - Arity },
		{ mq_info_set_module_used(Info0, Module, Info) }
	;
		% There are multiple matches.
		{ Id = Id0 },
		( { mq_info_get_report_error_flag(Info0, yes) } ->
			{ mq_info_get_error_context(Info0, ErrorContext) },
			report_ambiguous_match(ErrorContext, Id0, TypeOfId,
						MatchingModules),
			{ mq_info_set_error_flag(Info0, TypeOfId, Info1) },
			{ mq_info_incr_errors(Info1, Info) }
		;
			{ Info = Info0 }
		)
	).
				
%------------------------------------------------------------------------------

:- type id_type --->
		type_id
	;	mode_id
	;	inst_id
	;	class_id.

:- type error_context == pair(error_context2, prog_context).

:- type id == pair(sym_name, int).

:- type error_context2 --->
		type(id) 
	;	inst(id)
	;	mode(id)
	;	pred(id)
	;	func(id)
	; 	pred_mode(id)
	;	func_mode(id)
	;	(pragma)
	;	lambda_expr
	;	type_qual
	;	class(id)
	;	instance(id).

	% Report an undefined type, inst or mode.
:- pred report_undefined(mq_info, pair(sym_name, int),
				id_type, io__state, io__state).
:- mode report_undefined(in, in, in, di, uo) is det.

report_undefined(Info, Id, IdType) -->
	{ mq_info_get_error_context(Info, ErrorContext - Context) },
	io__set_exit_status(1),
	prog_out__write_context(Context),
	io__write_string("In "),
	write_error_context2(ErrorContext),
	io__write_string(":\n"),
	prog_out__write_context(Context),
	io__write_string("  error: undefined "),
	{ id_type_to_string(IdType, IdStr) },
	io__write_string(IdStr),
	io__write_string(" "),
	write_id(Id),
	(
		%
		% if it is a qualified symbol, then check whether the module
		% specified has been imported
		%
		{ Id = qualified(ModuleName, _) - _Arity },
		{ mq_info_get_imported_modules(Info, ImportedModules) },
		{ \+ set__member(ModuleName, ImportedModules) },
		{ \+ ModuleName = Info^this_module }
	->
		io__write_string("\n"),
		prog_out__write_context(Context),
		io__write_string("  (the module `"),
		mercury_output_bracketed_sym_name(ModuleName),
		io__write_string("' has not been imported).\n")
	;
		io__write_string(".\n")
	).

	% Report an error where a type, inst or mode had multiple possible
	% matches.
:- pred report_ambiguous_match(error_context::in, id::in, id_type::in,
		list(module_name)::in, io__state::di, io__state::uo) is det.

report_ambiguous_match(ErrorContext - Context, Id, IdType, Modules) -->
	io__set_exit_status(1),
	prog_out__write_context(Context),
	io__write_string("In "),
	write_error_context2(ErrorContext),
	io__write_string("\n"),
	prog_out__write_context(Context),
	io__write_string("  ambiguity error: multiple possible matches for "),
	{ id_type_to_string(IdType, IdStr) },
	io__write_string(IdStr),
	io__write_string(" "),
	write_id(Id),
	io__write_string(".\n"),
	prog_out__write_context(Context),
	io__write_string("  The possible matches are in modules\n"),
	prog_out__write_context(Context),
	io__write_string("  "),
	prog_out__write_module_list(Modules),
	io__write_string(".\n"),
	globals__io_lookup_bool_option(verbose_errors, Verbose),
	( { Verbose = yes } ->
		prog_out__write_context(Context),
		io__write_string("  An explicit module qualifier may be necessary.\n")
	;
		[]
	).

	% Give a context for the current error message.
:- pred write_error_context2(error_context2::in, io__state::di,
						io__state::uo) is det.

write_error_context2(type(Id)) -->
	io__write_string("definition of type "),
	write_id(Id).
write_error_context2(mode(Id)) -->
	io__write_string("definition of mode "),
	write_id(Id).
write_error_context2(inst(Id)) -->
	io__write_string("definition of inst "),
	write_id(Id).
write_error_context2(pred(Id)) -->
	io__write_string("definition of predicate "),
	write_id(Id).
write_error_context2(pred_mode(Id)) -->
	io__write_string("mode declaration for predicate "),
	write_id(Id).
write_error_context2(func(Id)) -->
	io__write_string("definition of function "),
	write_id(Id).
write_error_context2(func_mode(Id)) -->
	io__write_string("mode declaration for function "),
	write_id(Id).
write_error_context2(lambda_expr) -->
	io__write_string("mode declaration for lambda expression").
write_error_context2(pragma) -->
	io__write_string("pragma").
write_error_context2(type_qual) -->
	io__write_string("explicit type qualification").
write_error_context2(class(Id)) -->
	io__write_string("declaration of typeclass "),
	write_id(Id).
write_error_context2(instance(Id)) -->
	io__write_string("declaration of instance of typeclass "),
	write_id(Id).

:- pred id_type_to_string(id_type::in, string::out) is det.

id_type_to_string(type_id, "type").
id_type_to_string(mode_id, "mode").
id_type_to_string(inst_id, "inst").
id_type_to_string(class_id, "typeclass").

	% Write sym_name/arity.
:- pred write_id(id::in, io__state::di, io__state::uo) is det.

write_id(SymName - Arity) -->
	io__write_string("`"),
	prog_out__write_sym_name(SymName),
	io__write_string("'/"),
	io__write_int(Arity).

	% Warn about modules imported in the interface when they do not
	% need to be.
:- pred maybe_warn_unused_interface_imports(module_name::in,
		list(module_name)::in, io__state::di, io__state::uo) is det.

maybe_warn_unused_interface_imports(ModuleName, UnusedImports) -->
	globals__io_lookup_bool_option(warn_interface_imports, Warn),
	globals__io_lookup_bool_option(halt_at_warn, HaltAtWarn),
	(
		{ UnusedImports = []
		; Warn = no
		}
	->
		[]
	;
		module_name_to_file_name(ModuleName, ".m", no, FileName),
		{ term__context_init(FileName, 1, Context) },
		prog_out__write_context(Context),
		io__write_string("In module `"),
		prog_out__write_sym_name(ModuleName),
		io__write_string("':\n"),
		prog_out__write_context(Context),
		io__write_string("  warning: "),
		( { UnusedImports = [_] } ->
			io__write_string("module ")
		;
			io__write_string("modules ")
		),
		prog_out__write_module_list(UnusedImports),
		io__write_string("\n"),
		prog_out__write_context(Context),
		{ is_or_are(UnusedImports, IsOrAre) },
		io__write_strings([
			"  ", IsOrAre,
			" imported in the interface, but ",
			IsOrAre, " not\n"
		]),
		prog_out__write_context(Context),
		io__write_string("  used in the interface.\n"),
		(
			{ HaltAtWarn = yes }
		->
			io__set_exit_status(1)
		;
			[]
		)
	).

:- pred is_or_are(list(T)::in, string::out) is det.

is_or_are([], "") :- error("module_qual:is_or_are").
is_or_are([_], "is").
is_or_are([_, _ | _], "are").

	% Output an error message about an ill-formed type.
:- pred report_invalid_type(type, error_context, io__state, io__state).
:- mode report_invalid_type(in, in, di, uo) is det.

report_invalid_type(Type, ErrorContext - Context) -->
	io__set_exit_status(1),
	prog_out__write_context(Context),
	io__write_string("In definition of "),
	write_error_context2(ErrorContext),
	io__write_string(":\n"),
	prog_out__write_context(Context),
	io__write_string("  error: ill-formed type `"),
	{ varset__init(VarSet) },
	mercury_output_term(Type, VarSet, no),
	io__write_string("'.\n").

%-----------------------------------------------------------------------------%

	% is_builtin_atomic_type(TypeId)
	%	is true iff 'TypeId' is the type_id of a builtin atomic type

:- type type_id == id.

:- pred is_builtin_atomic_type(type_id).
:- mode is_builtin_atomic_type(in) is semidet.

is_builtin_atomic_type(unqualified("int") - 0).
is_builtin_atomic_type(unqualified("float") - 0).
is_builtin_atomic_type(unqualified("string") - 0).
is_builtin_atomic_type(unqualified("character") - 0).

%-----------------------------------------------------------------------------%
% Access and initialisation predicates.

:- pred init_mq_info(item_list::in, globals::in, bool::in, module_name::in,
	mq_info::out) is det.

init_mq_info(Items, Globals, ReportErrors, ModuleName, Info0) :-
	term__context_init(Context),
	ErrorContext = type(unqualified("") - 0) - Context,
	set__init(InterfaceModules0),
	get_implicit_dependencies(Items, Globals, ImportDeps, UseDeps),
	set__list_to_set(ImportDeps `list__append` UseDeps, ImportedModules),
	id_set_init(Empty),
	Info0 = mq_info(ImportedModules, Empty, Empty, Empty, Empty,
			Empty, InterfaceModules0, not_exported, 0, no, no,
			ReportErrors, ErrorContext, ModuleName,
			may_be_unqualified).

:- pred mq_info_get_imported_modules(mq_info::in, set(module_name)::out) is det.
:- pred mq_info_get_modules(mq_info::in, module_id_set::out) is det.
:- pred mq_info_get_types(mq_info::in, type_id_set::out) is det.
:- pred mq_info_get_insts(mq_info::in, inst_id_set::out) is det.
:- pred mq_info_get_modes(mq_info::in, mode_id_set::out) is det.
:- pred mq_info_get_classes(mq_info::in, class_id_set::out) is det.
:- pred mq_info_get_unused_interface_modules(mq_info::in,
					set(module_name)::out) is det.
:- pred mq_info_get_import_status(mq_info::in, import_status::out) is det.
% :- pred mq_info_get_num_errors(mq_info::in, int::out) is det.
% :- pred mq_info_get_type_error_flag(mq_info::in, bool::out) is det.
% :- pred mq_info_get_mode_error_flag(mq_info::in, bool::out) is det.
:- pred mq_info_get_report_error_flag(mq_info::in, bool::out) is det.
:- pred mq_info_get_error_context(mq_info::in, error_context::out) is det.

mq_info_get_imported_modules(MQInfo, MQInfo^imported_modules).
mq_info_get_modules(MQInfo, MQInfo^modules).
mq_info_get_types(MQInfo, MQInfo^types).
mq_info_get_insts(MQInfo, MQInfo^insts).
mq_info_get_modes(MQInfo, MQInfo^modes).
mq_info_get_classes(MQInfo, MQInfo^classes).
mq_info_get_unused_interface_modules(MQInfo, MQInfo^unused_interface_modules).
mq_info_get_import_status(MQInfo, MQInfo^import_status).
mq_info_get_num_errors(MQInfo, MQInfo^num_errors).
mq_info_get_type_error_flag(MQInfo, MQInfo^type_error_flag).
mq_info_get_mode_error_flag(MQInfo, MQInfo^mode_error_flag).
mq_info_get_report_error_flag(MQInfo, MQInfo^report_error_flag).
mq_info_get_error_context(MQInfo, MQInfo^error_context).
mq_info_get_need_qual_flag(MQInfo, MQInfo^need_qual_flag).

:- pred mq_info_set_imported_modules(mq_info::in, set(module_name)::in,
		mq_info::out) is det.
:- pred mq_info_set_modules(mq_info::in, module_id_set::in, mq_info::out)
		is det.
:- pred mq_info_set_types(mq_info::in, type_id_set::in, mq_info::out) is det.
:- pred mq_info_set_insts(mq_info::in, inst_id_set::in, mq_info::out) is det.
:- pred mq_info_set_modes(mq_info::in, mode_id_set::in, mq_info::out) is det.
:- pred mq_info_set_classes(mq_info::in, class_id_set::in, mq_info::out) is det.
:- pred mq_info_set_unused_interface_modules(mq_info::in, set(module_name)::in,
						mq_info::out) is det.
:- pred mq_info_set_import_status(mq_info::in, import_status::in,
						mq_info::out) is det.
:- pred mq_info_set_type_error_flag(mq_info::in, mq_info::out) is det.
:- pred mq_info_set_mode_error_flag(mq_info::in, mq_info::out) is det.
:- pred mq_info_set_error_context(mq_info::in, error_context::in,
						mq_info::out) is det.

mq_info_set_imported_modules(MQInfo,
		ImportedModules, MQInfo^imported_modules := ImportedModules).
mq_info_set_modules(MQInfo, Modules, MQInfo^modules := Modules).
mq_info_set_types(MQInfo, Types, MQInfo^types := Types).
mq_info_set_insts(MQInfo, Insts, MQInfo^insts := Insts).
mq_info_set_modes(MQInfo, Modes, MQInfo^modes := Modes).
mq_info_set_classes(MQInfo, Classes, MQInfo^classes := Classes).
mq_info_set_unused_interface_modules(MQInfo, 
		Modules, MQInfo^unused_interface_modules := Modules).
mq_info_set_import_status(MQInfo, Status, MQInfo^import_status := Status).
mq_info_set_type_error_flag(MQInfo, MQInfo^type_error_flag := yes).
mq_info_set_mode_error_flag(MQInfo, MQInfo^mode_error_flag := yes).
mq_info_set_error_context(MQInfo, Context, MQInfo^error_context := Context).
mq_info_set_need_qual_flag(MQInfo, Flag, MQInfo^need_qual_flag := Flag).

:- pred mq_info_incr_errors(mq_info::in, mq_info::out) is det.

mq_info_incr_errors(MQInfo, MQInfo^num_errors := (MQInfo^num_errors +1)).

:- pred mq_info_set_error_flag(mq_info::in, id_type::in, mq_info::out) is det.

mq_info_set_error_flag(Info0, type_id, Info) :-
	mq_info_set_type_error_flag(Info0, Info).
mq_info_set_error_flag(Info0, mode_id, Info) :-
	mq_info_set_mode_error_flag(Info0, Info).
mq_info_set_error_flag(Info0, inst_id, Info) :-
	mq_info_set_mode_error_flag(Info0, Info).
mq_info_set_error_flag(Info0, class_id, Info) :-
	mq_info_set_type_error_flag(Info0, Info).

	% If the current item is in the interface, remove its module 
	% name from the list of modules not used in the interface
	% (and if the module name is itself module-qualified,
	% recursively mark its parent module as used).
:- pred mq_info_set_module_used(mq_info::in, module_name::in,
						mq_info::out) is det.

mq_info_set_module_used(Info0, Module, Info) :-
	( mq_info_get_import_status(Info0, exported) ->
		mq_info_get_unused_interface_modules(Info0, Modules0),
		set__delete(Modules0, Module, Modules),
		mq_info_set_unused_interface_modules(Info0, Modules, Info1),
		(
			Module = qualified(ParentModule, _),
			mq_info_set_module_used(Info1, ParentModule, Info)
		;
			Module = unqualified(_),
			Info = Info1
		)
	;
		Info = Info0
	).

	% Add to the list of modules imported in the interface and not used.
:- pred mq_info_add_unused_interface_modules(mq_info::in, list(module_name)::in,
						mq_info::out) is det.

mq_info_add_unused_interface_modules(Info0, NewModules, Info) :-
	mq_info_get_unused_interface_modules(Info0, Modules0),
	set__insert_list(Modules0, NewModules, Modules),
	mq_info_set_unused_interface_modules(Info0, Modules, Info).

	% Add to the list of imported modules.
:- pred mq_info_add_imported_modules(mq_info::in, list(module_name)::in,
						mq_info::out) is det.

mq_info_add_imported_modules(Info0, NewModules, Info) :-
	mq_info_get_imported_modules(Info0, Modules0),
	set__insert_list(Modules0, NewModules, Modules),
	mq_info_set_imported_modules(Info0, Modules, Info).

%----------------------------------------------------------------------------%
% Define a type for representing sets of ids during module qualification
% to allow efficient retrieval of all the modules which define an id
% with a certain name and arity.

% The first set of module_names can be used without module qualifiers,
% items from the second set can only be used with module qualifiers.
% Items from modules imported with a :- use_module declaration and from `.opt'
% files should go into the second set.
:- type id_set == map(pair(string, arity), pair(set(module_name))).

:- type type_id_set == id_set.
:- type mode_id_set == id_set.
:- type inst_id_set == id_set.
:- type class_id_set == id_set.
	% Modules don't have an arity, but for simplicity we use the same
	% data structure here, assigning arity zero to all module names.
:- type module_id_set == id_set.

:- pred id_set_init(id_set::out) is det.

id_set_init(IdSet) :-
	map__init(IdSet).

	% Insert an id into an id_set, aborting with an error if the
	% id is not module qualified.
:- pred id_set_insert(need_qualifier::in, id::in, 
		id_set::in, id_set::out) is det.

id_set_insert(_, unqualified(_) - _, _, _) :-
	error("module_qual:id_set_insert - unqualified id").
id_set_insert(NeedQualifier, qualified(Module, Name) - Arity, IdSet0, IdSet) :-
	( map__search(IdSet0, Name - Arity, ImportModules0 - UseModules0) ->
		ImportModules1 = ImportModules0,
		UseModules1 = UseModules0
	;
		set__init(ImportModules1),
		set__init(UseModules1)
	),
	(
		NeedQualifier = must_be_qualified,
		set__insert(UseModules1, Module, UseModules),
		ImportModules = ImportModules1
	;
		NeedQualifier = may_be_unqualified,
		set__insert(ImportModules1, Module, ImportModules),
		UseModules = UseModules1
	),
	map__set(IdSet0, Name - Arity, ImportModules - UseModules, IdSet).

:- pred id_set_search_sym_arity(id_set::in, sym_name::in, int::in,
		module_id_set::in, list(module_name)::out) is det.

id_set_search_sym_arity(IdSet, Sym, Arity, Modules, MatchingModules) :-
	unqualify_name(Sym, UnqualName),
	(
		map__search(IdSet, UnqualName - Arity,
			ImportModules - UseModules)
	->
		(
			Sym = unqualified(_),
			set__to_sorted_list(ImportModules, MatchingModules)
		;
			Sym = qualified(Module, _),

			%
			% first, compute the set of modules that this
			% module specifier could possibly refer to
			%

			% do a recursive search to find nested modules
			% which match the specified module name
			ModuleArity = 0,
			id_set_search_sym_arity(Modules, Module, ModuleArity,
				Modules, MatchingParentModules),
			unqualify_name(Module, UnqualModule),
			AppendModuleName = (pred(X::in, Y::out) is det :-
					Y = qualified(X, UnqualModule)),
			list__map(AppendModuleName,
				MatchingParentModules,
				MatchingNestedModules),

			% add the specified module name itself, in case
			% it refers to a top-level (unnested) module name,
			% since top-level modules don't get inserted into
			% the module_id_set.
			AllMatchingModules = [Module | MatchingNestedModules],

			%
			% second, compute the set of modules that define
			% this symbol 
			%
			set__union(ImportModules, UseModules, DefiningModules),

			%
			% third, take the intersection of the sets computed
			% in the first two steps
			%
			FindMatch =
				lambda([MatchModule::out] is nondet, (
				    list__member(MatchModule,
				    	AllMatchingModules),
				    set__member(MatchModule, DefiningModules)
				)),
			solutions(FindMatch, MatchingModules)
		)
	;
		MatchingModules = []
	).

%-----------------------------------------------------------------------------%

get_partial_qualifiers(ModuleName, PartialQualInfo, PartialQualifiers) :-
	PartialQualInfo = partial_qualifier_info(ModuleIdSet),
	(
		ModuleName = unqualified(_),
		PartialQualifiers = []
	;
		ModuleName = qualified(Parent, Child),
		get_partial_qualifiers_2(Parent, unqualified(Child),
			ModuleIdSet, [], PartialQualifiers)
	).

:- pred get_partial_qualifiers_2(module_name, module_name, module_id_set,
		list(module_name), list(module_name)).
:- mode get_partial_qualifiers_2(in, in, in, in, out) is det.

get_partial_qualifiers_2(ImplicitPart, ExplicitPart, ModuleIdSet,
		Qualifiers0, Qualifiers) :-
	%
	% if the ImplicitPart module was imported, rather than just being
	% used, then insert the ExplicitPart module into the list of
	% valid partial qualifiers.
	%
	( parent_module_is_imported(ImplicitPart, ExplicitPart, ModuleIdSet) ->
		Qualifiers1 = [ExplicitPart | Qualifiers0]
	;
		Qualifiers1 = Qualifiers0
	),
	%
	% recursively try to add the other possible partial qualifiers
	%
	( ImplicitPart = qualified(Parent, Child) ->
		NextImplicitPart = Parent,
		insert_module_qualifier(Child, ExplicitPart, NextExplicitPart),
		get_partial_qualifiers_2(NextImplicitPart, NextExplicitPart,
			ModuleIdSet, Qualifiers1, Qualifiers)
	;
		Qualifiers = Qualifiers1
	).

	% Check whether the parent module was imported, given the name of a
	% child (or grandchild, etc.) module occurring in that parent module.
	%
:- pred parent_module_is_imported(module_name, module_name, module_id_set).
:- mode parent_module_is_imported(in, in, in) is semidet.

parent_module_is_imported(ParentModule, ChildModule, ModuleIdSet) :-
	% Find the module name at the start of the ChildModule;
	% this sub-module will be a direct sub-module of ParentModule
	get_first_module_name(ChildModule, DirectSubModuleName),

	% Check that the ParentModule was imported.
	% We do this by looking up the definitions for the direct sub-module
	% and checking that the one in ParentModule came from an
	% imported module.
	Arity = 0,
	map__search(ModuleIdSet, DirectSubModuleName - Arity,
			ImportModules - _UseModules),
	set__member(ParentModule, ImportModules).

	% Given a module name, possibly module-qualified,
	% return the name of the first module in the qualifier list.
	% e.g. given `foo:bar:baz', this returns `foo',
	% and given just `baz', it returns `baz'.
	%
:- pred get_first_module_name(module_name, string).
:- mode get_first_module_name(in, out) is det.

get_first_module_name(unqualified(ModuleName), ModuleName).
get_first_module_name(qualified(Parent, _), ModuleName) :-
	get_first_module_name(Parent, ModuleName).

%----------------------------------------------------------------------------%